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Number Theory

0.1. Theory of numbers deals with the properties of integers, Z={......-3,-2,-1,0,,2,3,.....}.
We begin our study of number theory by first listing basic arithmetic properties and their
elementary consequence of Z.

0.2.

There exist two binary operations addition (+) and muitiplication (e) in Z. For

a,be Z,a+b is called the sum and ¢.pis called the product of @ and p . The basic properties
are given below;

Def.

. If abceZ ,then (a+b)+c=a+(b+c)
. If a,beZ then g+p=b+a
. There exists unique integer O such that ¢+ (0 =g for each qe 7. '0' is called the

additive identity.

. Foraninteger a there exists a unique integer denoted by —a such that a+(-a)=0.

—a 1is called the negative of «, or the additive inverse of « .

. If a,b,ce Z,then (a.b).c=a.(b.c).
If a,beZ then ¢ . b=b.a
. There exists unique integer 1 such that 4.1=¢4 for each ge Z. 1 is called the

multiplicative identity.

Af a,b,ceZ and g#0 then g b=a.c=b=c.

If a,b,ce Z then a.(b+c)=a.b+a.c.
If a,be Z the difference of a and b, denoted by a-b, is defined as a+(-b).

Some elementary consequences :
1. If a,b,CEZthen at+b=a+c=>b=c 2. -0=0

3. For aeZ,a.0=0 4. For a,be Z,a=b= —a=-b.

5. For ae Z,—(-a) =a. 6. For a,be Z,—(a+b)=—a-b.

7. For a,be Z,a(-b) =—(ab) 8. For a,be Z,(—a) (-b) = ab.

9. For a,be Z,ab=0=a=0o0rb=0. 10. For a,be Z,ab#0=a#0,b 0.

Def. If a,be Zand ap=1 then a or p is called a unit.The only units in Z are
1 and -1.

For a,be Z,ab=1=a=b=10r gq=p=-1
0. 3. THE ORDERING OF THE INTEGERS

There exists a subset N of Z, called the set of positive integers, with the following
properties :
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Q;. If 4e 7, then one and only one of the following is true :

(i) ae N @) a=0 @iil)) —ae N
Q,. If a,pe N then g+pe N and 4.pe N
From Q; and Q, we observe that (1) oeN and (2) 1e N

In view of the definition of N, if ae N , we say that a is positive.
Thus the set of integers is separated into three exhaustive and mutually exclusive sets

: namely the set of positive integers N, the singleton set (0) and the set of negative integers.

Definition. If a,beZ and b—-aec N, then we say that a is less than b and write

a <b. Alternatively we say that b is greater than a and write p> q.

0.4.

0.5.

If g<p or a=b, we write g <p. If g>p or a=b, we write g>p.
Definition. If ae 7z and —aqe N, then we say that a is a negative integer.
Thus « is negative, if —a is positive.
If a is positive, then ¢ >0. If a is negative, then ¢ <0.
Note : If ¢ 7, one and only one of the following is true :

aeN, a=0, —aeN or a>0,a=0,a<0
SOME IMPORTANT PROPERTIES OF ORDER IN Z

1. If g,be Z, then one and only one of the followingis true : a<b,a=b,a>b
2. If a,b,ce Z then (i) a<bb<c=a<c (ii)a>bb>c=a>c
3. If a,b,ce Z,then (i) a<b=a+c<b+c (@) a>b=a+c>b+c
4. If a,b,ce Z then
(@) a>b,c>0=ac>bc, (i) a>b,c<0=ac<bc (iii) a<b,c<0=> ac>bc
5. If ae Z,a#0, then a®=a.as0
LEAST AND GREATEST INTEGERS IN A SUBSET OF Z.

Let Sczand S#¢. If there exists an integer ne S such that <, forall me S, we

call n the smallest or least integer in S. In such a case we say that S has a least member.

If there exists an integer ne S such that > for all me S, we call n the greatest

integer in S.
0.6. WELL-ORDERING PRINCIPLE.

Every non-empty set of positive integers has a least member.

From the above principle we have two elementary consequences, namely,

(@) 1 is the smallest positive integer and

(i) for ne N there does not exist an integer a such that n<a<n+1.

From the law of well ordering we can derive a principle known as principle of

mathematical induction.
0.7. PRINCIPLE OF MATHEMATICAL INDUCTION

First form : Let S be a subset of N such that
(i) 1e Sand (ii)) ne S=>n+1eS then S=N.
Second form : Let S be a subset of N such that (i) 1eS and (i) ke S for all g

satisfying 1<k<n=neS, then S=N.
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0.8. MODULUS OR ABSOLUTE VALUE OF AN INTEGER

Def. Let qe 7. The modulus or absolute value of a denoted, by |a| is defined as
|a|=a if a=0and |a|=-aif a<0.
1. If ae Z,a#0,then |a|e Nand hence |a|>0
2. |a|=0, ifand only if ¢ =0. 3. For a,be Z,|a|=|b|& a=1D
4. For ae Z~|a|fa<|a] 5. For a,be Z,|a+D|<|a|+|b|
6. For a,be Z,|a.b|=|a].|b]| 7. For ¢>0,~c<b<co|b|<c
0.9. THE EUCLID'S DIVISION ALGORITHM

The theorem known as division algorithm plays an important role in the development of
number theory. The proof of this theorem is based on the well ordering principle of positive
integers.

Theorem : If a,be Z and a =0, then there exist unique integers gq,r such that
b=aq+r,0<r<]a|.

Note 1. : If g,b are positive integers, then there exist unique pair of integers ¢, 7 such
that b=ag+r,0<r<a.

2. The above theorem establishes uniqueness of division.

3. If b=ag+r, 0<r<|a| then

p is called the dividend, « is called the divisor,

q is called the quotient and r is called the remainder.

4. When p is any integer and « = 2, by division algorithm b=2g+r,0<r<2. In this
case the possible values of r=0,1.

If r=0then b=2qgand pis called even integer.

If ,=1then b=2g+1and pis called odd integer.

5. In the division algorithm, if » =0 then b =aq.

0.10. DIVISOR

Definition. Let a,b be two integers and q 0. If there exists an integer q such
that b=agq, then we say that a divides b or a is a factor of b or a is a divisor b or b is
a multiple of a..

a divides p is denoted by a|b. If a is not a divisor of p, then we write a | b.
a|b & b=aq, where qis an integer. If , is a multiple of a, we write b =M(a)
e.g. 5|20, 3|12, 421 =20=M (5),12=M (3),21=M (4) .

Note 1. Since 0=¢.0, 0is a multiple of every integer.

i.e. a|0, for every non-zero integer a.

2. For a non-zero integer '¢' we have a=a.1=(-a).(-1).

Therefore a,—a,+1,—1 are divisors of a.

3. If 420, then 4 has at least two divisors.

If g20and 4« +1, then « has atleast four divisors.
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Properties 1. If a,be Z then alb=b=0o0r |a|<|b]|
2.If a,b,ce Z then a|b,b|c=a]c
3.1f a,pbe Z then a|lband bjla=a=1b
4. a|b,alc=a|bx+cy;x,ye Z and in particular,
al|b,alc=al|b+c and a|b-c
0.11. EVEN AND ODD INTEGERS
Definition. If e Zand 2|athen '¢' is called even integer
If aeZ and 2} athen '¢ is called odd integer.
From Note (4) or Art. 8.9 we have 'q' is even integer < a =2q where g€ Z
'q' is odd integer < a =2q+1 where g€ Z
Some properties : 1. The sum and product of two even integers is even integer.
2. The sum of two odd integers is even integer
3. The product of two odd integers is odd integer.
4. The sum of even integer and odd integer is odd integer.
5. The product of even integer and odd integer is even integer.
6. The product of two consecutive integers is divisible by 2.
For, the product consists of an even integer which is divisible by 2.
Ex. 1. Find q.r of the division algorithm if p=-2044 and a =130
Sol. By long division : 2044 =130(15) + 94 = —2044 = -130(15) - 94
(Note that r # -94 as (0 <-94 <130 is not true)
. =2044 =[-130(15)—130]+130-94 =130(=16) +36 . Which is of the form b =aq+r,
where ¢=-16€ Z and r=36¢ Z such that 0<r<130.
Ex. 2. If n is even positive integer, prove that »2n _y is divisible by 15.
Sol. » is even integer = n=2m,me N
22 b dm oMY _1=16" -1 =(16-1) 16" +16™ % +....+1)=15¢
where ¢=16""416""2+..+1e N. - 15 divides 52n-1 when n is even.
Ex. 3 Prove that every odd integer is of the form 4n+10r 4n-1
Sol. Let p be an odd integer.
By division algorithm : p =4n+r where n,re Zand 0<r<4
S p=4n+0 or 4un+1 Or 4n+2 Or 4n+3
Since pis odd; p#4n and p #4n+2which are even.

sop=4n+lor 4n+3. But p=4n+3=4n+4-1=4(n+1)-1=4m-1
». p 1is of the form 45 +1 or 4n—1where ne 7.
| EXERCISE 0 (a)|

Find g, r of the division algorithm if (i) b=7153,a=17 (ii) b =-6080,a = —42
Prove that a|b<|al||b].

If a|b and ce 7 then prove that a|bc.

If a,b,ce Z then prove that ac|bc=a|b.

b .
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If a|band c|d then prove that ac|bd .

Prove that the sum and product of two even integers is even integer.

Prove that the product of even integer and odd integer is even integer.

If a,b are odd integers prove that a +p2 is even.

. If n is an odd integer prove that (»> —1) is divisible by 8.

10 By induction prove that the product of three consecutive integers is divisible by 6.

1. (i) g=420,r =13 (ii) ¢ =145,r =10
0.12. GREATEST COMMON DIVISOR (G. C. D)

On the basis of simple divisibility properties, the integers are separated into four mutually
exclusive categories - Zero, Unit, Prime and Composite. In this chapter we study the properties
of primes as the fundamental building blocks in terms of which all the composite numbers
may be uniquely represented.

Definition. Common Divisor : Let a,b be integers. If de 7 is such that d|aand
d|bthen dis called a common divisor of a and b.

e.g. 1. 3]-15 and 3|21= 3is a common divisor of —15,21.

2. +1 are common divisors of @, b where a,be Z.

Note 1. For any two integers q,b there exists a common divisor which is positive.

2. If a,be Z and 4 # 0 then the set of common divisors of ,b is finite.

Definition. G. C. D. : Let a,b be two integers so that atleast one of them is not
equal to zero. If there exists a positive integer 'd’ such that (i) d is a common divisor of
a, b and

(ii) every common divisor of a, b is a divisor of d, then d is called the Greatest
Common Divisor (G. C.D) of a,b.

Notation : G. C. D. of a,b=(a,b)>0

e.g. 2,3 and 6 are the common divisors of 18,24.

Also 2|6 and 3 | 6. Therefore 6=(18,24).

© 0N o

Definition. Let {a},a,,......,a, } be a finite set of integers, not all zero. If there exists
a positive integer 'd' such that (i) d is a common divisor of ay,a,,......,a, and

(ii) every common divisor of aj,as,.......a, is a divisor of d, then d is called the
greatest common divisor of ay,as,.......a,. We write d =(a;,ay,.....,a,)

Note 1. (a,b)=(b,a) 2. If d =(a,b) then 4>1

3. If d =(a,b) then 4 is unique. 4. (a,a)=|a] 5. (a,b)=|a|= a|b.

6. (a,b)=(-a,b)=(a,~b)=(-a,~b) or (a,b)=(al,|b|)
7. G. C. D. of two consecutive natural numbers = 1.
Theorem 1. If a,be Z,b+#0 and a=bq+r,0<r<|b| then (a,b)=(b,r).
Proof : Let (a,b)=d;and (b,r)=d,.

(a,b)=dy=>dj|aand d;|b =d,|(a-bq) where g€ Z=d,|r. (-a—-bg=r)
dy|b and d;|r = d; is acommon divisor of p and r.
Since (b,r)=d,, by def. of G. C. D., d;|d, e (D)
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Similarly starting with (b,r) = d, we can prove that d, |d; ... (2)

From (1) and (2), d, =d, (since d;,d, are positive).

Theorem 2. If a,b,c are integers, not all zero, then (a,b,c) = ((a, b), ¢).

Theorem 3. If (a, b) = d there exist x,ye z such that d = ax + by. Further the
elements of {ax + by/x,ye z} are the multiples of d.

Note. 1. If d = (a, b) the d = ax+by; x,y € Z is not unique.

For, d = ax + by = a(x - b) + b(y + a) = ax, + by, where x =x-band y +a € Z.

2.For d = (a, b) and ¢ = ax+byez < d/c.

3. (a, b, ¢) = d then there exist x, y, z € z such that d = ax+by+cz.

e.g. If possible, find x, y € z such that 15 = 6x + 12y. We have (6, 12) = 6 = d and
¢ =15 € 6}15. From Note (2) we cannot write 15 in the form 6x + 12y.

0.13. CONSTRUCTION OF G. C. D. FROM DIVISION ALGORITHM

Let q,b be two integers such that at least one of g,b is non-zero.

Case (1). If a=0, then (a,b)=|b|. If b=0,then (a,b)=|a|

Case (2). Let g20and p 20

By division algorithm we have the following finite sequence of divisions :
a=bgq +n; 0Sn<|bl; b=ngy+nrn;0<n<n; n=ng+r; 05 <n;

T2 =N G + 1 O <ncy, 1oy =1 Qg + 11y 0y <1y

Since 0< ryyy <1y <13_q <......<n <|b|, the successive remainders form a decreasing
sequence of positive integers. It follows that in a finite number of steps, say, (k +1)"" step the
process will terminate so that r,, =0.

Therefore the last non-zero remainder in the above process is 7.

Hence from the above theorem, (a,b)=(b,r) =(1,7) = .cceuu.e. =(re_1, 1) = (. ,0) =1

. the last non-zero remainder r is the G. C. D. of the given numbers q,b.

Theorem 3. If (a,b)=d then there exists x,yc Z such that d =ax+byand d is the
least positive value of ax+by where x, y range over all integers.

Note 1. If d =(a,b), the numbers x,ye Z such that d = ax+by are not unique.
For, if d =ax+by then d =a(x-Db)+b(y+a) =ax; +by;;x=x—-b,y =y +a.
2. If d =(a,b) then for ce Z,c =ax+byif and only if g is a divisor of c.

3. The G. C. D. of a,b is the least positive value of ax+by where x,y range over all
integers.

4. If (a,b,c) =d then there exist x,y,z€ Z such that d =ax+by+cz.

The G. C. D. of a,b,c is the least positive value of ax+by +cz where x,y,z range
over all integers.

e.g. Find x,yeZ such that 15=6x+12y if possible.
We have (12,6)=6=d and ¢=15.

Since 6 is not a divisor of 15, it is not possible to write 15 in the form 6x+12y.



SuccessClap: Best Coaching for UPSC Mathematics : For Info- 9346856874
Checkout ->22 Weeks Study Plan, Videos, Question Bank Solutions, Test Series

0.14. RELATIVELY PRIME OR MUTUALLY PRIME OR COPRIME INTEGERS

Definition. If (a,b) =1 then a,b are said to be relatively prime or mutually prime.
e.g. Since (15,8)=1, 15 and 8 are relatively prime.
Note. If g,b are relatively prime then a,» have no common divisor.
Theorem 1. a,b € Z are relatively prime iff there exist X,y € Z such that ax+by =1.
Theorem 2. If (a,b)=1 and a|bc then a|c.
Proof. a|bc= bc=aq;;q1€Z
(a,b) =1= there exist x,ye Z such that ax+by=1
ax+by =1= c(ax+by)=c = c(ax)+(cb)y =c = al(cx)+(aqy)y =c
= a(cx+qy)=c = aq=cwhere g=cx+qyeZ=alc
Theorem 3. If (a,b)=d, then (ka,kb) =|k |d where ke Z —{0}.
Note 1 : If m >0, (ma,mb) = m(a,b) 2. If (a,b)=d then (a/d,b/d)=1
3. If (a,b)=d and a=Al,b=BI then (AB)=d/I
4.1If d|a,d|b and d>O0then (a/d,bld)=1/d(a,b)
Theorem 4. If (a,b)=1 and (a,c)=1then (a,bc)=1.
Note 1. Conversely, (a,bc)=1= (a,b)=1,(a,c)=1
2. By induction (g,b)=1= (a,b") =1wWhere npe N
0.15. LEAST COMMON MULTIPLE (L.C.M)

Definition. Let a,b be two non-zero integers. The L.C.M. of a,b is the unique
positive integer m such that (i) a|m,b|m and (i) a|k,b|k=m|k. )

Notation : L.C.M. of a,b=[a,b]. e.g. [5-10]=10,[16,20]=80

Note 1. : The L.C.M. of two consecutive natural numbers is equal to their product.

That is, [2,3]=6,[14,15] =210

2. [a,b] =[-a,b] =[a,—b] =[—a,~b]

3. The L.C.M. of two integers is positive integer.

4. If a#0,b#0ec Z then |ab| is a common multiple of ¢ 5. Hence [a,b]| |ab|.

Some Properties :

1. If m>0;a,be Z then [ma,mb]=mla,b]

2. If a#0,b#0e Z then a|c,b|c=[a,b]|c 3. al|ab,b|ab=[a,b]|ab

4. If (a,b)=d and [a,b]=m then dm=|ab|

5. If two integers are relatively prime i.e. (a,b)=1 then [a,b]=|ab|

Ex. 1. If d =(826,1890) using division algorithm compute d and then express as a
linear combination of 826, 1890.

Sol : By Euclid algorithm :

1890 = 826(2) +238; 1; =238 ... (1) 826=238(3)+112; 1, =112 . (2)

238=1122)+14; r; =14 ..(3) 112 =14(8) +0; 1, =0 (4

~.r3 =14 is the last non-zero remainder  ..d = G. C. D. of 826, 1890 = 14.

Again,  d=14=238+(-2)112 using (3) =238+ (-2){826+(~3)238} using (2)

= (-2)826+(7)238 =(-2)826+7{1890+(~2)826} using (1)
= (~16)826 + (7)1890
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Ex. 2 : If a=2210,b=493 find (a,b) and hence [a,b].
Sol. By Euclid algorithm : 2210 =493(4) +238; , =238
493=238(2)+17; 1, =17 238=17(14)+0; 3 =0
(a,b) =(2210493) =17 and |ab|=2210x493

lab| _ 2210x493
(ab)y 17

Ex. 3. : If (a,b)=1 show that (a+b,a—b)=1 or 2

Sol. Let (a+b,a-b)=d

~d|la+b and d|a-b=d|a+b+a-band d|a+b—a+b

=d|2a and d|2b. = 4 is a common divisor of 24,25 .

But (a,b)=1= (2a,2b)=2 ..d|2 and hence g4 =10r 2

Ex. 4 : If a|x,b|x and (a,b)=1then prove that ab|x.Give an example to prove
that a|x,b|x need not imply ab|x.

la,b]= =130x493

Sol. a|x,b|x= x=aq;,x=bq, where ¢;,qo€Z

(a,b) =1= there exist [,me Z such that g/ +pm =1

= alx+bmx = x = al(bq,)+bm(aq,) = x = ab(lg, + mg;) = x

= x = (ab)q where q=Ig, +mg € Z s ab|x

We have 2|12, 4|12 does not imply 2.4=8|12 because (2,4)=2=#1.
EXERCISE 0 ()]

Find the G.C.D. of (i) 1128,33 (ii) —308,136 .
Find d = (1819,3587) and hence express 4 as a linear combination of 1819and 3587.

Find integers x,ysuch that 243x+198y =9 .

If ne Nfind (n,n+1)and [n,n+1].

If a|bfind (a,b)and [a,b].

If a|c,b|c and (a,b)=d prove that d|c.

Show that (a,b) = (a,a+b).

If d =(a,b)=ax+by prove that x,y are relatively prime.
. If (a,b)=d and Ke Z-{0} then prove that (Ka,Kb)=|K|d .
10.Find [a,b] if (i) a=60,b=61 (i) a =482,b=1687.
11.Prove that (a,m)=(b,m)=1< (ab,m)=1.

12.1f (a,b)=d and [a,b] = m prove that dm =|ab]|.

13.If ax+by =1show that (a,b) =(a,y)=(x,b)=(x,y)=1.
14.1f (a,b) =1prove that (a?,ab,b*)=1.

N = R

15.Prove that (a,b) =1« there exist x,y€ Z such that ax+by =1.
1. () 3 (i) 4 2.d=17,x=71,y =-36 3.x=9,y=-11 4. Ln(n+1)
5. ab 10. (i) 3660 (ii) 3374
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0.16. PRIMES AND COMPOSITE NUMBERS

Definition. The positive integer p >1is said to be a prime if the only divisors of p
are +1 and xp. The other positive integers greater than 1 are called composite.

'a' isaprime = a=a(l)and a=1(a).

'a' is composite = there exist integers. b,¢ such that 4 =pc where 1<b<al<c<a.

Note 1. 2 is the only even integer which is a prime. Every other even integer has 2 as
a factor. Therefore p is a prime and p # 2then p is an odd integer.

2. 1 is neither considered as a prime number nor composite and 1 is called unit.

3. Imp. If p is a prime and qge Z then plaor (p,a)=1

4. A composite number has atleast 3 divisors.

Theorem 1. (Euclid's Lemma).

If pis a prime and a,be Z then plab=p|aor p|b.

Proof. If p|b, then the theorem is proved.

Let p}b. Then (p,b)=1,as p is a prime.

(p,b) =1=there exist x,ye Z such that px+by=1=apx+aby=a. ... (1)

plab= ab=pg where geZ ........ 2)

- from (1) and (2) apx+pgy=a = plax+qy)=a

= pq'=a where ¢ =ax+qy= pla. Hence plab= p|a or p|b
Cor. If p is a prime and ay,as,........a, € Z then
pl(ay,as,...c...a,) = play or plas,......or pla,.

Note. If p is not a prime, p|ab= p|a or p|b is not true.

e.g. 6 is a factor of 144 = (9) (16). But 69 and 6 ] 16 since 6 is not a prime.

Cor. If p is aprime and a,he Z are such that 0<a,b< p then p | ab.

0.17. The fundamental theorem of arithmetic, stated below, shows the importance of
prime numbers, since they generate the set of all positive integers greater than one. Thus
primes are fundamental numbers interms of which all the composite numbers may be
conveniently and uniquely represented.

Theorem 1. (The fundamental theorem of arithmetic). Every positive integer
a>1 can be expressed as a product of primes uniquely.

Note 1. : If g#+l1and ge Z then by the above theorem |a|= py, py.....p,, Where
P1sD2-----p, are primes. Therefore a ==*|a|==%(p;.py....py)

2. Every positive integer a > 1 can be written uniquely in the form a = p1 p32.......pJ",
where py, py,.....p, are primes ; 1< p; < py <....< p,and each o,,d,,.....0, 1S a positive
integer.

The above representation of '¢' 1is called prime factorisation of '4' in 'canonical
form'' or ""Prime power factorisation of a'

3. If a= p{xl pgz ........ pyn and b= q?lqu ........ qE{" then

(i) a=beon=m,p;=q; and a; =p; for i=12......,n

(i) G.C.D. of a,b=p/" p5?.....pJ" where pj,p;.,....,p,are common prime factors
of a,b and m; is the minimum exponent of p; as one compares the exponents of p;in a,b .
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(iii) LCM. of a,b=p/" py™.......p5"s where py, p;,....... p; are all prime factors of both
a,b and m; is the maximum exponent of p; as one compares the exponents of p;in a,b .
e.g. a=2520=23%x3>x5"x7";p=4950= 2! x32 x5? x11!
(a,b) =2'x3? x5! =90 (minimum exponents of common factors)
[a,b] =23 x3%x5% x7' x11!' =138600 (maximum exponents of all factors).
0.18. THE NUMBER OF DIVISORS OF A POSITIVE INTEGER N
By fundamental theorem,
N=p/ipy2....p%r where 1< pj < py <.....< p, and 0,0;.......0L, are positive integers.
Consider the product
P=(l+p1+p12+ ..... +p1al)(1+p2+p%+ ..... +pg2) ..... (1+pr+p3+ ..... +pyr)
General term of this product is pf)l pg 2 plr
where 0<f; <0,058; <0tp,...0<B, <,
Clearly, plﬁl p§2 _______ pPr is a factor of PL Py e p¥r =N
Conversely, every factor of N is a term of P.
Hence, the number of factors of N = number of terms of P
= (1+0)(A+0y).....A+0L,)
Notation. The number of positive integral divisors (factors) of a positive integer N is
denoted by T(N)
0.19. THE SUM OF ALL THE DISTINCT POSITIVE INTEGRAL DIVISORS OF
A POSITIVE INTEGER
By fundamental theorem,
N = plOcl .pgz ....... pyrwhere 1< py < py <....<p,and 04,05,.....0, positive integers.
Consider the product
P= (14 py+ pi et pI) (14 Dy + 3 et PI2 el P+ PE et p27)
General term of P is p?l .p§2 ....... p?’ where 0<f; <0;,0<pB, <00y,......., 0B, <0,
~. Bvery term of P is a factor of N and conversely every factor of N is a term of P.
~. the sum of all the distinct divisors of N = the sum of all the terms of P

2 2 2
=14+ i+ et PP U+ Pa 4 P3 F et DI )L+ P P+t pET)

[ r) [ p5r pr -1
n-l pr-1 pr—1
Notation. The sum of all the distinct positive integral divisors of N >1 is denoted by & (N).
0.20. PERFECT NUMBER
If the sum of all divisors of 5 >1, is equal to 25 then nis called a perfect number.

Note. If 2" =1 is prime then 2"! (2" —1) is a perfect number.
e.g. ,=28=22x7! is a perfect number, for,

3_ 2 _
c5(28):[2 1}(7 1}=7><8=56=2><28

2-1 7-1
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0.21. BRACKET FUNCTION

Definition. The function 1:R — 7 defined by 1(x)=n where n<x<n+1 is called
the bracket function or the step function or the integral part function.

Notation. Integral part of xe R is denoted by I(x)or [x].

Definition. If xe R,x—[x] is called the Fractional part of x.

Note 1. [x]<x<[x]+1 or x-1<[x]<x.

2. For every xe R,x=[x] i.e. x—[x]=0 and hence the fractional part of any xe R is

non-negative. 3. xeZe[x]l=x
14 2 14 3 3
.o, LAd<—=4—<5=|—|=4 . 0<=<1 ~—1=0
e.g 1 343 [3} 2 <3< :{4}
3. —4<-V10<-3=[-10]1=—4 4. 3<n:%<4:>[n]=3

Some important properties :
1. For xe R,[x]<x<[x]+1= x lies between [x]+0 and [x]+1= x=[x]+6 where

0<06<I1.
2. If qe 7 and pe N then [%} =the quotient when '¢' is divided by 'p'

3. If mez and xe R then [x+m]=[x]+m.
For; x=[x]+6 where 0<0<1 =x+m=[x]+m+6 where 0<0<1
S[x]l+m<x+m<[x]+m+1=[x+m]=[x]+m

4. If xe R then [x]+[-x]=0 when xis integer and [x]+[-x]=-1when x is non-
integer.

5. x,yER=[x+y]=[x]+[y]

6. If p is a prime number in 5! then the highest power of pcontained in !

o
n
:21 — | where pa<n<pa+l.
r=1 p

1
14 4
e.g. As 5l <14<52, , highest power of 5 in 14!= E I[Lr}=l(—j=l(2—]= 2
)4

r=1

7. The product of » consecutive integers is divisible by !
For xe N, product of » consecutive integers

_(x+n)! P=(X+”)!

=P=(x+1) (x+2)e(x+7) = = —=-——"=xC, = +ve integer.
x! r! x!r!
8. The number of pairs of factors of a given number N which are prime to each
other:

Let N=p/pY2... Pl

Since any two factors into which N is resolved are prime to each other, if one factor
contains p; then the other does not contain p;.

The factors under consideration = the different terms of the product

L+ p")AH+ PS4 p2) = A+ D) A+ D (1+1) to rfactors =2"

. 1 _
+. Number of pairs =-x 2" ="l
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9. If N=p[py?..... p&ris not a perfect square then the number ways in which

1
N can be resolved into two factors = 5(1+0€1)(1+0L2) ....... (+a,)

1
If N is a perfect square then the number of ways = 5{(1 +oy)d+0y)...d+a,)+1}

Ex. 1. Express 67375 as the product of primes.

Sol. 67375 =5x13475 =52 %2695 =5 %539 =5x7x77 =5 x7*x11!

Ex. 2. By writing a =6540,b =1206 in the canonical form find (a,b)and [a,b].Also

verify (a,b)[a,b]l=|ab]|.

Sol. 4= 6540 = 2x3270 = 2% x1635 = 22 x3x545 =22 x3! x5! x109

b =1206 = 2x603 = 2! x3!x201' = 2! %32 x67

Common prime factors in g,b = 2,3 and their minimum exponents = 1,1

~ G.C.Dof g p=2!x3'=6

All prime factors in a,b =2,3,5,67,109 and their maximum exponents =2,2, 1, 1, 1
.. LCM. of (a,b) =2%x3?x5'x67!x109'

AlSO |ab|=ab =23 x3*>x5x67x109 = (a,b)[a, b]

EXERCISE 0 ( ¢)

1. Write each in canonical form :

() 2560 (i) 4116 (i) 29645

2. By writing each set in the cannonical form find G.C.D. and L.C.M

(i) 1337,-501 (i) 3367,3219  (iif) 1274,3087,1085

3. Find the number of divisors and their sum :

() 3675 (i) 18375 (iii) 74088

4. Find the highest power of (i) 5in80!(A.U. 05) (i) 3in1000! (iii) 7in 50!
5. If ne z prove that () n(n+1) (n+5)=M(6) (ii) n° —n = M(30)

(i) n(n®> —1)= M(24) when »n is odd.

If p is a prime and ge 7 then prove that p|a or (p,a)=1.

Prove that every odd prime can be put in the form 4x—1 or 4n+1

Prove that every odd prime greater than 3 can be put in the form 6n-1 or 6n+1.
. Show that there are infinitely many primes of the form (i) 4n—1 (ii) 6n-1

10 If x,ye R prove that [x+ y]=[x]+[y].

11.If 2" +1 is a prime show that » is a power of 2.

12.If (a,b) =1 then show that (¢ +b,a®> —ab+b*)=10r 3 (A.U. 05)

© 0 N o

13.1f 5 > 21is a positive integer show that n> =5n° +4n is divisible by 120. (S. V. U. 05)

L. () 29x5 (i) 22 x3x73 (i) 5%72 %112
2. (i) 1,3x7x167x191 (ii) 37;7x13x37x3x29 (iii) 7:2x3% x5% 7> x13x31
3. (i) 18,57 x124 (ii) 24;57x624 (iii) 64;240000 4. (i) 19 (i) 498 (iii) 8
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0.22. CONGRUENCES

The property of congruence provides a way of classifying integers according to the
remainder obtained upon division by a fixed positive integer. In fact the remainder is the only
thing of interest. In this section we study a relation on the integers that is defined in terms of
remainders.

Definition. Let m be a fixed positive integer and a,be Z. 'a’ is said to be congruent
to 'b" modulo m, if m|(a-b).

Notation. '4' is congruent to 'p' modulo m is denoted by a =b (modm)
If m}(a-b),then we say that '4' is not congruent to 'p' modulo m and write
a # b(mod m).

Note 1. a=b(modm) © m|(a-b) @ a-b=qgm; g€ Z
< (a—D>)is amultiple of m ie. a—b=M(m)
2. The congruence relation has properties similar to the equality relation.
3. m|a© a=0(modm).
eg. 1. 5/(18-3) = 18=3(mod5) 2. 4|(-8)—4 <> -8=4(mod4)
3. 7|17-(4)=17=-4(mod7) 4. 2/@-1) < 8#1(mod2).

Theorem 1. Two integers a and b are congruent modulo m iff they leave the same
remainder when divided by m.

Note 1. If a =b (modm) then (a,m)=(b,m)

2. If a=b(modm) then ¢" =p" (modm)V ne Z*

Theorem 2. For a fixed integer m > 0 the relation a=b(modm) is an equivalence
relation on the set of integers Z.

Theorem. 3 : If a=b(modm) and xc 7 then

(i) atx=btx(modm) (ii) ax=bx(modm)

Theorem. 4. If a=b(modm) and c=d(modm)then

(i) a+tc=b+d(modm) (ii) ac=bd(modm)

Note 1. a =b(modm),c =d(modm)= a—c=b-d(modm)

e.g. 1. 14=2(mod12) = -14=-2(mod12) 2. 12=5(mod7)= 24 =10(mod7)

3. 12=5(mod7); 16 =2(mod7) = 28 =7(mod7) and 192 =10(mod 7)

2. If 4y =b;(modm),a, = b,y (modm),.....a, = b, (modm) then

aay......a, =byb,.....b, (modm)

3. We also write a+c=b+d(modm)as a+, c=b+,dand ac=bd(modm) as
ax,, c=bx,, d

Theorem 5. If ab=ac(modm) and (a, m) =1, then b=c(modm).

Note 1. This is cancellation law in congruences and is valid only when (a,m)=1..

21=14(mod7)i.e. 7.3=7.2 (mod7)does not imply 3=2(mod7)as (7,7)#1.

2. Imp. ab =ac (modm) & b=c(modm/(a,m))
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Ex. 1 : Find the least positive integer modulo 7 to which 323 is congruent.
Sol. Dividing 323 by 7 we have 323 = 7(46) +1

+323-1=7(46)= 7| (323-1) = 323=1(mod7)

Ex. 2 : If a=b(modm) and n is a positive divisor of m then a=b (modn)
Sol. a=b(modm) and n|m = a—b=mq;,m=nqg, where qy,q, € Z

= (a—b)=(nq,)q; =nqgwhere q=qrq€Z = a=b(modn)

Ex. 3 : Prove that ax=ay(mod m) < x=y | mod @m

Sol. If (a, m) = d then %% =1. ax=ay(modm) < ax—ay=m, q € Z.

e ms = m
(x—y)(.(d,dj IJ = y(modd].

0.23. RESIDUE CLASSES OR CONGRUENCE CLASSES

<:>£(x_ )—ﬂ @ﬂﬁ(x_ ) (:}ﬂ
a " VTG T T

We know that an equivalence relation on a set splits the set into a number of subsets.
Since congruence modulo m is an equivalence relation on Z, this relation partitions Z into a
collection of disjoint subsets, "called residue classes" or "Congruence classes".

Theorem. 1. Let m be a positive integer and S ={0,1,2,........ ,m-1}. Then no two
integers of S are congruent modulo m.

Proof. Let g,beS and g>p. Then 0<g<m and 0<p<m =0<a—-b<m

So, m ] (a—b) and a #b (modm). Hence no two integers of S are congruent mod m.

Theorem. 2 : Let m be a positive integer and S ={0,1,2,....... ,m—1}. Then every
xe Z is congruent modulo m to one of the integers of S.

Proof. By division algorithm, for xe Z there exist uniqe integers ¢, such that

x=gm+r,0<r<m and r is unique. sx—r=gm,r€S = x=r(modm).

Hence for xe 7 there exists one and only one integer re S such that x =r (modm).

Definition. The remainder r, upon division of x by m, is called the residue of x
mod m. The set of integers Z,, ={0,1,2,......... ,m—1} is called the set of least positive
residues modulo m.

e.g. {0,1,2,345,6} is the set of least positive residues modulo 7. These integers are
such that each xe 7 is congruent mod 7 to exactly one of them.

If m is a positive integer, then there exist exactly m equivalence classes for the
equivalence relation ''Congruence modulo m '"'. The equivalence class 7 or [r]is the set
{xe Z|x=r(modm)}. It is also called r-residue class or r— congruence class. The set of
mequivalence classes or residue classes or congruence classes is denoted by

Zym =T ={01,2,om—1} 0 Z,, =1, = {[OL[1],[2],.cc0.... [m—1]} .

If xer then x=7. So,if xy€ 0,x € 1,x, € 2,......... x,,_1 € m—1 then the set
{X0» X1 X2 5eeeees Xy } CONSists of all the congruence classes modulo - m .

Note : Two congruent classes b € Z,, or 1, are distinct, for, 7=p = 0<a<b<m

and m | (b—a) which is impossible.
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Definition. If a,be Z,, or J, the sum of @ and p is the congruence class a+b
and the product of @ and b is the congruence class a.b.

Thus we have (i) 2+b =a+b or [al+[bl=[a+b] (i) ab =ab or [a] [b]=[ab]

The above two operations are respectively called (i) addition and (ii) multiplication of
congruence classes.

The above two operations defined in Z,, clearly satisfy the following properties :

For a,b,ceZ,; (1) a+b=b+a and ab=ba

(2) @+b)+c=a+(b+c) and (@b)c=a(bc)

(3) ab+cy=ab+ac 4 O+a=a ) la=a

(The proofs of the above statements are left as an exercise)

Note : If m= p is a prime number then J, the set of congruence classes modulo p is
such that @ #0eJ p = there exists bel p With the condition 75 =7 .

0.24. LINEAR CONGRUENCES

Definition. 1. I f(x)=apx" +q x" Ly .+a, x+a, is a polynomial with integral
coefficients and agy #0(modm)then f(x)=0(modm)is called a polynomial congruence
of nth degree.

A polynomial congruence of first degree is called linear congruence.

Definition. 2 : If there exists xq€ Z such that f(xy)=0(modm) then xy€Z is
called a solution of f(x)=0(modm).

Any linear congruence can be put in the form ax=b(modm)where a #0(modm).

Note 1. x; is a solution of the congruence ax =b(modm) & axy =b(modm)

e.g.1. 3 is a solution of 7x=5(mod8) because 7.3 =5(mod8)i.e. 21=35(mod8)

2. 7 is a solution of 3x=1(mod4) because 3.7 =1(mod4) i.e. 21 =1(mod4)

3. 2 is a not a solution of 3x =4(mod5) because 6 % 4(mod5) .

Theorem 1. If x, is a solution of ax=b(modm) and x; =xy(modm) then x; is
also a solution of ax=b(modm).

Note. From the above theorem we observe that, if x is a solution of ax = b(modm) then
every integer x; congruent to xqunder modulo m is also a solution. The solutions x,x; are
not counted as different and say that x=xy(modm)is a solution of the congruence
ax=b (modm) .

Imp. When we say that x =xy(mod m) is a solution of ax=b(modm) we mean
that x=x,+tm,te Z is a complete solution (a set of congruent solutions) of
ax = b(mod m).

Definition. Let {xq,x1,X,....... X1} be a complete set of residues modulo - m. The
number of solutions of ax=b(modm) is the number of x;(i=0,1.2,...,m—1) such that
ax; =b(modm).

Note 1. The number of solutions is independent of the choice of the complete set of
residues modulo .

2. The number of solutions cannot exceed the modulus m .

e.g. Consider the congruence 3x = 4(mod5)
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A complete set of residues modulo 5={0,1,2,3,4}

3.3=4(mod5) because 5|(9-4) = 3 is a solution of 3x =4(mod5)

Hence x=3(mod5) is a solution of the congruence.

We also see that, 3.0 # 4(mod5), 3.1# 4(mod5), 3.2 # 4(mod5) and 3.4 # 4(mod5) .

. x=3(mod5) is the unique solution.

Theorem 2. If (a,m)=1, then the linear congruence ax=b(modm) has a unique
solution.

Note 1. The linear congruence 3x = 4(mod5) has a unique solution x =3(mod5) since

(3,5) =1and the set of all congruent solutions is given by x =3+ where re Z.

2. The congruence x=b(modm) has a unique solution because (1,m)=1. Itis given by
x=b+mt where e Z.

Theorem 3. If(aym)=d and d|bthen the congruence ax=b(modm) has no
solution.

e.g. Consider the congruence 20x =30(mod4) Here a=20,b=30,m=4

=d =(a,m)=(20,4) =4 = 20x =30(mod 4) has no solution as d =4 |b=30.

Theorem 4. If (a,m)=dand d|b then the congruence ax=b(modm) has exactly
d incongruent solutions ax=x(+r(m/dYmodm);r =0,1,2,...,d—1where x,is a solution
of ax =b(mod m)

e.g. Consider 15x=25mod(35)

Here a =15, b=25, m=35 so that d =(a,m)=(15,35)=5

Since d =5|b =25, the congruence has 5 incongruent solutions.

Note : Imp. The congruence ax=b(modm) (1) has unique solution if (a,m)=1

(2) has no solution if (a,m) | b.

m
(3) has (a,m) solutions if (a,m)|b and are given by X = *o H[ @ )j(modm)
where xgis a solution and #=0,1,2,....... ,(m-1)

0.25. INVERSE MODULO m

Definition. If ab=1(modm) then a,b are said to be inverses modulo m. Also 'p' is
called inverse of 'a' and 'a' is called inverse of 'p' under modulo m.

e.g. 3.2=1(mod5)= 3,2 are inverses modulo 5.

Imp. An integer 'a’ has an inverse modulo m if and only if (a,m)=1.

Note : For an integer '¢' if al= 1(mod m) then inverse of «a is itself.

Ex. 4 : Solve the linear congruence 16x=25(mod19) (

Sol. Comparing with ax = b(modm) we have a=16,b=25,m=19

Since (a,m) = (16,19) =1, the congruence has unique solution modulo 19.

To solve 16x =25 (mod19), we add suitable congruence or congruences and reduce it
to the form x = xy(mod19) which is the required solution.

We have 247 =0 (mod19) = 0 =247 (mod19) (Transitive property)

Adding with the given congruence, 16x =272(mod19) = 16x =16.17(mod 19)

. x=17(mod19) (since (16,19)=1). .. x=17(mod19) is the unique solution
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| EXERCISE 0 (d)|
Find the least positive integer modulo - 11 to which 335 is congruent.
Does the number 3 have inverse modulo 6 ?
Find the inverse pairs of Zs ={0,1,2,3,4}
If x is even integer prove that it satisfies x =0 (mod2).
If ab = ac(mod p) and a #0(mod p) where pis a prime then prove that b = ¢(mod p)
List all integers in the range 1< x <100 that satisfy x=7 (mod17).
If p is prime and 4 =p%(mod p) then prove that p|a+b or pla—b
Show that a+ x = b (mod m) has unique solution.
. Prove that ab = 0 (mod 6) does not always imply either a =0 (mod6) or b= 0 (mod 6)
10. If ab =0 (mod p) where p is prime. Prove that either a =0 (mod p) or b =0 (mod p)
11.If f(x)isapolynomial of ,# degree with integral coefficients and a = b(mod m) prove
that f(a)= f(b) (modm) .
12. If a=b(modmy),a=b(modm,)and m =[my,m,] then prove that a =b(modm)
13. If a=bh(modm) then prove that (a,m) = (b,m)
14. Solve the following congruences.
(i) 3x=4(mod5) (i) 6x+3=4(mod10)  (iii) 15x =12 (mod21)

e R N

(iv) 13x =10 (mod 28) (N.U. 05) (v) 135x=(mod 10) (S.K.U. 05)
1. 5 2. No 3.2,3and 4,4 6. 7,24,41, 58,75,92

14. (i) x=3(mod5) (ii) No solution (iii) x =5+4¢ (mod21) where ¢ =0,1,2
0.26. EULER ¢ - FUNCTION

The least positive residues modulo m that have inverses modulo m are those relatively
prime to m. An important function that counts the number of these positive integers is called
the Euler ¢ - function.

Definition. The Euler ¢ - function is the function ¢:z* — z* defined as follows:
(i) For 1€ z*,0(1)=1 and (ii) for n(>1)€ Z*,0(n) = the number of positive
integers less than n and relatively prime to n.

Notation : The Euler ¢ function is denoted by ¢(n) .

Note. 1 : o(1)=1.

2. For n>1,¢(n) =the number of integers x such that 1< x<n and (x,n)=1. That is,
¢(n) = the number of integers in Z,, ={0,1,2,.......... ,n—1} that are prime to n.

3. For n > 1,¢(n) =the number of congruence classes that are prime to n.

e.g. 1. Let n =2, then positive integers less than 2 ={1}. Since (1,2)=1; ¢(2)=1

2. Let »=3. Since (1,3)=1,(2,3)=1, we have ¢ (3)=2

3. Let n=8. Complete set of residues mod8 ={0,1,2,3,4,5,6,7} = Zg

The residues that are relatively prime to 8 =1,3,5,7. Therefore, ¢ (8)=4.

Theorem 1. If (a,b)=1and the numbers a,2a3a,......,(b—1)aare divided by bthen
the remainders are 1,2,3,......,b —1not necessarily in this order.
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Proof. Let S={a,2a,3aq,....,(b—1)a}

Let mja,mya € Sleave the same remainder r, when divided by p,

. ma=qb+rand mya=q,b+r where g,qo€ Zand 0<r<p .

s (mp—my)a=(q,—q2)b=qb,where q=q,-q;

Since (a,b) =1,b|(m; —m,) . This is impossible, as m; <band m, <b.

~. The remainders are different.

Since (a,b) =1, each mae Sis not a multiple of p, and hence no remainder is zero.

Therefore, the remainders are 1,2.3,......,b—1 not necessarily in this order.

Cor. If (a,b)=1,ce Zand the p numbers of the A.P. ¢,c+a,c+2a,......c+(b—1)a are
divided by b, then, the remainders are 0,1,2......,6—1 not, necessarily in this order.

Theorem 2. If (m,n) =1, then ¢ (m.n)=¢ @m).o (n).

Cor. If ny,ng,......... n, are prime to each other, then ¢ (n.n3....n,) =0 (1) . ¢ (n)....0 (n;.)

Note. We have ¢(4)=2,0(10)=4,0(5)=4,6(8) =4 and ¢ (40)=16

But 16 =¢ (40) # ¢ (4).¢ (10) =8 since (4,10) #1.

While 16 = ¢ (40) = ¢ (5). (8) since (5,8)=1.

Therefore, the formula ¢ (mn) = ¢ (m).o (n) is applicable only when (m,n)=1.

Theorem 3. If ne Z*and p is a prime, then ¢(p")=p" —pn_l =p"(1-(1/p)
Note 1. ¢(p)=d(p') = p' - p® = p-1,if p isa prime.

2. 92" =2"-2""1=2""1 since 2 is a prime.

3. If p is aprime then ¢ (p™)+0 (" D440 (P +0(p)+0 (1) = p"

4. n=pMp52...pym, Where o,0,,...0, are positive integers.

Since py, py.,......p,, are relatively prime to each other,

O =0(p").0(P32)-c 0 (Pp™) = p (1= (11 pp)). p2 (1= (11 p))-eee P (1= Py)
=n(=1/pp) A=A/ p2)) ... A=/ pyy))

e.g. 66125 =0(5.72)=0(5).0(7%) =531=(1/5)).7*(1 = (1/7)) = 524.7.6 = 4200,
Theorem.4:(Fermat's Theorem):If pis a prime and (a,p)=1then aP™1 = 1(mod p)

Proof. Since (a, p) =1, when the numbers a,2a,3a,....(p —1)a are divided by p, the
remainders are 1,2,3,...., p —1; not necessarily in this order.
Let a=r(mod p); 2a = ry(mod)ps.......(p—Da=r,_(mod p)
But,7,....1,— are the remainders obtained when a,2aq,....... ,(p—1a are divided by p.
SR Pedp =120 (p=D

={1.2..(p-D}.a’ ™ =1.2...(p-1) (mod p)
= (p-D'a?™ =(p=1)!(mod p) = a?' = I(mod p)
(* pisprime and (p,))=L(p,2)=1,......(p,p—D=1)
Cor. If pis a prime and ge Z then ¢” =g (mod p).
When (a, p)=1; by Fermat's theorem, ¢”! =1(mod p) = a” = a(mod p)
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when (a,p)#1;p|laand a=0(mod p) = 0=a (mod p)
a? =0 (mod p) and 0= g (mod p) = a” =a(mod p) .
Theorem. 5. (Wilson's Theorem) : If p is a prime then (p—1)!+1=0(modp).

Proof. : For p=2,(p-1)!+1=2and 2=0 (mod?2)= the theorem is true.
Let p>2and ge Zsuch that 1<a<p-1.
p is prime = (a, p) =1and hence the linear congruence ax =1(mod p)
has unique solution, say, x,. Let a’e Xy and 1<a’< p-1.Then aa’=1(mod p)
d'=a=a’=1(mod p)= p|(a2—l)=> pl(a-1) or (a+1)
pl@-1 and a>0=a+l=p=a=p-1l.p|(a+Dand p>a=a-1=0=a=1
~a =a= either g=10r a=p-1 and SO ¢’ # g = a€{23,...... ,p—2}
-. the distinct 4,4 belong to the set {2.3,....... ,(p—2)}containing (p—3) elements.
These (p-3) elements form (p—3)/2pairs, such that the product of each pair
=1(mod p) .

Multiplying these (p—3)/2 congruences
23....(p=2)=lmod p) =1.23....~(p-2)(p-1)=1(p-1) (mod p)
=((p-D!'=(p—-D@modp)= (p-D!+1= p(mod p) = (p—-1D!+1=0 (mod p)

Note 1. : The converse of the Wilson's theorem is also true.

That is, (p—1)!+1=0(mod p) = p is prime.

2. (p-D!'+1=0(mod p)= p|(p-D'!+1= (p-D!+1=M(p)

e.g. Since 7 is prime, (7—1)!+1=6!+1 is divisible by 7.

Ex. 1 : Find the number of positive integers less than 25200 that are prime to

25200.

Sol. 25200 = 2% x3%2 %52 x7

- 0(25200) = 024 x3% %57 x7) = 6 2H)x 0(3%)x (52 )x d(7)

=241 - 1/2))x32 (1= (1/3))x 52 (1 - (1/5))x 7 (- (1/5))

=24 %32x52x7x(1/2) (2/3) (4/5) (6/7) = 2° x3x5x 6 = 5760.

Ex. 2 : If n>2prove that ¢ (n)is even.

Sol. : If (a,n)=1 then (n—a,n)=1 for 4¢c 7*.

= Integers coprime to n occur in pairs of the form a,n—a = ¢(n)is even.

=0 (n) isodd for n=1and n =2only.

Ex. 3 : If pis prime and a, b € z then prove that (a+b)? = a” +b? (mod p)
Sol. From the Note of Ferma Theorem;

a? = a(mod p), b? = p(mod p) and (a+b)? =

(a + b) (mod p) (- p is prime)

a? = a(mod p) , b? =b(mod p) = a” +b” =a+b(mod p)
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=a+b=a’ +b” (mod p)
(a+b)? =a? +b? (mod p)

EXERCISE 0 ( e)

1. Find () ¢ (126) (i) ¢ (768) (iit) ¢ (3600)
(iv) ¢ 490 (A.U. 05) ») ¢ (2310)

Find the smallest integer so that ¢ (n) =6

Proove that ¢ (n)=n—-1< n is a prime.

If p is an odd prime prove that ¢ (2p) =¢ (p).

Prove that ¢(n2) =nd(n) for every ne z*

If (n,17)=1 prove that n'® —1is divisible by 17

If a,b are coprime to prime member p then show that ¢~ —pP71 = M(p)..

Nk WD

Hence prove that 5'0 _310 divisible by 11.
prove that n° —n is divisible by 30.
. Prove that 1" 142" 4 +-D""+1=M®n)

1.(i) 36 (ii) o8 (iii) 960 (iv) 168 (v) 480 = 2.7

°
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Binary Operation

1.1. The use of numbers was there for many centuries and we are familiar with the
types of the numbers - integers, rational numbers, real numbers, complex numbers together
with certain operations, such as addition and multiplication, defined on them. Addition is
basically just such a rule that people learn, enabling them to associate, with two numbers in
a given order, some number as answer. Multiplication is also such a rule, but a different
rule. But with the use of arbitrary quantities g, b, c, ..., ---X, ¥, Z,... for numbers the subject,
Algebra which is the generalisation of Arithmetic, came into being. For many years
mathematicians concentrated on improving the methods to use numbers, and not on the
structure of the number system. In the nineteenth century mathematicians came to know
that the methods to use numbers are not limited to only sets of numbers but also to other
types of sets. A set with a method of combination of the elements of it is called an algebraic
structure and we can have many algebraic structures. The study of algebraic structures
which have been subjected to an axiomatic development in terms Abstract Algebra.

In what follows we study Group Theory i.e. the study of the algebraic structure.
Group, which is rightly termed the basis of Abstract Algebra.

In Group Theory the basic ingredients are sets, relations and mappings. It is expected
that the student is very much familiar with them. However, we introduce and discuss some
of the aspects connected with them which will be useful to us in our future study.

1.2. EQUALITYOFSETS A ANDB: AcCBANDBCA & A=8B
1.3. UNION AND INTERSECTION OF SETS A, A,,...,A,

AJUA,UA;...UA, =UA, and AN A, NA;...NA, =nNA,,
i=1 i

1.4. f IS A RELATION FROM A SET A TO ASET B

S fCAXB. < fc{(a,b):ac A,be B}

We write (a,b) € f as afb and we say that ¢ is f related to b.

Sometimes we write ~ for f . In such a case we write a ~ b .

If A =B, then we say that f is a relationin A .

If f < AxB,wewrite f™' ={(b,a)/(a,b)e f} cBxA and f!iscalled inverse
relation of f anditis from B to A .

The domain of f is equal to the range of ! and the range of f is equal to the
domain of f7'. Further (f ™)™ = f.

f isarelationin A & f C AxA < f{(a,b)/a,be A} C Ae A.
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1.5. TYPES OF RELATIONS

f is arelationin a set A .

i) IfV xe A, (x,x)e f then f issaid to be reflexive in A .

(i) If V (x,y)e f = (y,x)€ f, then f issaid to be symmetric in A.

Gii) If (x,y)e f and (y,z2)€ f = (x,z) € f, then f is said to be transitive in A.

@iv) If f is reflexive, symmetric and transitive, then f is said to be an equivalence
relation.

e.g. 1. In the set of triangles in a plane, the relation of similarity is an equivalence
relation.

2. A ={1,2,3} the relation f ={(1,1),(2,2),(3,3)} is an equivalence relation in A .
Partition of a set
A partition of a set S is a set of non-empty subsets S,, with i in some index set A,

suchthat: (i) s= u s; and () S;,nS;=¢ fori#j.
i€ A

That is, a partition of a set S is a collection of disjoint subsets of S whose union is the
whole set S.

1.6. PARTITION OF A SET

f 1is an equivalence relation in a non-empty set S and « is an element of S. The
subset of elements which are f related to « constitutes an equivalence class of a.
The equivalence class of « is denoted by g or [a] or {a}. Thus a ={xe S|a f x}
and acS.
Further (i) a€ a, (i) bea=b=a.
For, bea=>a f b and x is any element of p =b f x.
Now a fbbfx=afx=xca=bcCa ()
Again y is any element of a =a f y. Since f symmetric a f b=bf a.
Now b faafy=bfy=yeb=ach and hence p = 7 using (1).

(i) a=b=afb For a=b=acbh=bfa=afb.
(iv) afb=a=b
For xea,afb=afxbfa=bfaafx=bfx=>xeb=acbh ..Q2)

Again y is any elementof b =b f y.
Now a fb=afy=yeca=bca. andhence g=p using(2).

Theorem 1. If f is an equivalence relation in a non-empty set S and a, b are two

arbitrary elements of S, then

(Ya=b oranb=¢ {Haubucu..=8.

Proof. Ifanb = 0, there is nothing to prove.

Let @ b = ¢ . Then there exists some element x such that xe gz and xe b .

afxandbfx=afxand x f b=afb=a=b

Hence we must have either g =b if anb #¢. ora=b if anb=¢.

(ii)) Let ¢ be any element of S.

If af c,then @ =¢ andif bf ¢c then p =¢.If @ #¢ or b #¢, then

Q|

NbNc=0.
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. Every element of S must belong to some equivalence class of S i.e. all the elements
of S must belong to the disjoint equivalence classes of S i.e. zubuUcU...=8.

Note. If f is an equivalence relation defined in a non-empty set S, the set of equivalence
classes related to f is a partition of S.

That is, two equivalence classes related to f are (1) either identical or disjoint and (2)
the union of all the disjoint equivalence classes of f is the set S.

Theorem 2. For any given partition of a set S, there exists an equivalence relation
fin S such that the set of equivalence classes related to f is the given partition.

Proof. Let P ={S,,S,.S,,
relation f in S by pfg if there is a S; in the partition such that p,qg € S,.

...... } be any partition of S. Let p,qg € S. Let us define a

(i) Since S=S, US, US, U...... ,V xe S, there exists S; € P such that x€ §;.
Hence x,xe S, = xfx s f isreflexivein S.
(i) If xfy, then there exists S; € P such that x,y € S;.

But x,ye S, = y,xeS; = yx. Hence xfy = yfx. .. fissymmetricin S.

(iii) Let xfy and yfz then by the definition of f , there exist subsets S; and S, (not
necessarily distinct) of S suchthat x,y€ S; and y,z€ S,.Since y€ S; andalso ye S, ,
we have S;NSg # 6. But S;,S; belong to the partition of S.

S;jNSg#0=S;=S;. Then x,z€ S; and hence xfz.

Hence f is transitive in S. ~  f isanequivalence relationin S.

1.7. FUNCTIONS OR MAPPINGS

Definition. A, B are non-empty sets. If f < A x B such that the following conditions
are true, then f is called a function from A to B.

i)V x€ A 3 ye B such that (x,y)e f. @) (x,y), (x,2)e f=>y=2z.

If f is afunction from A to B then we say that f is a mapping from A to B and
we write f: A — B.

Domain of f is A and range of f is f(A) and f(A) C B.

Alternatively if f is a relation which associates every element of A to an element of
B.,and if x=y= f(x)= f(y) for x,ye A, then f is a function from A to B. In this
context we say that the function is well defined.

Transformation. If f:A — A then the function f is called an operator or
transformation on A .

Equality of Functions. If f: A —- B and g: A — B and if f(x) = g(x) for every
xe A then f=g.If 3 xe A suchthat f(x) # g(x) then we say that f # g .

1.8. TYPES OF FUNCTIONS OR MAPPINGS

() If f:A — B is such that there is at least one element in B which is not the f
image of any element in A , then we say that f is a mapping from A into B i.e. f maps
A into B.

Gi)If f:A — B issuch that f(A) =B, then we say that f is a mapping from A
into B. f is also called a surjection or a surjective mapping.

If 3 some element » ¢ B such that f(a) # b for some g A, then f is not onto.
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(i) If f: A — B issuchthatfor x,y€ A, f(x) = f(y) = x =y, then f issaidtobe
a one-one or one-to-one function or an injection or an injective mapping. We write
fas 1-1.

If x,ye Aand x # y = f(x) # f(y),then f is 1-1. This is equivalent to the above
condition.

If f(x)= f(y) does notimply x = y then we say that f isnot 1—1.

@iv)If f:A —> B is 1-1 and onto, then f is called a bijection. In other words we
say that f isa 1-1 function from A onto B.

Here f is called a one-one correspondence between A and B .

If A,B are finite and if f : A — B is a bijection then the number of elements in A, B
are equal.

(v)If f: A — B is such that every element of A is mapped into one and only one
element of B, then f is called a constant function. Here f(A) is a singleton set.

(vi) If f: A — A issuchthat f(x) = x forevery x € A, then f iscalled the identity
function on A . Itis denoted by I, or simply I. I isalways 1 —1 and onto

(vii)If f:A — B isabijection then f~': B - A is unique and is also a bijection.

If f:A — B is one-one and onto, then f~!': B — A where f—l ={(b,a)/(a,b)e f)}
is called the inverse mapping of f. Here f(a)=b < f '(b)=a.

Only bijections possess inverse mappings.
1.9. PRODUCT OR COMPOSITE OF MAPPINGS AND SOME OF THEIR PROPERTIES

1.Let f:A—>Band g:B— C.

Then the composite function of f and g, denoted by gof is a mapping from A to C.
i.e. gof : A — C such that (gof)(x) = g[f(x)],Vxe A.

Here jfog cannot be defined. Even if it is possible to define fog and gof ,

then we may have fog # gof . Thus composition of mappings is not commutative.
2.If f:A— B and g :B — C are one-one, then gof : A — C is one-one.

If f,g are onto, then gof is onto.

If f,g are functions such that gof is one-one, then f is one-one.

If f, g are functions such that gof is onto, then g is onto.

3. If f: A — B is bijection, then f’1 ‘B A. Alsof‘lof =1, and fof‘1 =1I5.

In particular, if f : A — A is a bijection, then f™':A —>A.Also flof = fof ' =1.
4. If f: A > B then Igof = f and fol, = f .

In particular, if f: A — A then Iof = fol = f .

5.1f f:A— B and g:B — C are bijections, then gof : A — C is also a bijection.
If f,g are functions such that gof is a bijection then f is one-one and g is onto.
In particular, if f, g are bijections on A , then gof is also a bijection on A .

Also (gof)™" is abijectionand (gof)™ = flog™".

6.If f:A—>B, g:B—C and h:C — D, then (hog) of = ho(gof)

i.e. composition of mappings is associative.
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Definition. f : A — A isafunction. f" : A — A where n € Z is defined as follows.

() If n=0, f° =1 the identity mapping on A .

G) fn=1r7"=Ff (i) If n>2 and ne N, f" = fof "L = f 7o .

(iv) If n is a negative integer and f is a bijection then f" = (f™')™.

7. £ = fof, f> = fof * = fofof ......

f" = fof "' = fofof ...... to n times where ne N .

8. If n is a negative integer and n = —m so that m is a positive integer, then
fr=fm =Y = flof o o to m times
= ( fofof ...... to m times) 1= fmy!

9. If f:A — A isabijection, then f": A — A for ne Z is also a bijection.

10. If m,ne Z then fmof" = ™" = frm = frofm.
1.10. BINARY OPERATIONS |

Let R be the set of real numbers and addition ( + ), multiplication (x ), subtraction (—)
be the operations in R . For every pair of numbers a,b € R, we have unique elements
a+b,axb,a-be R. Thus we can look upon addition, multiplication and subtraction as
three mappings of R xR into R, which for each element (a,b) of R xR determine the
elements a + b,a xb,a — b respectively of R. Also one can define many mappings from
R xR into R . All these mappings are examples of binary operations on R . The idea of
binary operation is not limited only to the sets of numbers. For example, the operations of
union (v ), intersection ( ~ ) and difference (=) are binary operations in P (A), the power
set of A .

Binary operation

Definition. Let S be a non-empty set. If f:SxS — S is a mapping, then f is
called binary operation or binary composition in S (oron S).

Thus 1. If arelation in S 1s such that every pair (distinct or equal) of elements of S
taken in definite order is associated with a unique element of S then it is called a binary
operation is S. Otherwise the relation is not a binary operation in S and the relation is
simply an operation in S.

2. (a,b) € SxS,3 aunique image f(a,b)€S.

We observe that addition ( + ), multiplication (x or .), subtraction (—) are binary
operations in R and division (+) is not a binary operation in R .

(- division by 0 is not defined.)
Symbolism. It is customary to denote the binary operation in S by o (read as circle)
or * (read as star) or . or + and to take a,b,c € S as arbitrary elements a,b,c of S.

1. For ae S,be S=a+be S = + is a binary operation in S. Also + is called
addition, + is called usual addition if S ¢ C and « + b is called the sum of ¢ and » . Addition
(+) is to be understood depending upon the set over which the operation is to be taken.

2. For ae S,be S=a.be S=. is a binary operation in S. Also . is called
multiplication, . is called usual multiplication if S ¢ C and a.b is called product of a,b.
Multiplication (. ) is to be understood depending upon the set over which the operation is to
be taken.

3. For ae S,be S = aobe S = o is abinary operation in S.
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4. For ae S,be S= a*be S = * is a binary operation in S.

This is called closure law.

Sometimes we write products a.b or a*b of a and b as ab.

If a,be S such that aob ¢ S then o is not a binary operation in S. In this case we
say that S is not closed under o .

+ 1s a binary operation in the set of natural numbers N as (a,b))e N=a+be N.

— is not a binary operation in N as (a,b) € N does notimply a —be N.

o is a binary operation in S. The image elements under the mapping o arein S.If «
and b are elements of a subset H of S, it may or may not happen that ab € H. But if
ab € H for arbitrary elements a,b € H the subset H is said to be closed under the operation
o . It may be observed that if o is a binary operation in S, itis implied that S is closed under
the operation o .

o is a binary operation in S. If a,b€ S and a # b, we know that (a,b) # (b,a) and
hence, in general, it is not necessary that the images in S of (a,b) and (b,a) under the
binary operation o must be equal. In other words if o is a binary composition in S it is not
necessary that a,be S must hold aob =boa.

+ is a binary operationin R .If a,b,ce R,then a+be R,b+ce R,(a+b)+c€ R
and a + (b + ¢) e R.Weobservethat (a +b) + ¢ =a + (b+c).Again — is a binary operation
in R.If g,b,ce R as above we observe that (a—b)—ce R and a—-(b-c)e R. But
(a-b)y-c#a—-(b-c).

Definition. o is a binary operation in a set S. If for a,be S,aob=boa, then o is
said to be commutative in S. This is called commutative law. Otherwise, o is said to be
not-commutative, in S.

Definition. o is a binary operation in a set S. If for a,b,c € S, (aob)oc = ao(boc)
then o is said to be associative in S. This is called associative law. Otherwise o is said to
be not associative in S .

Note. If o is associative in S, then we write (aob)oc = ao (bo c) = aoboc

e.g. * is a commutative binary operation on N= a*(b*c)=(b*c)*a=(c*b)*a

Definition. o,* are binary operations in a set S.

If a,b,ceS, (i) ao (b*c)=(aob)*(aoc), (i) (b*c)oa=(b o a)*(co a), then o issaid
to be distributive w.r.t. the operation . (i) is called the left distributive law and (ii) is
called the right distributive law. (i) and (ii) are called distributive laws.

It is customary in mathematics to omit the words and only if from a definition. Definitions
are always understood to be if and only if statements. Theorems are not always if and
only if statements and no such convention is ever used for theorems.

Note. To prove that a binary operation in S obeys (follows) a law (commutative law,
associative law, etc., ) we must prove that elements of every ordered pair obey the law i.e.,
the law must be proved by taking arbitrary elements. But to prove that a binary operation in
S does not obey a particular law, it is sufficient if we give a counter example. This method
of proving the result is called the proof by counter example.

(i) +, . are binary operations in N, since for a,be N=a+be N and abe N. In
other words N is said to be closed w.r.t. the operation + and ..
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(ii) +, . are commutative in N since for a,b€ N,a+b =b+a and ab = ba .
(iii) +, . are associative in N since for a,b,c € N.
(a+b)+c=a+b+c) and a(bc) = (ab)c.
(iv) . is distributive w.r.t. the operation + in N since for a,b,c € N.
a.b+c)=a.b+a.cand (b+c).a=b.a+c.a.

(v) The operations subtraction (—) and division ( + ) are not binary operations in N for
3,5¢ N does notimply 3—5€ N and ge N.

(vi) Operations +,—,+ are binary operations on R but + is not. However, + is a

binary operation on R, =R —{0}.

(vii) On Z',Va,be Z" if = is defined as a*b=ab or a*b=|a—b|, then = is a binary
operation.

(viit) In N, o is a binary operation defined as aob = L. C. M. for every a,be N. Then
705=35 and 16020 =280 .

e.g. 2. A is the set of even integers.

(i) +, . are binary operations in A since for ¢,b€ A , a+be A and abe A.

(i) +, . are commutative in A since for a,b€ A |, a+b=b+a and ab = ba .

(iii) +, . are associative in A since for a,b,ce A,

(a+b)+c=a+(b+c)and a(bc) = (ab)c.

(iv) is distributive w.r.t. the operation + in A since fora, b, c € A,

a.b+c)=a.b+a.c and b+c).a=b.a+c.a.
e.g. 3. A is the set of odd integers.

(i) . is a binary operation in A . Also . is associative and commutative in A .
(ii) + is not a binary operation in A since 3,5€ A doesnotimply 3+5 =8¢ A.

e.g. 4. S is the set of all m xn matrices such that each element of any matrix is a
complex number.

Addition of matrices, denoted by + , is a binary operationin S. Also ( + ) is commutative
and associative in S.

e.g. 5. S is the set of all vectors.

(i) Addition of vectors, denoted by + is a binary operationin S. Also + is commutative
and associative in §S .

(ii)) Dot product of vectors, denoted ., is not a binary operation in S since for
a,beS,a.begS§S.

(iii) Cross product of vectors denoted by x is a binary operation in S since for
a,beSaxb=ceS.

a+b

e.g. 6. In N the operation o defined by aob = is not a binary operation.

a
e.g.7. '0o' is a composition in R such that aob = a +3b for a,be R.

(i) Since a,be R,a +3b is a real number and hence ¢+3bhe R i.e. aobe R.
Therefore o is a binary operation in R .
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(i) aob=a+3b and boa =b + 3a
Since aob # boa for a,be R, 'o' is not commutative in R .
(iii) (@ob)oc = (aob) +3c = (a+3b) +3c and ao(boc)=a+3(boc)
=a+3Mb+c)=a+3b+9c.
Since (aob)oc # ao(boc) for a,b,c € R, o is not associative in R .

e.g. 8. On Q define + such that a*b=ab+1 for every a,bc Q.
(i) Since ab+1e Q for every a,be Q then = is a binary operation.
(i) Since a*b=ab+1=ba+1=b%*a, then = is commutative.
(iii) Va,b,ce Q,(a*b)*c=(ab+1)*c =(ab+1)c+1=abc+c+1

and a*(b*c)=a*(bc+1) =a(bc+)+1=abc+a+1

= (a*b)*c #a*(b*c) = * is not associative in Q.

e.g. 9. On R -{-1} define o such that aob = ﬁ for every a,be R—{-1}.
(i) Since ﬁe R —{-1} for every a,be R—{-1}, then o is a binary operation.

i b . .
(if) Since aob = ﬁ and boa = 1 then @ob # boa and hence o is not commutative.

a+
_a
(iii) Ya,b,c€ R —{~1},(aob)oc = L)OC _b+1_ a
b+1 c+l  Bd+D(c+D
b +1
and ao(boc) = ao 4 _al+D = (aob)oc # ao(boc) .
c+l b [ btc+l

c+1

= 0 is not associative R —{-1}.

Composition table for an operation on finite sets (Cayley's composition table)

Sometimes an operation o on a finite set can conveniently be specified by a table
called the composition table. The construction of the table is explained below.

Let S ={q,a,,...q;.a;,...a,} be afinite set with n elements. Let a table with (n + 1)
rows and (n+1) columns be taken. Let the squares in the first row be filled in with
a,a,,a,,...a, and the squares in the first column be filled in with «,q,,qa,,...qa, . Let
a;(1<i<n)and a;(1 < j<n) be any two elements of S. Let the product ¢;0a; obtained
by operating a; with a; be placed in the square which is at the intersection of the row
headed by ¢; and the column headed by «;. Thus the following table be got.
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From the composition table we can infer the following laws.

(i) Closure law. If all the products formed in the table are the elements of S, the 'o'
is said to be a binary operation in S and S is said to be closed under the composition 'o'.

0 a a || a; | | @y
a | @oay | a0a, | ....| qod; | ... |goa,
a, | 404, | @04, | ... | ay0a; | .... |ayoa,
a; | @o0a; | 04, | ... | qoa; | ... |goa,
a, | a,oq, | a,0a, | ... |a,o0a;| ... |a,04a,

Otherwise, o is not a binary operation in S and the set S is not closed under the
operation o .

(ii) Commutative law. If the elements in every row are identical with the corresponding
elements in the corresponding column, then the composition o is said to be commutative in
S . Otherwise, the binary operation o is not commutative in S.

(iii) Associative law. Also we can know from the table whether the binary operation
follows associative law or not.

Note. The diagonal through a,0q, and a,oa,, is called the leading diagonal in the table.
If the elements in the table are symmetric about the leading diagonal, then we infer that o
is commutative in S.

Identity element. Definition.

Let o be a binary operation on a non-empty set S. If there exists an element e€ S such
that aoe=a=eoa V a€ A , then e is called Identity of S w.r.t. the operation o. If e is an
identity of S w.r.t. o, then it can be proved to be unique.

e.g.l. InZ, O is the identity w.r.t. '+' since a+0=a=0+4a,Vac Z. Butin N, O is not
the idntity w.r.t. + since 0¢ N and 1 is the identity w.r.t. as '-'a-1=a=1-aVae N.

e.g. 2. In R, O is the identity w.r.t. + since a+0=a=0+a, VaeR.

In R, 1 is the identity w.r.t. ' since a-1=a=1-a,Vae R .

Note : Operations (-),(+) are not binary operations in N. But +,—,+ are binaryy

operations in R and + is a binary operation in R, (non-zero real number set). Also o is the
identity in R w.r.t. +, 1 is the identity in R (w.r.t. ' where as '—' and '+ do not have identity
element in R.)
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Invertible element. Definition.

Let e be the identity element in S w.r.t. the binary operation 0. Anelement a€ S is said

to be invertible w.r.t. o, if there is an element b in S such that aob =e =boa and b is called
inverse of a.

If o is associative in S, then inverse of a is unique in S and is denoted by a™' or
sometimes as 1/qa if the operation is « and by - if the operation is +-.
Note : 1. aoa' =a'oa=e and e'oe=eoe =¢. Also (¢ )'=a.

2. In R, —a is the inverse w.r.t. '+' and 1/a (a # 0) is the inverse w.r.t. '-' of a.
1 1
For: a+(-a)=0=(-a)+a and a-—=1=—-a(a#0)
a a

3.—a is not the inverse of @ in N w.r.t. + and @' is not the inverse of @ in N w.r.t. +.

Also a™! is the inverse of @ in R,wr.t. "' and —a is the inverse of @ w.r.t. '+ in R.
eg. 1. S={l,-1,i,—i} and usual multiplication is the operation in S. Then we have

the following composition table. We can clearly see that is a binary operation in N following
commutative law and associative law.

o |1 |- i |—i

1|1 |=1| & |-
1|11 |=i]|i

i |-i|-1]1
—if=i|i|1]-1

e.g. 2. Consider the binary operation on the set {1,2,3,4,5} defined by aob = min{a,b} .

Composition table is :
o|1|2|31]4]|5
11|11 |1]1]1
2(1(2(2(22
311(213(3|3
41112344
501121345

e.g. 3. Define a binary operation = on the set A ={0,1,2,3,4,5} as

b a+b,if a+tb<6 . ] )
a*rp= a+b—6.if a+b>6" 015 the identity w.r.t. = and each element (a #0) of the

set is invertible with 6—a being the inverse of a.
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For : Composition table is :

#*10(1]2|13[4]|5
0(0(11(2|3(4|5
1(1(2]3(4]5]0
212(3]4|5(0]1
313(4(5(0(1]2
4145|0123
515|101 (2(3]|4

(i) = is binary since every entry belongs to A.
(i) Every row is same as the corresponding column = * is commutative.
(iii) Since every element of the first row = every corresponding element of the top row,
identity element exists and it is 0.
since 0%0=0,0%1=1,...,0¥5=5and 0%0,1x0=1,2%0=2,........ ,5#0=5.

(iv) Since 1#5=0=5=1,1"=5 and 5" =1;
Since 2:4=0=4%2,2" =4 and 47 =2; Since 3+3=03"=3. Also

0"'=0.
Ex. 1. Show that the operation o given by aob = a” is a binary operation on the
set of natural numbers N. Is this operation associative and commutative in N ?
(0.U.A12)
Sol. N is the set of natural numbers and o is operation defined in N such that aob = a”
for a,be N When a,be N.a” =axax...b times is also a natural number and hence
a® e N.
o is binary operationin N. Let a,b,ce N.
(aob) oc = (aob)" = (a")° = a" and ao (boc) = aob® = a
(aob) oc # ao(boc) and o isnot associativein N .
Since a” # b* i.e. 'o' is not commutative in N .
Ex. 2. Let S be a non-empty set and o be an operation on S defined by aob = a
for a,be S . Determine whether o is commutative and associative in S.
Sol. Since aob = a for a,be S and boa = b for a,be S, aob # boa .
o 1s notcommutativein S.

(aob) oc = aoc = a

Since a0 (boc) = aob = a} for a,b,ce §S.

-, o is associative in S.
Ex. 3. o is operation defined on 7, such that aob = a+b—ab for a,be Z. Is the
operation , o a binary operation in Z ? If so, is it associative and commutative in Z 7
Sol. If a,be Z we have a+be Z,abe Z
at+tb-abe Z .
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aob=a+b-abe Z o is a binary operation in Z .
Since aob =a+b—ab=b+ a—ba =boa, '0o' is commutative in Z .
Now (aob) oc = (aob) + ¢ — (aob) ¢
=atb-abtc—(a+b—-ab)c =a+b-ab+c—ac-bc+ abc
and ao (boc) = a + (boc) — a (boc)
=a+b+c—-bc—a(b+c—-bc)
=a+b+c—-bc—ab—-ac+abc =a+b—-ab+c—-ac—bc+abc
. (aob) oc = ao (boc) and hence o is associative in Z .
Ex. 4. S ={a,b,c} and o is an operation on S for which the following composition
table is formed. Is the operation o a binary operation in S ? Is the operation o in S
commutative and associative ?

SRR

ST Rl BN N e
IST KU ol )
SR | o

c

Sol. All the products formed are the elements of S.

. o 1s a binary operation in S and hence S is closed under the operation o .

Since the elements in every row are identical with corresponding elements in the
corresponding column, o is commutative in S.

Since (aob) oc = boc = a = aoa = ao (boc),

(boa) oc = boc = bo (aoc) €tc., o 1s associative in S.

Ex. 5. Fill in the blanks in the following composition table so that o is associative

in S={a,b,cd}

olalb|c|d
alal|lb|c|d
b|l|blal|c|d
clc|d]|c|d
d
Using associative law and by trial and error :
Since do (aoa) = doa and (doa) oa = do (aoa) = doa, doa mustbe equalto d only.

Since do (boa) = dob and (dob) oa = do (boa), dob must be equal to d only.
Since do (coa) = doc and (doc) oa = do (coa),doc must be equal to a only.
Since do (doa) = dod and do (doa) = (dod) oa, dod must be equal to a .

Thus d,d,a,a are respectively the four products.
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Ex. 6. Let P(S) be the power set of a non-empty set S. Let '~' be an operation in
P (S). Prove that associative law and commutative law are true for the operation ~ in
P(S).

Sol. P (S) = Set of all possible subsets of S.

Let A,B,Ce P(S). Since AcCSBCcS=ANBcCcS=ANnBeP(S

Also BNACS=BnAeP(S). .. n isabinary operationin P(S).

Also AnB=BnNnA. - N is commutative in P (S).

Again ANnB,BNC,(AnB)NnC

and AN (B NC) are subsets of S.

S(ANB)NCANnBNCeP(S).

Since (ANB)NC=AnNnBnNC), N is associative in P (S).

Ex. 7. A ={a,b}. Consider the set S of all mappings from A — A. Is the
composition of mappings denoted by o is a binary composition in S .

Sol. Total number of possible mappings from A — A is4.

Letthembe I: A — A = {(a,a),(b,b)}

fi: A= A={(ab),(b,a))}
fr A= A ={(a,a),(ba)
fs 1A= A ={(a,a),bb)}

=~ S={L fi. />, f3} . Let the composition of mappings be denoted by o .
Composition table is :

o| Ll A f2] f3
Ll T Al LI A
h{ Al 1| ~2f f
| 2| B B f
Bl B | 2] B

Clearly (i) o is binary operationin S,

(ii) o is not commutative in S and

(iii) o is not associative in S. sina (f,0f3)of] # fr0( f30f})

EXERCISE 1

1. Are the following operations binary on the indicated sets.

(i) The usual addition on Q .

(i) The usual multiplication on C .

(iii) o is an operation on Z — {0} defined by aob = l.c.m. of a and b for a,b e Z - {0} .
(iv) The usual addition in the set of negative integers.

(v) The usual multiplication in the set of negative integers.
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(vi) o is an operation in R defined by aob = 3a + 2b for a,be R.
(vii) u is an operation in S and S ={A,B,C,D} where A ={q,a,},
B={a,,a,},C={a,,a;,as},D ={as}
2. In the following, a set is given and a binary operation is defined on it. Find whether
the binary operation is commutative or associative or both in.
(i) Z:aob=a+b+abV abeZ.
(i) Z:aob=a+b+1V abel.
(iii) S = {a + b2 / a,b € R}, usual multiplication.
(iv) S is the set of even integers : aob =3ab, ¥V a,be S
(v) Z:aob=a-b (0.UM. 05)
1. () Yes @) Yes i) Yes (iv) Yes
(v) No (vi) Yes (vii) No
2. () Commutative, associative (/) Commutative, associative
i) Commutative, associative  (;v) Commutative, associative
(v) Neither associative not commutative
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Groups

2.1. ALGEBRAIC STRUCTURE |

Definition. A non-empty set G equipped with one or more binary operations is called
an algebraic structure or an algebraic system.

If o is a binary operation on G, then the algebraic structure is written as (G, o) .
eg. (N,+),(Q,-),(R,+) are algebraic structure.
2.2. SEMI GROUP |

An algebraic structure (S,0) is called a semi group if the binary operation o is

associative in S.
e.g. 1. (N,+) is a semi group. For, a,be N= a+be N and a,b,ce N

=(@a+b)+c=a+b+c).

. : 3 .
e.g. 2. (Q,-) is not a semi group. For, 5,5,1 € Q does not imply

(-3

e.g. 3. (R,+) is a semi group. For a,be R=a+be R and
a,b,ce R=(a+b)+c=a+{b+c)

e.g. 4. (S,0) is a semi group. (vide Ex. 2. Art. 1.10.)

e.g. 5. (Z,0) is a semi group. (vide Ex. 3 Art. 1.10.)

e.g. 6. (P(S),n) is a semi group where P (S) is the power set of non-empty set S.

e.g. 7. (P(S),v) is a semi group where P (S) is the power set of a non-empty set S.

e.g. 8. (S,0) is a semi group (vide Ex. 7, Art 1.10.)

e.g. 9. Q is the set of rational numbers. o is a binary operation defined on Q such
that aob = a—b + ab for a,be Q.

(Q,0) is not a semi group.

For a,b,c€ Q,
(aob) oc = (aob) — ¢ + (aob) ¢ =a—-b+ab-c+(a—-b+ab)c
=a-b+ab-c+ac-bc+abc
ao (boc) = a — (boc) + a (boc) =a-(b-c+bc)+a(b—-c+bc)

=a—-b+c—bc+ab-ac+ abc
and (aob)oc # ao (boc) .
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e.g. 10. Q is the set of rational numbers. o is a binary operation defined on Q such
that for a,b € Q,aob=a+b —ab
(Q,0) is a semi group.
For a,b,c€ Q,
(aob) oc = (aob) + ¢ — (aob) ¢
=atb-abtc—-(a+b—-ab)c =a+Db+c—bc—ab-ac+ abc
=a+b+c—-bc—a(b+c—bc)=a+ (boc)— a(boc)

= ao (boc)
a+b

e.g. 11. The set Q under the binary operation o defined by aob = is not a

semigroup. For (aob)oc#ao(boc).
[ 2.3. IDENTITY ELEMENT |

Definition. Let S be a non-empty set and o be a binary operation on S.

(1) If there exists an element e; € S such that ejoa = a for ¢ e S then ¢, is called a
left identity of S w.r.t. the operation o .

(ii) If there exists an element ¢, € S such that ace, = a for ¢ e S then ¢, is called a
right identity of S w.r.t. the operation o .

(iii) If there exists an element ¢ e S such that ¢ is both a left and a right identity
of S w.r.t. o, then e is called an identity of S.

e.g. 1. In the algebraic system (Z,+) , the number O is an identity element.

e.g. 2. In the algebraic system (R, .) the number 1 is an identity element.

e.g. 3. Let (S,0) be an algebraic structure such that S contains at least two elements
and o be the operation such that aob = b for a,b € S. Then each element of S is a left
identity of (S,0) but (S, 0) has no right identity.

Let (S,0) be an algebraic structure such that S contains at least two elements and o
be the operation such that aob = a for a,b € S. Then each element of S is a right identity
of (S,0) but (S, 0) has no left identity.

e.g. 4. Let (S, . be an algebraic structure such that S is the set of all even
integers. It has neither a left identity nor a right identity.

Note. In an algebraic structure S, o),

(i) a left identity may exist and a right identity may not exist.

(ii) a right identity may exist and a left identity may not exist.

(iii) The identity may not exist.

Theorem 1. Let (S,0) be an algebraic structure. If e, and e, be respectively

left and right identities of S w.r.t. o, then ¢, = e,.

Proof. Since e,e, € S and ¢, is a left identity in S w.r.t. o, we have ejoe, = ¢, .
Since ej,e, € S and e, is aright identity in S w.r.t. o, we have ejoe, = ¢, .

From (1) and (2), ¢, =e,.
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Theorem 2. Let (S,0) be an algebraic structure and if ¢ is an identity of S

w.I.t. 0, then it is unique.

Proof. If possible, let ¢, ¢' be identities of S.

. eoe' = ¢' (taking e left identity)

and eoe '= ¢ (taking e' as right identity)

. ¢'=e and hence identity in S with respect to o is unique.

This identity in S is called the identity element in S w.r.t. the operation o .

Note 1. If S is the set of even integers, then the algebraic structure (S, .) has no
identity element.

2. The algebraic structure (Q, .) has 1 as the identity element whereas the structure
(Q,+) has 0 as the identity element.

e.g. If S is the set of all mappings from a finite set A into A and o is the composition
of mapping in S, the identity mapping I € S is the identity elementin S w.r.t. o.

3. If multiplicative notation is used for a binary composition then the identity element

w.r.t. the operation, if exists, is often denoted by 1. 1 is called the multiplicative identity or
unit element.

If additive notation is used then identity element, if exists, is often denoted by 0. O is
called the additive identity or zero element.

The elements 1 and 0 should not be confused with integers, although in special cases
they may actually be integers.
[2.4. MONOID |

Definition. A semi group (S,0) with the identity element w.r.t. o is known as a
monoid. i.e. (S,0) is a monoid if S is a non-empty set and o a binary operation in S such
that o is associative and there exists an identity element w.r.t. o .

e.g.l. (Z,+) is a monoid and the identity is O.

e.g. 2. (Z, .) is monoid and the identity element is 1.

e.g. 3. S is the set of all mappings from a finite set A toitself and o is the composition
of mappings in S. Then (S, 0) is monoid with the identity element 1 (identity mapping).

e.g. 4. Let S be the set of all 2x2 matrices such that each element in S are rational
numbers. If matrix multiplication (. ) is the binary operation on S then (S, .) is a monoid and
unit matrix I, is the identity elementin S.

Similarly if matrix addition (+ ) is the binary operation on S, then (S,+) is a monoid
and null matrix 0, is the identity elementin S.

e.g. 5. S is the set of all odd integers and . is the usual multiplicationin S. Then (S, .)
is a monoid with integer 1 as the identity element in S.

Note. Existence of identity : If S is a finite set and o is a binary operation in S, we
observe from the Caley's Composition table the following :

If the row (column) headed by an element «; coincides with the first row (first column),
then we say that identity exists in (S, 0) and g; is the identity in (S, 0) .
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[ 2. 5. INVERTIBLE ELEMENT |

Definition. Let (S, 0) be an algebraic structure with the identity element ¢ in S w.r.t.
o.An element a € S is said to be left invertible or left regular if there exists an element
x e S such that xoa = e. x is called a left inverse of a, wW.r.t. o.

Anelement a € S is said to be right invertible or right regular if there exists an element
y € S such that aoy = e. y is called a right inverse of a, w.r.t. o.

An element x which is both a left inverse and a right inverse of « is called an inverse
of a and « is said to be invertible or regular.

Thus : a is invertible or regular w.r.t. 0 < a is left invertible or left regular w.r.t. o,
and « is right invertible or right regular w.r.t. o .

Theorem 3. Let (S,0) be a monoid and ac S. If b and c are left and right
inverses respectively of a then b = c.

Proof. Let ¢ be the identity in S w.r.t. o.

Now  ba =e,ac =e.

. b=be=b(ac) =(ba)c =ec =c.

Theorem 4. Let (S,0) be a monoid. If a € S and a is invertible w.r.t. o, then

inverse of a w.r.t. o is unique.
Proof. Let ¢ be the identity element of S w.r.t. o. Since a is invertible, it has an
inverse w.r.t. o . If possible, let e S and ¢ e S be two inverses of @ w.r.t. o in S.

aob = e = boa and aoc = e = coa .
Now co (aob) = coe = ¢ ..
and co (aob) = (coa) ob = eob = b ...(2)

From (1)and (2), c = 5.

.. Inverse of @ is unique.
The unique inverse of a is denoted by «~'. If the operation is taken multiplicatively
and by — a if the operation is taken additively.

Note 1. The inverse of the identity element e is e.

[. eoe=c¢i.e., el=e¢ or, e+ (-e) =e ie.,= —e]

2. aoa'=aloa=ea+(—a)=(-a)+a=e

'=e= @' =a and

3. a'oa =aoa”
at(-a)=(-a)+a=e= —(-a)=a.
i.e. the inverse of the inverse of 4 is a.
[ 2.6. CANCELLATION LAWS |

Let S be non-empty set and o be a binary operation on S.

For a,b,ce S.
(i) aob = aoc = b = ¢, (i) boa = coa = b = c.
(i) is called left cancellation law. (ii) is called right cancellation law and

(1), (ii) are called cancellation laws.
eg.l.In (N, .),3x=3y=>x=y
eg.2.In R +),x+23=y+23=>x=y
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[ 2. 7. GENERALISED ASSOCIATIVE LAWS |

Let S ={qy,qa,,...... a,}.Let (S, .) be an algebraic structure in which . is associative.

We define their product inductively :
n
Tcl a, =a.a...... a, =(a ...... a,_i)a,,

Then we have the following by induction :

m n—-m n
Ta, T a,,=Ta Le, (q..a,) (A ---0,)=0a.0;...... a,
p=1 q=1 r=1

Also if a€ S, we can have (a.a.a.a)(a.a)(a.a.a)...=a.a.a.a.a...

Definition. If G is a non-empty set and o is a binary operation defined on G such
that the following three laws are satisfied then (G, o) is a group.

G, . Associative law. For a,b,c € G, (aob) oc = ao (boc)

G, . Identity law. 3. e G such that aoe = a = eoa for every ae G is called an
identity element in G,

G; . Inverse law. For each ¢ € G 3 an element e ¢ such that gob = boa =e. bis
called an inverse of « .

Note 1. A group is an algebraic structure. It can also be written as <G,o0> .

2. A semigroup (G, o) is a group if G, and G, are satisfied.

3. A monoid (G, 0) is a group if G, is satisfied.

4. G,,G,,G; are called group axioms or group postulates.

5. It is possible to define more than one binary composition on G. Thus we can have
over G different groups depending on binary compositions defined on G.

For example, Z is a group with infinitely many operations defined by aob = a + b + n,
n=123..... If in a group there is no likelihood of any confusion regarding the binary
composition, we shall simply refer to the set G as a group.

6. It is possible to define the same operation on different sets so that each may form a
group for the operation. For example, (Z, +), (Q, +), (R, +), (C,+) are all groups.

Abelian or Commutative group

Definition. G, : For the group a,b € G,aob = boa . If G, is satisfied, then (G, o) is
called an abelian or a commutative group.

Otherwise (if G, is not satisfied) (G, o) is said to be a non-abelian group.

It is possible that aob = boa for certain elements @, of a non-abelian group and in
such cases we say that these particular elements commute.

Note. G, is called commutative axiom or commutative postulate of the group.

Finite and Infinite groups

Definition. If the set G contains a finite number of elements then the group (G, 0) is
called a finite group.

Otherwise the group (G, o) is called an infinite group.

Note. Existence of inverse. If S is a finite set and o is a binary composition in S,
we observe from the Caley's composition table the following :
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If the identity element in (S, 0) is found at the intersection of the row headed by «; and
the column headed by @; then ¢; and @; are said to be the inverses of each other in (S, 0) .
[ 2.9. ORDER OF A GROUP|

Definition. The number of elements in a group (G, o) (finite or infinite) is called the
order of the group G and is denoted by o (G) or |G |. If G is infinite, then we say that the
order of G is infinite.

Thus : (i) If the number of elements in a group G is n, then o (G)=|G|=n
In general, for a finite set S, |S|is the number of elements in S.

(i) If 0o(G) =2n,ne N, we say that the group is of even order.

(iii) If 0(G) =2n -1, ne N we say that the group is of odd order

Theorem 5. In a group G, identity element is unique.
( )

Proof. If possible let ¢;,e, be two identity elements in the group (G, o)

ee, = e,e; = e, is anidentity in G.
and e,e; = eje, = e, is an identity in G.

el =ez.

Theorem 6. In a group G, inverse of any element is unique.

Proof. Let ¢ be the identity element in the group (G, .).
If a e G then a4 will have an inverse.
If p0551ble let be G and ¢ € G be two inverses of a in G.
ab=ba=e¢ and ac =ca=e.
c(ab) = ce =c¢ .
and c(ab) = (ca)b=e.b=b ...(2)
. From (1) and (2), b =¢.
Note 1. We denote the inverse of a as a™' or —a depending on the operation.
2. Since a”'a = aa”' = e, we have (a™')! = a. i.e. the inverse of the inverse of an
element in a group is itself.

3. Since ee = ¢, the inverse of the identity element in a group is itself. i.e. e = .
e.g. 1. The set Z of integers is a group w.r.t. usual addition.
For i) For a,be Z,a+be Z.

(ii) For a,b,ce Z,(a+b)+c=a+ (b+c)

(iii) 0ec Z suchthat 0+a=a+0=a foreach ae Z
0 is the identity element in Z .

@iv) For e Z 3-ae Z suchthat a+ (—a) =(-a)+a =0
— a 1s the inverse of --.
(Z,+) is a group.
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Also abeZ=a+b=b+a.
. (Z,+) is an abelian group.
e.g. 2 The set N of natural numbers w.r.t. usual multiplication is not a group.
For i) For a,be N,abe N.
(ii) For a,b,c € N,a (bc) = (ab) c .
(iii) le N such that la = a for ae N.
(iv) There isno n e N such that an =1 for ae N.
Inverse law is not true.
. The algebraic structure (N, .) is not a group.
Note. Even if one of the laws G, to G; is not true, G is not a group. Hence to prove
that G is not a group it is sufficient if one law is proved to be not true.
e.g. 3. (Z,0) is not a group since 3 e Z has no inverse in Z (Inverse law G is not
true).
e.g. 4. (Q,+) is an abelian group with O as the identity element and — a is the inverse
of a.

e.g. 5. (Q, .) is not a group since 0 € Q has no inverse.

e.g. 6. (Q—{0}, .) is an abelian group with 1 as the identity element and 1 is the

. a
inverse of a.

e.g. 7. (R-{0}, .) is an abelian group with 1 as the identity element and 1 as the

inverse of a. “

e.g. 8. S is the set of all odd integers. Then (S, .) is not a group since 5e S has no
inverse in S.

e.g. 9. S is any non-empty set (P(S),u) is not a group although ¢ is the identity
element w.r.t. U since for any non-empty subset of S, there is no inverse in P (S).

e.g. 10. S is any non-empty set. (P(S),n) is not a group although S is the identity
element w.r.t. N since for any non-empty subset of S there is no inverse in P(S).

e.g. 11. Let V be the set of all position vectors in a plane containing the origin of
reference. It is an abelian group under vector addition with o as the identity element and
—a as the inverse a€ V.

e.g. 12. For any fixed positive integer n, the set R, of all n x n matrices over the real
numbers from an abelian group under matrix addition as binary composition. O, is the
additive identity and for A € R,,, — A is the inverse.

e.g. 13. (i) G ={0} (number 0) is a group w.r.t. usual addition.

(ii) G = {0} (number 0) is a group w.r.t. usual multiplication.

For : Closure, Associative laws are satisfied.

For 0e G, 30 G suchthat 0.0=0.

0 is the identity.
For 0e G,30e G suchthat 0.0=0
0 is the inverse of O.
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Note 1. G = {0} is the only set which is a group both w.r.t. usual addition and usual
multiplication.

2. In general, if G is a group w.r.t. usual addition, then it cannot be a group w.r.t. usual
multiplication since the multiplicative inverse does not exist for the additive identity 0. Similarly
a multiplicative group cannot be an additive group.

e.g. 14. If G = {a} and . is a binary composition on G, then (G, .) is group. a is the
identity and « is the inverse of a4 in G.

e.g. 15. G = {-1, 0, 1}, under usual addition, is not a group since closure law is not
true. 1+1=2¢ G).

e.g. 16. G = {-1, 0, 1}, under usual multiplication is not a group since 0 € G has no
inverse.

[SOLVED PROBLEMS |
Ex. 1. If G is the set of even integers i.e. G ={...—4,-2,0, 2, 4...}, then prove

that G is an abelian group with usual addition as the operation.
Sol. Let a,b,ce G. .. We can take a = 2x,b =2y,c =2z, where x,y,z€ Z.
(i) Closure. a,be G = a+be G .
since a+b=2x+2y=2(x+y)eG.

(ii) Associativity. a,b,ce G=a+(b+c¢)=(a+b)+c

since a+b+c)y=2x+QRy+2z)=2[x+(y+ 2)]
=2[(x+y)+ 7zl =2x+2y)+ 22
=(a+b)+c.

(iii) Existence of identity. s < G. 30 e G such that
a+0=0+a=a.
since q+0=2x+0=2x=ag and 0+a=0+2x=2x=a
- O is the identity elementin G.
(iv) Existence of inverse. ac G.3-ae G suchthat a + (—a) =-a+a=0.
since a+ (—a)=2x+(-2x)=0 and
(—a)+a=(2x)+2x=0
. (G, +) is a group.
V) Commutatwlty ae G,beG=a+b=>b+a since
a+b=2x+2y=2(x+y)=2(y+x)=2y+2x=b+a
(G, +) is an abelian group.
Note 0 is the unique identity element and - a is the unique inverse of a .
Also cancellation laws hold.
Further —(a+b) =-a+(-b) = (-b) + (-a)
i.e. the additive inverse of (a + b) is equal to the additive inverse of » + the additive
inverse of a.
Ex. 2. Show that set Q, of all +ve rational numbers forms an abelian group
under the composition defined by o such that aob = (ab)/3 for a,be Q,.
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Sol. Q. is the set of all +ve rational numbers and for a,b € Q. , we have the operation

o such that aob = a—3b .

Closure. a,be Q, = aobe Q, . since a,b e Q, and so %be Q..

Associativity. a,b,c € Q, = (aob)oc = ao (boc)

ab ab a |bc a
i = == == = —<—+ = —(boc) = ao (boc
since (aob)oc (3)0c {3 .c}/3 3{3} 3( ) (boc)
Existence of identity. Let a € Q,. Let e€ Q, such that eoa = a i.e., 4 _q
i.e. ea—3a=0 i.e.a(e—3)=0
.. e—=3=0 (ca#0) i.e. e =3.
clearly aoe 4 _fy3_y

. e is an element in Q, such that eoa = aoe = a.
i.e. ¢ = 3 is the identity element in Q,

Existence of inverse. Let a€ Q.. Let be Q, such that aob=e¢ ie., =3

ie. b=2 (raz0)
a 9 9 9
For every a € Q, 3— € Q, such that ao—=-oa=e.
a

.. . b
Commutativity. a,be€ Q, = aob = boa . Since aob = % =— =boa.

- (Q,, ) is an infinite abelian group.
Ex. 3. Show that the set G ={x/x=2%3" and a,be Z} is a group under
multiplication.
Sol. Let x,y,z€ G. Let x =239,y =2"3% 7 = 2!3™ where D.q,1,s,l,me 7.
We know that G) p+tr,g+seZ
) (p+nr)+l=p+(r+D,(g@+s)+m=q+(s+m)
Closure. x,ye G = xye G, since xy =2P392"3° = 2P*"31" ¢ G..
Associativity. x, y,z€ G = (xy)z = x(y2) ,
since (xy)z = (2739273%)2/3™ = r*rthzatistm)
= 2P349(2"FI3smy = 2P39(2735213M) = x(y7) .
Existence of identity. Let xe G. We know that ¢ = 2°3° € G since 0e Z.
: xe = 27392030 = 2P*t039+0 — P30 -
and ex =2°392737 = 2737 = ¢,
eec G such that xe = ex = x .
- e = 2°3% is the identity element in G.
Existence of inverse. Let xe G.
Now y =27P379 ¢ G exists since — p, — g € Z such that
xy = 2739277371 = 2030 =
and yx =27P3792P39 = 2930 —
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For every x = 2”37 € G there exists y =277377 ¢ G such that
Xxy=yx=e,

G 1is a group under multiplication.

cos O —sin O

Ex. 4. Prove that the set of martices A, ={ } o€ R forms a group

sin ot cos o

w.r.t. matrix multiplication if cos® = cos¢ = 0 = ¢.
Sol. Let o,f,ye R and G ={A, /o€ R}. (
Closure. AgA, € G = A Aze G

cos o —sinoc} [cosB —sinB}_[cos(a+B) —sin(oc+[3)}eG

since A, Ag =
P [sin o cosa ||sinB cosP sin (o + ) cos (o +P)

Associativity. A, Ag, A, € G = (A Ap) A, = A, (AgA,)
(Matrix multiplication is associative)
since (AyAp)A, = c?s (o +PB) —sin (o +P) c?s Yy —siny
sin(ot+PB) cos(a+P) ||siny cosy
_[cos(a+PB+y) —sin(a+B+7)
“|sin(a+PB+Yy) cos(o+pEy)
cosa —sind | [cos(B+7Y) —sin(B+y)
A (ARA,) =
and Aq(ApAy) Linoc cos o } Lin(BﬁLy) cos (B + ) }
_[cos(o+PB+y) —sin(o+B+7y)
“|sin(a+P+7y) cos(@+P+y)

. . . —si 1
Existence of identity. A = C?SO Sin0\_ 0l Ie G
sin0  cosO 0 1

Clearly A A =A)A, =A, .. A, =1Iistheidentity elementin G.
Existence of inverse.

Since | A, | = sin® o + cos® o = 1, A, is non-singular.

Inverse of A, existsin G anditis A, = A
ol

B 1|: cos O sinoc} B [cos(—oc) —sin(—oc)} _A

1| —sino coso sin (—a) cos(—o)
A_,€G suchthat AJLA_, =A_ A, = A,
G is a group under matrix multiplication.

Ex. 5. Prove that the set-Z of all integers form an abelian group w.r.t. the operations
defined by a=b = a + b + 2, forall a, b € Z.

Sol. Let a,b,ce Z and = is the operation defined on Zas axb =a + b + 2.

1. Closure. g,bec Z=a*b=a+b+2c7Z
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2. Associativity : g,b,ceZ
(a*b)*c=(a+b+2)*c=a+b+2+c+2=a+(b+c+2)+2

=a*(b+c+2)=axb*c).

3. Existence of Identity : g,ec Z

a¥e=a=a+e+2=a=e=-2 and e*a=a=e+a+2=a=e=-2

So Jee Zsuch that axe = exa = a. .~ eisthe identity in Z.  Here e = -2.

4. Existence of Inverse : Let q,bcZ

Nowasb=e¢e=a+b+2=-2=b=-4—-aand

bsa=e=>b+a+2=-2=b=-4-a

So axb=bxa=e. .. —4 —a € Zis the inverse of a.

5. Commutativity : Let a, be Z.

axb=a+b+2=b+a+2=>bxa.

(Z, =) is an abelian group.

Ex.6. Prove that the set G of rational (real) numbers other than 1, with operation
@ such that a®b = a + b — ab for a, b € G is an abelian group. Hence show that
x=3/2 is a solution of the equation 4®5®x="7.

Sol. G is the set of rational (real) numbers other than 1.
@ is the operation considered on G as a® b =a + b —ab for a, b € G.
Let a,b,ce G and so a#1,b#1,c#1.
1. Closure : a®b=a + b —ab € G.
2. Associativity : (a®b)@c=(a+ b - ab)®ec.
=a+b —ab+c—(a+b-ab)c=a+ b—-ab + c—ac — bc + abc
=a+b+c—bc—ab—-ac—abc =a + b + ¢ — bc — a(b+c — bc)
=a®b+c—-bc)=a® (b®c)
3. Existence of Identity : ee G
epa=a= e+a-ea=a=e(l-a)=0=e=0(a#l)
.. Identity exists and e = 0 is the identity.
4. Existence of Inverse : be G

a@b = e=>a+b—ab=0=>b(1—a)=—a=>b=£(-;a¢1)
Also b@a=e=>b+a—ba=0=>b=£('.‘a:ﬁl)
 a®b=0=b®a = Inverse of a exists and it is —%_ .

S. Commutativity : Also a®b=a+b-ab =b+a—baa=_bl®a
Hence (G,®) is an abelian group.
Hence 4®5®@x=7= 4®5)®x=7T= (4+5-4x5®Dx=7

=-11®x=7T=-11+x+1lx=7=x=3/2.
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| Theorem 7. Let G be a group. For a,be G,(ab) =b'a”'. (A.N.U.03, S.K.U.05,11 j
Proof. G is a group. Let ¢ be the identity in G.
- a,be G =>abeG,a'eG,b'eG =abeG,b'a'eG
Now (@) (v'a) = alb®'a™)] = alGb™)a = alea 1= aa =e.

Also (b'a™ Y (ab) =b [a (ab)] =b (@ 'a)b] =b ' [eb]=bb=¢.
(ab)(®~'a™) = (b"'a")(ab) = e . s (@) =b"a
Note 1. (b 'a™H) ' =ab. 2. (abo)™ =[(ab)el ™ = cVab) ! = la

3. (G,+) is a group, then — (a + b) = (-b) + (-a) .
4. —(a+b+c)=-c—(a+b)=—-c-b-a.
Theorem 8. Cancellation laws hold in a group.
Let G be a group. Then for a,b,c e G, ab = ac = b = ¢ (Left cancellation law)

and ba = ca = b = c (Right cancellation law)
Proof. G is a group. Let e be the identity in G .
Fora,b,ce G,ab = ac = a_l(ab) = a_l(ac)

= (afla)b = (afla)c =eb=ec=>b=c-
Similarly  pa = ca = (ba)a™ = (ca)a = b(aa™ ) =c(aa™) = be =ce = b =c-
Note 1. If G is an additive group a+b=a+c=b=c and b+a=c+a = b=c
2. In a semi group cancellation laws may not hold. Let S be the set of all 2x2
matrices over integers and let matrix multiplication be the binary operation defined on S.

Then S is a semi group of the above operation.

10 00 00
IfA: ’B: ’C:
00 01 10

then A,B,Ce S and AB = AC . We observe that B # C asserting that left cancellation
law is not true in the semi group.
3. (N,+) is a semi group.
For a,b,ce N, a+b=a+c=b=cand b+a=c+a=b=c
But (N,+) is not a group.
~. In a semi group even if cancellation law holds the semi-group is not a group.

Theorem 9. In a group G (#0), for a,b,x,y € G, the equation ax=">b and

ya = b have unique solutions.

Proof. G isagroup. a€ G,be G=a €G,be G=a beG.

Let ¢ be the identity element of G.
ax=b=ala)=ab=@'ax=ab=ex=a'b=x=a'b

But if x=a7'b then ax =a(a™'b) = (aa™ )b =eb =10

x = a”'b is a solution of the equation ax = b.

If possible, let x;, x, be two solutions of the equation ax =b.
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ax, =b and ax, =b
ax; = ax, = x; = x, (Left cancellation law)
Solution of the equation ax = b is unique and itis a™'b.
Similarly if y = ba™ then ya = (ba™Ya =b@a'a)=be=b.
y =ba”" is a solution of the equation ya = b .
If possible, let y,, y, be two solutions of the equation ya = b .
via=b and y,a=>b
ya=y,a=y =y, (Rightcancellation law)
Solution of the equation ya = b is unique and it is ba™".

Note. If (G,+) is a group, then the equation a + x =5 and y +a = b have unique
solutions.

Commutator of the ordered pair (a,5) where (G, .) a group.

Definition. Let (G, .) be a group and a,b € G. The element aba'b™" is called the
commutator of the ordered pair (a, b)in group G.

Ex. If the commutator of every two elements of the group (G, .) is the identity element
of G, then G is abelian.

For a,be G and ab a 7!

—e=aba b lb=eb.
= aba”' =b= aba'a = ba = abe = ba = ab = ba = G is abelian.
Theorem 10. G is a non-empty set. If . is a binary operation in G such
that the following three conditions are satisfied, then (G, .) is a group.
) a,b,ce G = (ab)c =a(be) (ii) ae G,Jee G such that ea = a and
(i) ae G,3a' e G such that a'a =e.
Proof. Part 1.  First we shall prove the left cancellation law in G.
e isleftidentity and ' 1sleftinverse of 4 in G.
For a,b,c € G,ab = ac = a '(ab) = a (ac)
= @'a)b=(a"a)c > eb=ec =b=c
Part 2.  Now we prove that ae = a.
aeG=a'eG suchthat a'a =e.

a_l(ae) = (a_la)e =ee=e=ala

a_l(ae) =a'la=ae=a

e 1s alsoright identity.
ea=ae=avVaeG.
Part 3.  Further we prove that aa™ = e.

aeG=a'eG suchthat a”la=e.

1 1 -1

a_l(aa_l) = (a_la) al=ea'l=a'=ae.

a_l(aa_l) =ale=adl=e.
a”' is also right inverse of ¢ in G.

a”'a = aa”' = e = every element in G has inverse.
All the conditions of a group are satisfied and hence G is a group.
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Thus : We can say that a semi - group (G, .)in which left axioms are satisfied is a
group.

Note 1. Theorem. The left identity in a group is also the right identity if conditions
(i), (i), (ii) are satisfied in (G, .).

Proof of the theorem follows from parts 1 and 2 of the above theorem.

2. Theorem. The left inverse of an element in a group is also its right inverse if
conditions (i), (ii), (iii) are satisfied in (G, .).

Proof of the theorem follows from parts 1, 2 and 3 of the above theorem.

3. We can also prove that G is a group w.r.t. binary operation even if conditions

(i) a,b,ce G = (ab)c = a(bc), (ii) for a e G,3e e G such that ge = ¢ and

(i) for a € G,3a™" € G such that aa™" = ¢ are given.

4. The above theorem can be stated as follows :

If a semi-group G statisfies the following conditions

(i) Forae G,3ee G such that ea = a and

(i) ae G3a"'e G suchthat ¢ la=ethen Gisa group.(K.U.0.98, O.U.A. 01, S.K.U.0 03)

5. G is a semi group. If 3ee G such thatae=a,Vac G and Ja’€e G such that
aa’ =e,Yae G , then G is a group.

6. However, we cannot prove that G is a group if closure, associativity, existence of
left (right) identity and existence of right (left) inverse are given to be true.

Theorem 11. (G # ¢, +) is an algebraic structure. Then (G, .) is a group iff

(i) a,b,c € G = (ab)c = a(bc) (ii) ax = b, ya = b have unique solutions in G for every
a,be G.
Proof. Necessary conditions.
Given that G is a group we prove the condition (i) and (ii) . Since G is a group (i) is
true and (ii) is also true (vide theorem 9 and write the proof).
Sufficient conditions.
Given that the condition (i) and (ii) are true, we prove that G is a group.
Closure in G is true since (G, .) is an algebraic structure. Associativity in G is true
by condition (i).
Existence of left identity : The equation ya = b has a unique solutionin G for a,b e G.
- If ae G,thentaking b=a,

we see that there exists an element ee G such that e-a=a e (1)
Let peG. Now ax = b = e(ax) = eb. e (2)
Also e (ax) = (ea) x = ax (using (1)) = p ... 3)

. From (2), (3), we have ¢p = p foranyelement » in G. ... e isthe leftidentity in G.
Existence of left inverse : a € G. Since e € G, the equation ya = ¢ must have a
unique solution in G. Letitbe ¢. .. ca = e which implies that the left inverse of a is c.
Left inverse exists for every element in G.
G is a group if (i) and (ii) are true.
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Note. A semi-group (G, .) is a group if the equation ax = b, ya = b have unique
solutions in G for ¢,be G. (This is Theorem 11 only)
Thus we have : Another definition of a group.

(G,) is an algebraic structure. If . is associative in G and the equations ax=b,ya =b
have unique solutions in G for every a,be G then G is a group.
In other words a semi-group (G,-) is a group if the equations ax = b, ya =b have unique

solutions in G for every a,be G.

Theorem 12. A finite semi-group (G, .) satisfying the cancellation laws is a
group. OR

A finite set G with a binary composition is a group if . is associative and the
cancellation laws hold in G.

Proof. Let G = {q,,a,,...a,} be a set with n distinct elements and (G, .) be a semi-
group satisfying the cancellation laws.

Let ae G. Since . is a binary operation in G, each of the products aaq,, aqa,,...aa

n

are n elements of G.
For i # j,aa; =aa; = a; = a; (by left cancellation law) which is a contradiction.
- All the n products aa,,aa,,...aa, are n distinct elements of G, of course in some
order.
Now let » € G.
. 3 unique q; € G such that aq; = bi.e. the equation ax = b has a unique solution in G.
Again considering the products a,a, a,a,...a,a and proceeding as above we
conclude that the equation ya = b has a unique solution.
By the definition of a group (Th. 11), (G, .) is a group.
Note. Consider the set N under +, we know that N is a semi - group under + in which
cancellation laws hold. But (N,+) is not a group.
In view of this fact, the above theorem cannot be proved for infinite semi-group.
Theorem 13. In the composition table for a finite group any element of the
group occurs in one and only one place in a row (or in a column).
Proof. Let (G, .) be a finite group. Let G = {q;, a5, ...a,} . Prepare a table with (n + 1)
rows and (n + 1) columns. Take . in the pivot's place. Fill the other squares in the first row

successively by ay,a,,...a, and the other square in the first column successively by
a;,a,,...a, . Then we will be left with n x n blank squares. Take a, (2nd element in the first
column) and write the equation a;x = a; (- G is closed under .) where k =1, 2,...n in
G. If g, and ¢, are fixed, then x is unique since the equation has a unique solution in G.
Suppose x = a;(1 <i < n). Write a, as the product of @, and g, in the i square of the 1"

row. Thus all the n squares of the 1¥ row (in nxn blank squares) are filled in. Now it is
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clear that no element of G can be repeated in n squares of the first row (of the n x n blank
square).
Similarly all other remaining squares in the 2™, 3™, ... rows can be filled.
We can also fill the nx n blank squares using the equation ya =b.
Hence no element occurs in the composition table of a finite group more than once in
any row (or column)
Ex. 7. Show that the sets of all ordered pairs (a,b) of real numbers for which
a # 0 w.rt. the operations x defined by (a,b)X (c,d) = (ac,bc +d) is a group. Is the
group commutative?
Sol. Closure : (a,b),(c,d)e S = (ac,bc +d)e S since a #0,c #0= ac #0.
Associativity : (a,b),(c,d),(f,g)€ S = {(a,b) X (c,d)}x(f,g) € S
=(ac,bc+d)x(f,g)
= (acf,bc +df + g) = (acf,bef + df + g)
= (a,b)x(cf,df + &) =(a,b)x{(c,d)x(f,8)}
Existence of left identity :
Let (a,b) e S. Let (x,y) € S such that (x, y)x(a,b) = (a,b)
(xa, ya+b) =(a,b) = xa=a,ya+b=>b
=x=1 (- a#0) and ya=0.
=x=1 and y=0 (- a#0).
(1,0) € S such that (1,0) % (a,b) = (a,b).
Left identity in S exists and itis (1,0).

Existence of left inverse.l.et (a,b) € S .Let (x,y) € S such that (x, y) X (a,b) = (1,0).
(xa,ya+b)=(1,0)=xa=1,ya+b=0

:x:(l}y:_é (ra#0)
a a
Left inverse of (a,b) exists and it is (—,— —)
Commutativity : Let (a,b),(c,d)€ S. “
(a,b)x(c,d) = (ac,bc+d) and (c,d) %X (a,b) = (ca,da + b)
Clearly (a,b)x (c,d) # (c,d) X (a,b)
S is a group but not a commutative group w.r.t. x .
Ex. 8. Prove that the set of n™ roots of unity under multiplication form a finite
group.
Sol. 1" = (cos 6 +isin )"

:cos&+isin%,k =0,12,...n-1.
n n

= 7k by Euler's theorem.

LetG = {e*™" k=0, 1, 2,...n—1} and complex multiplication "."be the operation on G.
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(i) Closure :Let a,be G then ¢" =1 and b" =1.
(ab)" =a"b" =1.1=1=a,be G.
(i) Associativity :Since the elements of G are complex numbers'.' is associative in G.
(iii) Existence of right identity :
We know that 1=¢2"/"-9¢ g . If ae G then a.1=a.
Right identity element exists in G and is equal to 1.
(iv) Existence of right inverse :

Let ¢?™/™ e G. Then 0<r<n-1 ie. either r=0 or 0<r<n-1.
s ePUmicG or 2mMPUn e Gwhen O<r<n-1.

211:.0/)1. 2n.0/n =1 or lem/n'eZTI:(nfr)t/n — 2

Now ¢ e e?™ =cos2m+isin2m=1

when O<r<n-1.

- The right inverse of ¢™%/" is ¢*™/"(=1) and

the right inverse of ¢>™/"is 2™"="i/" when 0 < r<n—1.
Thus every element of G is invertible.
(v) Commutativity :
Since the elements of G are complex numbers, . is commutative in G.
. G is afinite abelian group under multiplication.

Ex. 9. Show that the fourth roots of unity form an abelian group w.r.t.
multiplication.

Sol. Fourth roots of unity are 1,—1,4,—i.

Let G={1, —1,i, —i}. The composition table for multiplication is

o | 1 |[-1[i |=

L 1| -1]i |-
-1 -1 1| = |

i i =i|-1]1
—i| =] i|1 |-1

We can observe (i) Closure (i) Associativity (iii) Existence of identity (identity
element = 1) (iv) Existence of inverse (v) commutativity to be true.
O =L)D" =460 =i () =i
.. (G, .) is an abelian group (of order 4).
Ex. 10. If every element of a group (G, .) is its own inverse, show that (G, .) is an
abelian group.
Sol. Let a,be G. By hypothesis ¢! = ¢,p7" = b.
Then ab e G and hence (ab)™ = ab.
Now (ab) ™' =ab = b'a™ = ab = ba = ab = (G, .) is an abelian group.
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Ex. 11. All groups of order 4 and less are commutative.
Sol. Group of order 1.

Let (G, .) be a group such that O(G) =1.

Then G = {e¢} where e is the identity element.

Now ec.e=e. ~. G is commutative.
Group of order 2.

Let (G, .) be a group such that O(G) =2.

Let G = {e,a} where e is the identity element. : €] a

Then e.e=e,e.a=a.e=a and a.a=-e. e e | a

.. The composition table is :

Clearly G is abelian.
Group of order 3.

Let (G, .) be a group such that O (G) =3
Let G = {e,a,b} where e is the identity element.

We have (i) e.e=e,e.a=a and e.b =b

(i) ae=a,ab=-c¢
(-+ ab=b= ab = eb = a = ¢ Whichisabsurd) and aa =b . *lelalb
(ifi) be=b,ba=e elelalb
(-+ ba=a= ba=ea= b=e whichisabsurd)and b = a . ala|ble
. The composition table is : b|ble|a
Clearly G is abelian.
Group of order 4.
Let (G, .) be a group such that O (G) = 4.
Let G = {e,a,b,c} where ¢ is the identity element.
Since e = ¢! if a =a”' two causes arise.
I. b=c'and c=b"" ILb=b"and c=c!
Case I. We have :
(i) ee=e,ea=a,eb=0b and ec =c.
(ii) ae = a,aa = e,ab = ¢
[+ ab=b= ab = eb = a = ¢ Whichis absurd]. elelal|b |c
(iii) be = b,bc = e, ba = ¢ elelalb|c
[+ ba =a= ba =ea= b=e whichisabsurd]. alalelc |b
(iv) ce=c,cb=e,ca=b bl b lelale
[- ca=a= ca=ea= c=e whichisabsurd].
. The composition table in this case is : ‘1€ ¢ 1“
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Case II. We have :

(i) ee =e,ea=a,eb=b, ec =c.
(ii) ae = a,aa = e

[« ab=b=>ab=eb=>a=c¢
whichis absurd] ab = c,ac =b. .l el alb]| c
(iii) be = b,bb = e,ba = ¢

[« ba=za=ba=ea=b=c¢

which is absurd] and b¢ = a. alal el|lc| b
(iv) ce =c,cc=e,chb=a
. b| b| c| el a
[c chb=b=cb=eb=c=eWhichisabsurd]and ca=5.
The composition table in this case is : clc|b|a]e

Clearly G is commutative in either case.
Note. The algebraic structure shown in case Il is called Klein-4-group. In this group

Vae G, we have aa = ei.e. a* = e by defining aa = a>.

Ex. 12. A is any non-empty set. S is the set of all bijections (one-one and onto
mappings) from A to A. Then show that S is a group w.r.t. composition of mappings
as binary operation.

Sol. Let S be the set of all bijections from A to A. Let g,f€S.

By the definition of composition of mappings, for x € A, (gf) (x) = g(f(x)) .

Closure. Let g, f € S are bijections on A .

Let a,be A.(gf) (a)=(gf) (b)= g(f(a)=g(f (b))

= fl@=f®) (-~ &isl-1) =a=b (= fisl-1) =gf is1-1

Since g isontoon A,3be A suchthat g(b) =c for ce A.
Since f isontoon A,Jaec A suchthat f(a)=b for pe A .
gb)=c= g(f(a) =c= (gf)(a) =c= gf isonto.
. g f is abijection defined over A and hence g f € S.
-. . follows closure law in S.
Associativity. h,g,f €S = h(gf) =(hg)f
Since for xe A,(h(gf)) (x) =h [(gf) (x)]=h[g(f(x))]

= (hg)[f ()] =[(hg) f1(x) = h(gf) = (hg) [f .

Existence of identity. Let ¢ be the identity mapping from A to A .

For xe A,e(x) = x. Also e isabijection .. e¢€eS.
fES= e = fe=f since

(ef ) (x) =e(f(x) = f(x) = ef = f and (fe)(x) = fle(x) = f(x) = fe=f

: Identity element in S exists and itis e.

Existence of Inverse. lLet feS. . f:A — A isabijection.
f':A — A isabijection . . fles.
Now for  xe A,(f ') =T (f)=x=e(x) = f'f=e
and HH@=fIfWl=x=e@=f"=e. o f'f=f"=¢
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. Every element of § is invertible and 7! is the inverse of f .

. S is a group w.r.t. the composition of mappings as the binary operation.

Commutativity. If A has only one element then S has only one element and every
group of order 1 is abelian. If A has only two elements, then S has only two elements and
every group of order 2 is abelian. But if A has more than 2 elements then we shall show
that S is non-abelian.

Let A ={a,b,c}. Define f: A — A such that

f(@ =b,f(b)=c and f(c)=a and g : A > A such that

gla)=b,g(b) =a;g(c) =c. Clearly f and g are bijections in A .

. f.g€SsS.

Now (gf)(a) = g(f(a)) = gb) =a and (fg)(a) = flg(a)]l = f(b) =c

(gf)(a) # (fg)(a) ie. gf # fg.

In this case S consists of six elements and S is a non-abelian group.

Ex. 13. Show that the set of six transformations f, f,, f5, f4, 5. s On the set
A =C-{0,1} defined by

1 -1
fl(Z):Z’fz(Z):Z’f3(Z):1_va4(Z) 21 fs(Z) fe(Z)_ Z
forms a finite non-abelian group of order six w.r.t. composmon of functions as
the composition.

Sol. If f:A — A then f is a transformation on A =C-{0,1}
Let G ={fi, f2, f3, f4» f5. f6}- Each f; is a transformation since f; : A — A.

1

Since VZ € A, f,(Z) = Z, f, is the identity function.
hiv=fhifa = 1f = L6, s = f3h ete.

1

Now : () (Z) = folf>(Z)] = f{ ;j (1 -

) Z=(Z)= f,f, = f;.

(uf3)(Z) = fLl 3] = f,A-Z) = —fs(Z): Hfs=fs-

_Z-1
ZKZ—D

(fof)(Z) = fz[f4(Z)]—f2( j =foe)= fofy = fs.

(fofs)(Z) = fLlfs(Z)] = ( )—I_Z HE) = ffs=f;.

(fofe) (L) = frl f@(Z)]—fz( j f4L) = frfe = fy etc.
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O A ol B fa]| 5| S
h| A 2| B fa| fs | fe
Ll Al 5] fo| 3| /1
BB el h| 5] fal 2
fo | fal fs| fo| A 2| /3
s fal | B fo| N
foe | fo| 3| Ja| fo| ]| F5

Clearly G is a group w.r.t. the composition of mappings as composition.
But it is non-abelian since f5f, = fs and f,f5 = fs.
Ex. 14. Real quaternion group. Let T ={ay + aji + a,j + a;k/ay,a,a,,a; € R}
where i, j,k are such that i* = j* = k* = -1.

ij=—ji=k, jk=—ki =iki=—-ik=j and ijk = —1.
Also ay+aji+a,j+ask =by +bi+b,j+bsk & a, =by,a =b,a, =b,,a; = by
Define an operation ® : TXT — T as follows :

(ag + aji + ayj + ask) ® (by + byi + by j + bsk)

=(ay +by) +(a; +b)i+(a, +by)j+ (a3 +b3)k
Show that (T,®) is an abelian group.
Sol. Clearly the operation @ is well defined.
Let x=ay+aji+ayj+azk, y=Dby+bji+b,j+ bk

Z=cyteite,jtek.
Closure. x,ye T=x®yeT
since a, + by, a; + b, a, +by,a; + by € R etc.
Associativity. x,y,ze T=> x@y)@z=x®(y D7)
since (ag +by) +¢y =ag + (by +¢y) etc.
Commutativity. x,ye T=x®y=y®x.
Existence of identity. ¢=0+0i+0j+ 0k e T is the identiry element.
Existence of inverse. Let xe T. Then —xe€ T such that x+ (—x) = (-x)+x=e.
(T, ®) is an abelian group.
| EXERCISE 2 ( a) |
1. Prove that the set Q, of all non-zero rational numbers forms a group under usual

multiplication.

2. G ={x/x is arational number and 0 < x <1} . Show that (G, .) is not a group. (. is
usual multiplication).

3. Prove that the set C of all complex numbers forms an abelian group w.r.t. ordinary
addition.
[Hint.Let a,b,ce C. Take a = p, +iq,,b = p, +iq,,c = p; +iq;

Where P41, P2-92> P3-93 € R]
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10.

11.

12.

13.

14.

Prove the set C, of all non-zero complex numbers forms an infinite abelian group
w.r.t. multiplication.
Show that the set G=mz={..., —=3m, —2m, —m, 0,m, 2m, 3m,...} is an abelian
group w.r.t. usual addition, m being a fixed integer.
[Hint. Let a,b,c € G. Take a = pm,b = gm,c = rm where p,q,re Z]
Show that the set G ={...,27,272,1,0,2,22,2%,...} is an abelian group under usual
multiplication.
[Hint. Let a,b,c€ G. Take a =27,b=2%¢=2" where p,q,re Z]
(a) Prove that the set of integers Z is an abelian group for the operation @ defined by
a®b=a+b+1V abel.
[Hint. ccZ e@®a=a=e+a+l=a=e=-1

beZ a®b=e=a+b+l=-1=b=-a-2]
(b) Prove that the set Z of all integers forms an abelian group w.r.t. the operation
definedby a*b=a+b+2,forall a,be Z.
Prove that the set G = {a + b\/E /a,b e Q} is a commutative group w.r.t. addition.
[Hint. Let x, y,z € G. Take x:a+b\/5,y :c+d\/5,z = p+q\/§.

Identity element = (. Inverse of x is — x|
Show that the set of all positive rational numbers forms an abelian group under the
composition o defined by
(i) aob = (ab)/2 (K. U.10,0.U. 12) (i) aob = (ab)/4
Prove thatthe set C = {z = x +iy/x, y € R and | z| = 1} forms an infinite abelian group
under multiplication.
[Hint. z,,z, € C. Then |z|=1]z]=1]z] |z2]l=1

Multiplication of complex numbers is associative.

. 1 . 1 1
Identity element =1+ 0i = 1. |z| |—|=1 since |—|= IEl =1].
z z |z

(G,*) is an arbitrary group. Define a new binary operation o on the set G by the
formula gop =pb+q. Prove that (G,o)is also a group.

[Note. (G,o)is called the opposite group of (G,*) |

Show that the set R of real numbers other that —1 is an abelian group w.r.t. the
operation @ defined by a ® b =a+ b+ ab. Show that the solution of the equation
20x®3=7 in R—{-1}is —-1/3.

Prove that the set G of 2x2 non singular matrices whose elements are real numbers
is a non-abelian group w.r.t. matrix multiplication.

Prove that the set of all m x n matrices whose elements are numbers (integers, real or
complex) form an infinite abelian group w.r.t. matrix addition.
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15. Prove that the set of all n x n non-singular matrices having their elements as rational
(real or complex) numbers is an infinite non-abelian group w.r.t. matrix multiplication.

16. In a group G (i) if b 'a™'ba = ¢ (e is the identity in G) V a,be G, prove that
G is abelian. (ii) let a,be G. Show that (ab)' =a'b”! < ab=ba .

Ex. 15. Show that the set Py of all bijections on three symbols a,b,c (some take
them as 1, 2, 3) is a finite non-abelian group of order 6 w.r.t. composition of map-
pings. )

Sol. Let S = {a,b,c} and let Py be the set = {fi, f,, f5, f4> f5. [} Where f;(i = 1 to 6)
is a bijection over S.

Let fi ={(a,a),(b,D),(c,0)}, fr = {(a,D),(],a),(c,c)}

f3 ={(a,a),(b,0),(c, D)}, fy ={(a,¢),(b,]),(c,a)}
fs ={(a,0),(b,0),(c,a)}, fs = {(a,0),(b,a),(c,b)}

Let o be the composition of mappings in Py .
Let g,fePy.
Then gof = perform first f and

then perform g . O A2 B fa| f5| f6
The composition table for Py Nl h ||| 5] s
is given below. Ll h| Al fe| )| fa
frofs ={(a,b),(b,a),(c,c)} o {(a,a),(b,c),(c.D)} | 5| Fa|fe| A | 5| fa| f2

={(a,b).(b,0),(c,a)} = f5 falfal | fo| A 2| f
fsofy ={(a,b),(b,¢),(c,a)}o{(a,c),(b,b),(c,a)} | fs | fs | fu|l | | fol A

={(a,a),(b,c),(c,D)} = f3 folfo| | fa| 2| A S

and so on.
Since all the products in the table are elements of Py, closure is true. Composition of

mappings is associative. Identity element is f; .
Also il = fify ' = fo s = S fa = ks = fefe = S
The composition is not commutative since fsofs # f50f5 .
-. Py is a finite non-abelian group of order 6.
Note. If A; ={f,, f5, fs}, the composition table w.r.t.
the composition of mappings as composition is :

Clearly A, is a commutative group on S. ol al sl s

Identity is f,.f.7" = fo, fo ' = fs-

Similarly H = {f;, f,} is an abelian group hf Al ] f

w.r.t. composition of mappings. 515 6| A
fe | Jo | i | /5
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Ex. 16. The symmetries of an equilateral triangle.
Let ABC be an equilateral triangle with medians p, ¢, r and centroid O .
ZAOB = BOC = ZCOA =120°
We form by rotations and reflections the following 6 distinct symmetries.
(1)Anti clock-wise rotations about O in its plane through 0°,120°,240° are repre-
sented respectively by

p
n = {(A’A)’(B’B), (C, C)} A
n ={(A,B),(B,0),(C,A)}
and r2 = {(A’ C)’ (B9 A)9 (C, B)}

Clearly ry, n,r, are bijections over the
set of vertices {A,B,C}.

(2)Reflections in the medians p, g, r ’

are represented by ©
fi ={(A,A),(B,C),(C,B)} q [ r
£, ={(A,0),(B,B),(C,A)} B

and f3 ={(A,B),(B,A),(C,C)}

Clearly f,, f,, f5 are bijections over the set of vertices {A, B, C}. We shall explain the
above motions by taking one rotation from (1) and one reflection from (2).
Consider r, = {(A,C),(B,A),(C,B)}.
A B

B c C A

Consider f, ={(A,C),(B,B),(C,A)}. f, is the position obtained by the reflection in
the median g . Imagine ¢ as a mirror. Then reflection of A in ¢ is C and the reflection of
C in g is A . Also reflection of B in g is B .

Pl A
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We denote the set of these bijections by G = {ry, n, 1, fi, f2, f3} -
Let o is be the binary operation (composition of mappings) on G such that for g¢,b € G.
aob = perform first » and then perform a and the resulting position of the vertices is
the result.
We have the following composition table.

Ol | n|l nl| A 2] f
nflnol|lal | Al 2|

nln|ln| nl|l B AN

nlnfion|l n|l 2|l B A
Al A 2] Bl | n|n
| 2| Bl Al 2| | n
Bl B A 2l n|l ]|

Clearly G is a group with identity 7, .

Also r ™ = rn T =T = AT = AT S T = S
Further nof, = f; and f,on, = f5 1i.e. nof, # fron.
. G is not an abelian group w.r.t. o.
Ex. 17. Dihedral groups - symmetries of a square.
Consider a square (say, a card board square)
on a rectangular Cartesian plane of two 4
dimensions with its centre at the origin. (So that AN
the square may move freely). 1
Let the vertices of the square be numbered
as 1, 2, 3, 4 as shown in the figure.

If the following one or more rotational , > X
motions are applied on the square, it remains in its
original place. The motion of the square is identified
by its final position which is indicated by the 3
numbered vertices. Further two motions of the 4 y
square are said to be equal if they leave the square
in the same final position.

Rotational motions of the square are symbolised as follows :

1. Clockwise rotation about -- in its plane through 90°... 7, .

2. » » ” » . , 180°... 1149 -
3. » » ” » . , 270°... 7y -
4. » » » » » » 360°... 1340 -
5.

Reflexion in the x — axis (inspace)i.e.flips out of }

the plane about x — axis and back into the plane
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......... Y = AXIS ciiiiiiie e

: . s
......... Y = AXIS i

7o e diagonal d| .......ccoevviiiiiiiiint. J
......... diagonal d| ................ !

8 e diagonal dy ....coooveviiiiiiiiiiill

’ . —d,
......... diagonal d, .............o

Clearly 7y, Figgs------ ,d, are all bijections over the set of vertices {1, 2, 3, 4} and
ryo = {(L4),(2,1),3,2),(4,3)},ngo =1{(1,3),(2,4),3, D, (4,2)}....d, ={(1,3),(2,2),(3,1),(4,4)}

Now we have the following composition table on D, = {ry, #i30> 72705 13605 %> ¥> d1> do }
w.r.t. the composition of mappings o .

If ¢, f e D,,then gof = perform the motion f first and then perform motion g .

% oo | Migo | 270 | 1360 | X y dy | d,

Too | Tiso | 70| Beo | oo | 4y | s y X

Niso| 270 (360 | o0 | Tiso | Y X d, | 4,

Pyo| Beo | oo | fiso | P20 | 42| 4, X y

Beo | 90 [ %igo | 270 | 360 | X Y d, | 4,
x | d, y d X1 860 | fiso | 270 | %0
y d, x | 4, Y | hso | Beo | %0 | 270
d, x | d, y dy | T | P70 | 7360 | fiso

d, y d, x | dy | 0 | Too | Tiso | P60

Clearly D, is a group with identity ry, .

Also each of rg, 130, , ¥, dy, d, is its own inverse and (1)) ™" = ry70, (F270) " = 79 -

Since ryg0x = d, and xory,, = d, .

1y700X # XOTy7

D, is not an abelian group.

Note. (D,,0) is a dihedral group which is an octic group. It is an example for a finite
non-abelian group.

Ex. 18. Consider three mutually rectangular coordinate axes (X,Y,Z axes) in
space. The set of rotations of a line about the x-axis in the anticlockwise direction
through angles 0°,90°,180°,270° in the XY planes. We denote the rotations through
angles 0°,90°,180°,270° respectively by ry,n,r,1r5.Let G ={ry,n,r,r3}. Clearly
Yo, > 1o, 13 are all bijections over the set of positions of the line in the XY plane.

Let o is be the binary composition (composition of mappings) defined on G.
Now we have the following composition table :
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Clearly G is a finite commutative group olnlnln

with identity 7 .

Also r™ = = rn T = nnT =g 0 1]z

Ex. 19. In a group (G, .) for a€ G, is idempotent 111 (23B[0

S a=e. (A.U. MIi2) ”n ”n s n n

Sol. (G, .) isagroup. Let a e G, « is idempotent. 1l n
Sad.a=a<>a.a=ae=>a=e.

Note. If a is an element in a group (G, .) such that a.a = a, then a is called an
idempotent element.
Ex. 20. If a,b are any two elements of a group (G, .) which commute show that
(i) a' and b commute, (i) b~ and a commute and (i) a”'
Sol. (G, .) is a group and such that ab = ba .
(i) ab = ba = a”'(ab) = a”' (ba)
= (@a'a)b=a'(ba) = eb = (a"'bya=b=(a"'b)a
=S ba' =[(@'b)alat =@ 'b)(aa™") = (@ B)e =4 p
= a'and b commute.
Similarly (ii) can be proved.
(i) ab = ba = (ab) ' = (ba) ' = b'a = a7 B!
= 4" and p~! commute.
| 2.10. ADDITION MODULO m |

Definition. Let a,be€ Z and m be a fixed positive integer. If r is the remainder
(0 < r <m) when ¢ + b (ordinary sum of a,b) is divided by m , we define 'a + ,b' = r and
we read 'a + ,,b' as a 'addition modulo m"' b.

e.g. 1. 20+ ;5 =1 since 20 + 5 = 4(6)+1 i.e. 1 is the remainder when 20 + 5 is divided
by 6.

eg. 2. 24+ ;4=3.

eg. 3. 2+,3=5.

eg. 4. —-32+,5=1since —-32+5=(-7)(4) +1.

eg. 5 (-9)+,(-18) =1 since -9 —18 = (-14)(2) +1.

eg. 6. 0+4(-3)=2 since 0+4(-3)=0-3=(-1)5+2.

Note. a+,b =b+ ,a.
2.11. CONGRUENCES |

Definition. Let a,b € Z and m be any fixed positive integer. If « — b is divisible by
m we say that g is congruent to » modulo m and we write it as a = b (mod m ). This
relation between integers « and b is called congruence modulo m .

Thus: a=b (modm)&e m/l(a—b) or m/(b—a)or a—b = qgm for ge Z and

and p~' commute.

a#b (modm) < m does not divide (a—b) or a—b # km for ke Z.

Note 1. If a = b (mod m ), then we get the same remainder if « and b are separately
divided by m .

e.g. 1. If 22 =13(mod3), then 1 is the remainder when 22 and 13 are separately
divided by 3.
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e.g. 2. If —7=17(mod6) then 5 is the remainder when —7 and 17 are separately
divided by 6.
2. Since a +b = r (modm), we have a + ,b = a +b(modm).
e.g. 12+ ,7=12+7(mod4)
Since 12+ ,7 =3 and 3 =19 (mod 4).
3.If a=b (modm), then a + ,c=b+ ,¢
For: a=b (modm)= m/(a-b) = ml(a+c)—(b+c)
= a+c=b+c(modm) for ce Z.
=a+,c=b+,c
2.12. The operation congruence modulo ' ' is an equivalence relation, in the set of
integers. So the operation 'congruence modulo m ' partitions Z into disjoint equivalence
classes called residue classes modulo m or congruence classes modulo m .
If a e Z then the residue class of @ is @ or |a| or |a| where a ={x|e Z and x —a
is divisible by m }.
Similarly if € Z then b ={x| xe Z and x — b is divisible by m }.
Clearly @ = b < a = b(modm) or m/(a - b).
Definition. Z,, ={0, 1, 2, 3,...(m—1)} is called the complete set of least positive resi-

dues modulo m or simply set of residues modulo .

Definition. Let me N and re Z.

Let ¥ ={x| x€ Z,x = r (mod m)}. Then the set Z:{ﬁ, 1, 5,...m_—1} is called the
complete set of least positive residue classes modulo m or simply set of residue classes
modulo m .

Here 7 ={..., —2m+r, —m+r,r,m+r, 2m+r,...}.

e.g. If m =6, the set of least positive residues modulo m = {0,1,2,3,4,5} and the set

of residue classes modulo m = {0, 1,2, 3, 4,5} where
0=1{.,-12,-6,0,6,12,..},1={...,.-11,-5,1,7,13,...},

b
2=1{..,-10,-4,2,814,..},3 ={...,—9,-3,3,9,15, ...},
4=1..-8-2,410,16,..),5={..,-7,-1,5,11,17,...} .

We observe that a =a+m=a+2m =
Thus for the above example, (0 = 6 = 3
1=7= 73=...,§ 8=14=... etc.

Also 0,1,2,3,4,5 are all disjoint.

Note 1. The elements 0,1,2,...m—1 of Z, are distinct.

2.1t ae Z and if r is the remainder when ¢ is divided by m, then gz = 7 .

For : By division algorithm, a =gm+r,q€ Z and r is the remainder such that
o<r<m-1.

soa—r=qgm= a-r isdivisible by m.
= a=r(modm)=>a=r

3. The residue class 0 is called the zero residue class. We have a =0 © m/a.

Addition of residue classes

Definition. For a,b€ Z, we define addition of residue classes, denoted by +, as
a+b=a+b.
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Note 1. + on the R.H.S. is ordinary addition.
2. If r is the remainder (o < r < m) when a + b is divided by m,
then a+b=7 ie. a+b ="r.

| 2.13. ADDITION GROUP OF INTEGERS MODULO |

Theorem 14. The set G ={0,1,2,...(m — 1)} of first m non-negative integers is an
abelian group w.r.t. the operation addition modulo m .

Proof. If a,b € Z and m is a +ve integer, then a + ,b = r where r is the remainder
when a + b is divided by m .

Clearly 0<r<m-1.

Closure. a,be G=a+,beG.

Since a+ b=r,0sr<m-1.

Associativity. a,b,ce G=a+ ,0b+,c)=(a+,b)+,c since

a+,b+,c)=a+,0b+c)(modm) [v b+ ,c=(b+c)(modm)

= remainder when a + (b + ¢) is divided by m .
= remainder when (a + b) + ¢ is divided by m .
=(a+b)+,c=(a+,b)+ ,c.
Existence of identity. Let a € G,30€ G such that 0+ ,a=a+,0.
-, 01is the identity element in G.
Existence of inverse. Since 0+ ,,0 = 0, the inverse of 0 is 0 itself.
If r(;t 0)e G, then m -re G.
(m —r) + ,r =remainder when (m —r +r) is divisible by m =0
=r+,(m-r)
m — r is the inverse of r.
Every element in G is invertible.
Commutatwlty abe G=a+,b=b+ ,a.
Since a + ,b =remainder when a + b is divided by m .
= remainder when b + a is divided by m .
=b+,a.
(G,+ ,,) is an abelian group O (G) =m
Note. 1. Here we denote G by Z,,. 2. (G -{0},+,,) is not a group.

Ex. 21. Prove that the set G ={0,1,2,3,4} is an abelian group of order 5 w.r.t.
addition modulo 5.
Sol. The composition table for G +5
W.I.t. +5 is given :

Now we can prove all the axioms of
an abelian group.
. (G, +5) is a finite abelian group of order 5.

Rl |~ |O
Al |~ |O|O
Ol |W I |—= =
— O | |WIN N
[\ON Bl Newll BN RUSIY OS]
Wi | = ||~
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Additive group of residue classes modulo m
Theorem 15. The set of residue classes modulo m is an abelian group of order

m w.r.t. addition of residue classes.
OR

( Z_m, @ ) is an abelian group.

Proof. The set of residue classes modulo m =

Z,={0,1,2, ...,m—-1) ={r|0<r<m-1}.
Addition of residue classes z and » denoted by +, is defined as follows :
For a,bcZ, = a+b=a+b. The operation + is well defined.

For this we have to show thatif z=¢ and b =d in Z, then a+b =c +d -
We have a =¢c = m|(a—c¢) andl;=c?:>m|(b—d).

Now m|(a-c) and m|(b-d)|=> m|{a—c+b—-d}

=S m|{(a+b)-(c+d)}= a+b=c+d(modm)

=S a+b=c+d=a+b=0c+d - +1s well defined.

Closure. a,bcZ, = a+beZ,

Since a+b=a+b=r,0<r<m-1 where r is the remainder when 4 +b is
divided by m .
Associativity. a,b,c€Z, . (@+b)+c=a+(b+c).since @+b)+¢ =g+b+c
=(a+by+c =a+(b+c) =a+(b+0)
Commutativity. @,be€Z = a+b=b+a since a+b =a+b=b+a=b+a
Existence of identity. Let ge Z . 30eZ, such that

m
0+a=0+a=a=a+0=a+0-
- Identity in Z,, exists and itis 0.
Existence of inverse. 0+ 0 =0 = 0 is the inverse of 0.

If rez, suchthat 1<y <m-1,then m-reZ,

Further m-r+7r=m-r+r=m=0and r+m-r=r+m-r=m=0

m
m—-r+r=r+m—-r=20

m—r is the inverse of v for 1<r<m—1.
Every element in z is invertible.

(7.~

m?

2.14. MULTIPLICATION MODULO p

+) is an abelian group of order m .

Definition. If 4« and » are integers and p is a fixed positive integer and if ab (ordi-
nary product of ¢ and b ) is divided by p such that r is the remainder (0 <r < p), we
define ax, b =r . Weread ax, b as a "multiplication modulo p" b.

e.g. 1. 20x,5=4 since 20x5 =100=16 (6)+4 i.e. 4 is the remainder when 20X
is divided by 6.

e.g. 2. 24x54=1 eg. 3.2%x,3=6
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eg. 4. (-32)x,5=0 since (-32)x5=-160 = (—40)4+0
e.g. 5. (-28)x, (-11)=2 since (-28)x (-11) =308 = 102(3) + 2
e.g. 6. 0x;(-3)=0 since 0x(-3)=0=0(5)+0
Note 1. ax,b=ab (modp)
e.g. 7Xs3=21(mod5) since 7x53=1 and 1-21=(-4)5
2. If ax,b=bx, a. eg. 3%x,6=6%,3
3.If a =b(mod p) then ax,c=>bx,c
e.g. 1. If 3 =23(mod5) then 3%s4=23x%54 since 3x54=2 and 23x54=2
eg. 2. If -4 =-25(mod7) then (-4)x;5=(-25)%;5
since —4x; 5 =1 and (-25)%;5=1
Prime integer
Definition. An integer p is said to be a prime integer if p # 0, p # =1 and the only
divisors of p are 1, p.
eg. t2,+3+£5+7,£1l... are prime integers.
Note. If p is a prime integer and a,b are two integers such that p | ab, then we
have p|a or p|b.

Multiplication group of integers modulo p where p is prime.
Theorem 16. The set of Gof (p—1) integers 1,2,3,...,p —1, p being prime,
Jorm a finite abelian group of order p —1 w.r.t. multiplication modulo p.
Proof. Let G ={1,2,3,...,(p — 1}, p being prime and the operation x » be the multipli-

cation modulo p.
Closure. Let a,be G. o l<a<(p-Dand 1<h<(p-1).

Now ax, b=r where r is the remainder when the ordinary product is divided by p.
Since p is prime, ab is not divisible by p.
r cannot be zero and we shall have 1< r<(p-1) i.e. re G.
a,be G=ax,beG.
Associativity. a,b,c€ G = (ax,b)x,c=ax,(bx,c)
Since (ax, )X, c=(ab)x, c [ ax, b=ab (mod p)]
= remainder when ab (¢) is divided by p
= remainder when a (bc) is divided by p.
=ax, (bc) =ax, (bx,c)
Existence of identity. Let ae€ G,31€ G such that 1xX,a=a.
Left identity in G exists and it is 1.
Existence of inverse. Let se¢ G. L 1<s<(p-1)
Consider the following (p — 1) products :
lxp S, 2><p S, 3»><[7 s,...(p—1)><[7 K}
All these are elements of G by closure law.
Also these elements are distinct for the following reasoning.

Let i, j be two integers such that 1<i<(p-1),1<j<(p-1) and i > j.
I<s@-pH<@p-D.
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Now ix, s = jx, s = isand js leave the same remainder when each is divided by p.

= is — js isdivisible by p. = (i — j)s isdivisible by p.

= p| (@ - j) or p|s which is absurd.

. iX, s # jX, s and hence all the elements 1x, s, 2x,s, 3%, s,.... (p=1)X, s are
distinct.

. One of these elements must be 1. Let s'x,s=1

- s' is the left inverse of s.
Commutativity. a,be G=ax,b=0X%,a
Since aX, b =remainder when ab is divided by p.
= remainder when ba is divided by p. =bx,a.

s (G,x,) is a finite abelian group of order (p —1).

Note 1. In the above theorem if p is not prime, then p must be composite. Then 3
two integers ¢ and b suchthat 1<a < (p-1,1<b<(p-1) and ab = p.(Suppose p =8
and ¢ =2,b=4.Then 1<a<7,1<b<7 and ab =8).

v ax,b=0 and 0 ¢ G i.e. G is not closed w.r.t. X, -

Thus G is not a group for the operation x , .

2. Even if 0 is included as an element of G, the inverse of O w.r.t. x » does not exist.
Thus G is not a group w.r.t. x, even if 0 is included in G.

Ex. 22. Prove that the set G ={l, 2, 3, 4, 5, 6} is a finite abelian group of order 6
W.r.1. P

Sol. The composition table is

X

AN DN A~ |WIN |

AN DN | |W[IN = |
N W=l |
A=l W W
(OS] e N I \O N IV, [ INCu I SN
N B[N =W | |
=l BN VSN VST BE Y IV, I Ho ) Ko)

Clearly (G, %) is a finite abelian group of order 6.

2.15. MULTIPLICATIVE GROUP OF NON-ZERO RESIDUE CLASSES MODULO A
PRIME INTEGER p.

Theorem 17. The set of non-zero residue classes modulo a prime integer p

forms an abelian group of order (p —1) w.r.t. multiplication of residue classes.

Proof. The set of non-zero residue classes modulo p.
=72,={1,2,3,....p-l}ie. Z, =(r/rez and 1< r < (p-1))



SuccessClap: Best Coaching for UPSC Mathematics : For Info- 9346856874
Checkout ->22 Weeks Study Plan, Videos, Question Bank Solutions, Test Series

Also no element of 7 is divisible by p.

Now we shall show that the elements of Z_p are distinct.
Let1<i<(p-1,1<j<(p-1 and i> j.

Theni = j = i = j(mod p) = (i — j) isdivisibleby p whichisabsurdsince i—j < p.
Hence i # j and all the elements of Z are distinct.

Multiplication of residue classes  and b , denoted by . is defined as follows :

For 5,56@,5.5=E.

The multiplicative operation is well defined.

For this we have to show thatif g =¢ and » = 4 in Z, then ab = cd .

We have a=c=pl(a-c)and b=d = p|(b-d).

Now pla-c)=>plba-c)and p|(b-d)= p|cb-4d)
plb@a—c)+c—-d) ie. p|(ab—-cd)
i.e. ab = cd (mod p) ie. ab=cd ie. gb =zcd

Multiplication of residue classes is well defined.
Closure. Let a,b e Z ~. pXa and pXb ie. pXab,since p is prime.

By def. @b = ab . Since ab is not divisible by p.

ab=7 where 1<r<(p-1) . abeZ,.

Associativity. a,b,ce Z = (ab) ¢ =a(bc¢) since
(ab)¢ = (ab)c = (ab)c = a(bc) = a(be) = a(be)
Commutativity. a,b e Z, = ab =ba since ab = ab = ba = ba .
Existence of identity. ‘a€Z,, 31€Z, such that la=la=a=al=al.
Identity element in z, exists and itis 1.

Existence of inverse. Let aeZz, .
a is any non-zero residue class. Then p does not divide a.

Consider the products la,2a,3a,...,p - 1la.
By closure law, all these products are elements of Z_,, .
We claim that all these are distinct elements of z  for the following reasoning.
Let ; and j be two integers such that
1<i<(p-1,1<j<(p-Dandi>j.
Then ia = ja = ia = ja
= ia — ja is divisible by p = (i—j)a divisible by p
= p/(i—j) or p/a which is absurd since
0<i-j<p-1and p doe notdivide a.
Hence ia = ja , and the elements la,2a,..., p —la are the (p —1) distinct elements
of Z_,, in some order.
. One of these elements must be 1.
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Let ba=1=ab. s b isthe inverse of 7.

. Every element of Z_p is invertible.

" Z is a finite abelian group of order (p —1) w.r.t. multiplication of residue classes.

Theorem 18. The set of non-zero residue classes modulo a composite positive
integer m is not a group w.r.t. multiplication of residue classes.

Proof. Let 7 = be the set of non-zero residue classes modulo a composite positive

integer m .
Let m=ab where l<a<m and 1<b<m.
~ mXa=a=#0 and mXb=b #0. .. abel,.
Now ab=m=ab=m
=ab=0since m=0 = abeZ,. . abeZl,=abel,

Since z,, is not closed w.r.t. multiplication of residue classes, Z
multiplication or residue classes.

is not a group w.r.t.

m

| EXERCISE 2 (b) |

1. Prove that {1,—1} form an abelian group under multiplication.

2. Prove that {I, », ®°} where m, m* are the complex cube roots of unity form a com-
mutative group under multiplication.

3. Show that G ={ay,qa,a,,a3,a4,as,a,} form an abelian group w.r.t. the operation
a;0a; =a;,; for i+ j<7 and qoa; =a;,; 5 fori+ j=7.

10 -10 1 0 -1 0
4. Show that the matrices A = ,B = ,C= , D= form
01 0 1 0 -1 0 -1

an abelian group under matrix multiplication.

5. Show that the functions f;, f, on R into R given by f;(x) = x, f,(x) =1-x for all
x € R from an abelian group w.r.t. the operation composition of mappings.

6. Show that the bijective transformations fi, f,, f5, f» of R —{0} given by f(x) = x,
fr(x) =1/ x, f3(x) = =x, f4(x) = =1/ x w.r.t. the operation composition of mappings is
an abelian group.

7. Prove that the set of all rational numbers of the form ip (g, p € Z) is not a group
under multiplication. 2

8.  Prove that the set G = {m” /m is a non-zero integer and p € Z} is a group under
usual multiplication.

9. Prove that the set Z form an abelian group with operation defined by
a*b=a+b+2V a,beZ

10. Prove that the set of all numbers cos® +isin® where 6 e Q will form an infinite
multiplicative abelian group.

. b
11. Prove that the set of all matrices { . } where q,b are real numbers not both equal
- a

to zero form a group w.r.t. matrix multiplication.
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12. Show that the set of 2x2 matrices {B g} /x #0)e R} is an abelian group under

matrix multiplication
13. Prove that the set G = {0,1,2,3,4,5} is an abelian group w.r.t. +..

14. Prove that the set G = {1,2,3,4} is an abelian group of order 4 w.r.t. x,.
15. Show that the set of integers {L,3,5,7} form an abelian group w.r.t. Xg -

16. Show that the set of integers {1,5,7,11} form an abelian group w.r.t. multiplication

modulo 12.

17. Show that the set of residue classes modulo 5 form an abelian group w.r.t. the addition
of residue classes.

18. Show that the non-zero residue classes multiplication modulo 5 form an abelian group
w.r.t. multiplication of residue classes.

[ 2.16. LAW OF INTEGRAL EXPONENTS |
Laws of indices for real numbers are very well known, to the students. We shall now
discuss certain definitions and laws analogous to the laws of indices using the group axioms.
Definition. Let (G, .) be a group. Let ¢ € G. Then by closure law a, aa, aaa, ... are
all elements of G. Since the composition in G obeys general associative law, aaa,...a (n
times) is independent of the manner in which the elements are grouped.

For every integer n, we define o" as follows :

(i) a® = e, e is the identity element (i) a' =a

n+l

(iii) For n > 1L a""" =a"a (iv) For n>0,a™ = (a")"

e.g. a’> =d'a= aa,a3 =a’aq = (aa)a = aaa, etc.
at = @M =@V @™ =@ @)
— @) @Y aa = a”'a a7 ete.
Note 1. 4" =a.a.a...... a (n times) and a" € G.
2. a7"=@NH@"...(a") (n times) and ™" € G.
3. If additive operation + is taken as the operation, then 4" in multiplicative notation
becomes na in additive notation.

Identity element = 0 and inverse of a is —a .

na=a+a...... +a (n times) and
—na=(-a)+(=a)+(-a)+...... + (—a) (n times) when
n 1S a positive integer. Also na,—nae G.

Theorem 19. Let (G,-) be a group and 4 c G. If n is any positive integer, then

n

(i) a.a" =da".a and (i) a",a™ " are inverse elements to one another.
Proof. We prove the statements by using the principle of Mathematical induction.
(i) Let S(n) be a.a" = a".a for positive integer n.Put n=1.
. a.a' =a.a=a'.a which implies that S (1) is true.
Let S (k) be true soa.df=d".a (D

Now, a.a**' = a.(a*.a") = (a.d").a (associativity)
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= (d".a).a using (1) =d"*a.

. S(k +1) is true. . By induction S (n) is true for every positive integer n .
(ii)) Let S (n) be that ¢"and ™" are inverses to one another. Let e be the identity in G.
Since a.a”! ! "'—e=a".d", SQ) is true.
Let S (k) be true. oodbaf=e=atd" ..
Now g ! q= = gkl (g )kt Z gk o qmyk g1
=a.a".a*atl = a.(ak.a_k).a_l =a.e.a”’ using (=g . 47! =e.

Similarly we can have ¢~ **D gkl =,

=e=ala=d.a

ak+1‘a7(k+1) — a*(k+1)‘ak+l

. S(k+1) is true. . By induction S (n) is true for every positive integer n .
Note. If ne N,(a")" =a™ and (a")! = 4"

Theorem 20. Let G be a group. Let a,bc G. (A.N.UM 03, A.U.O 01, M.98)
Then (i) a™.a" = a™™ for m,ne N. () (@™)" =a™ for m,ne N

(iil) (ab)" = a".b" when G is abelian and ne N. (iv) ¢" =e¢ for ne N.
Proof. We prove the statement by using the principle of Mathematical induction.
(i) Let S(n) be ¢™.a" = ™™ for m,ne N.

Put n=1. s a™a = g™ (by definition) = S() is true.

Let S (k) be true for some ke N.

. am‘ak — am+k (1)
Now am'ak+1 — am.(ak'a) — (am'ak).a - am+k'a using (1) — am+k+1

. S(k+1) is true.

. By the principle of Mathematical Induction, S (n) is true for ne N.
Note. a™.a" =a".a" since a"a" = a™"
(ii)) Let S(n) be : (a™)" =a™ for m,ne N.
Put n =1 @t =am =am™! (by def) -~ S is true.
Let S (k) be true for some ke N. so(@mk = a™ )]
Now (a™¥*! = (a™F.(a™)' = o™ .a™ using (1)

= gmktm  _ gmk+D) . S(k+1) is true.
. By the Principle of Mathematical induction, S (n) is true for n€ N.
Note. (@™ = (a™)" since (a™)" = a™ = (a")" for m,ne N.
(iii) Let S(n) be : (ab)" = a"b" for ne N and G is abelian
Put n=1 s (ab)! =a' bt s S() is true.
Let S (k) be true for some ke N.

(ab)* = a*.b* (1)

Now (ab)**™! = (ab)*.(ab)' = (a*.b*) (ab) using (1)

= (a*.b*).(ba) since G is abelian

= a*.(b*.(ba)) =a* . (b*.b).a) = d*.(b* . 0)

=a*.(a.b") = (d".a) DK = gkl pktl
. S(k+1) is true.

.
"=ag""" =a".a".
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.. By the Principle of Mathematical Induction, S (n) is true for ne N.
(iv) Let S(n) be: ¢" = e for ne N

Put n=1 el =e -~ S is true.
Let S (k) be true for some ke N. e =e .. (D
Now ef*!' = ¢* ¢ = e.e = ¢ using (1) - S(k +1) is true.

By the Principle of Mathematical Induction, S (n) is true for ne N .
Note 1. The above theorems can also be proved to be true even if me Z,ne Z.
2. If G is an additive group, the above theorems can be stated thus :
(1) — (na) = (-n)a for ne Z.
(i) ma+na=m+n)a=m+m)a=na+ma for mneZ.
(iii) n(ma) = (nm)a = (mn)a = m(na) for m,ne Z .
(iv) m(a+b)=ma+mb for me Z.
(v) n0 =0 for ne Z where 0 is the identity element.
Ex. 23. In a group G for every a€ G,a* =e.

Prove that G is an abelian group.
Sol. Let a,be G. .. ab € G.
Since Yae G,a* = e, we have (ab)* = ¢
= (ab)(ab) = ¢ = (ab) = (ab)™ =b"'a”!
= (ab) =b'a’! (D
But ¢’ =e=aa=e=a'=a Similarly s> =e ="' =b
- From (1) ab = ba implying that G is abelian.
Ex. 24. Show that in a group G for a,be G,(ab)* = a’°b* & G is abelian.

Sol. Let a,be G and (ab)* = a’b*. To prove that G is abelian.
Then (ab)* = a*b® = (ab) (ab) = (aa) (bb) ~ = a(ba)b = a(ab)b
= ba = ab by cancellation laws. = G is abelian
Let G be abelian. To prove that (ab)? = a?b>.
Then (ab)? = (ab) (ab) = a (ba)b = a (ab)b = (aa) (bb) = a*b* .
Ex. 25. If G is a group of even order, prove that it has an element a # e satisfying

2 _
a” =e.

Sol. Let O(G) =2n where ne N. We shall prove that G must have an element
a#esuchthat a'=a.

Suppose G has no element other than the identity element e, which is its own inverse.
We know that in a group every element possesses a unique inverse and the inverse of the
identity element is itself. Further, if »,c € G and b = ¢, then ¢ = b™".

So, excluding e, the remaining (2n —1) elements of G must be divided into pairs such
that each pair consists of an element and its inverse. Since (2n —1) is odd, it is not possible.
Hence our assumption is wrong.
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Hence in the group G of even order there is at least one element a (# ¢) which is its

own inverse. If ¢ is taken as that element in G, then ¢ = ¢7'.
foaa'=esaa=e=at=e.
Ex. 26. If G is a group such that (ab)" = a™b™ for three consecutive integers

m for all a,be G, show that G is abelian.

Sol. a,be G. Let m,m +1,m+ 2 be three consecutive integers.

By hyp (ab)m — ambm’(ab)mﬂ — am+lbm+1 , (ab)m+2 — am+2.bm+2
- (ab)m+2 — (ab)m+l(ab)
= "2 = " g = aad™ b b = aa™b"bab

N am+1. bm+1 — ambmba — (ab)m+1 — (ab)m(ba)

= (ab)"(ab) = (ab)" (ba) = ab = ba = G is abelian.
2.17. ORDER OF AN ELEMENT OF A GROUPl
Definition. Let (G, .) be a group and a be any element of G. Then the order of the
element « is defined as the least positive integer n such that 4" = e .
(In the additive notation, na =e )

If there exists no positive integer n such that 4" = ¢, then we say that 4 is of infinite
order or zero order.

We denote the order of a by O(a) or |a].

If a™ =e¢ in a group G where m is a positive integer, then the order of « is finite.
Also O (a) < m. Observe that, by definition, O (a) ¥ m .

Since ¢! =e¢,0(e) =1.1f O(a)=1 then a = e.

If (G,+) is the group and ma = e where ¢ e G and m is the least positive integer,
then O (a) = m . It may be noted that ™ = ¢ in multiplicative notation is equivalent to ma = e
in the additive notation.

e.g. 1.If G = {1, 1} then G is afinite group under usual multiplication. Here O (1) = 1
and O (-1) = 2 since (-1)> =1.

e.g. 2. If G ={L,m,w?}, then G is a finite group under usual multiplication.
O=L0W=3 (o’ =1)and O@)=3 (- (@) =1

e.g. 3. If G is a set of non-zero rational numbers, then G is an infinite group under
usual multiplication.

Here O(1) =1. (- 1 is the identity) and O (~1) = 2 since (-1)> =1.

The order of every other element of G is infinite since 3e G and 3™ #1 for any
positive integer m .

e.g. 4. (Z, +) is an infinite group. O is the identity element.

For a(# 0)€ Z, there isno n e N such that »g =0 - O¢(a) is infinite.
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Theorem 21. The order of every element of a finite group is finite and is less
than or equal to the order of the group.

Proof. Let (G, .) be a finite group, Let a € G.

2,a’,...€ G. Since G is finite, all the positive integral powers

By closure, we have «
of g i.e. a,a’,a’,... cannot be distinct elements of G.

Let ¢" =a® where r,se N and r > s.

wad =a">a " =a"=e=>a"=¢ where r—s=m

Since r > s, m is a positive integer.

. 3 apositive integer m such that ¢" =e.

Hence if n is the least positive integral value of m such that ¢" = ¢, then O (a) =n.
. O (a) is finite.

To prove that O (a) £ O (G).

If possible let O (a) > O(G). Let O (a) =n.

By closure, we have a,a?,4°,...a" € G. No two of these elements are equal. For, if
possible, let a” = a’,1<s<r <n.Then a"* =¢.Since O <r -5 < n,0(a) <n whichis
a contradiction. Hence the n elements a,a?,...a" are distinct elements of G.

Since n > O (G), this is not possible.

. 0(a) <0(G).

Theorem 22. In a group G, if ac G, then O(a) =0(@a™).

Proof. Let O(a)=p and O(a™)=g¢q.
Now O (a)=p=al =e= (@) ' '=e'=a P =¢
=S@HY =e=0@H<p=q<p
Further O (¢ ) =¢g=(a ) = a9 =e¢
S@)'=el'=al=e= 0 (a)<qg= p<q
~q<pand p<¢g=p=g=0@=0(@)
Theorem 23. The order of any positive integral power of an element a in a

group G cannot exceed the order of a i.e. in a group G, O (") <0 (a),ac G and
me N.
Proof. Let O (a) = n. If m is a positive integer, then a™ € G.

O(@=na"=e=@)"=e"=ad"=e= @")" =e.
0@ <n=0@@")<0().
Theorem 24. If a is an element of a group G such that O (a) = n, then a™ = e
iff nim.
Proof. (i) Let n/m. To prove that a™ =e.
~. There exists a positive integer ¢ such that m = nq .
Also O(a)=n=ad" =e. noad"=a"=@@")=el =e.

(ii)) Let a™ = e. To prove that n/m .
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Since n is a positive integer, by division algorithm, there exists integers ¢ and » such
that m=ng+r,0<r<n.

Now a" =a"""" = ad"a" = (@")9a" =ela" =d’ nad"=e=a =e

which is absurd since O(a) =n and o < r < pn unless r = 0.

“a"=e=>m=nqg= nlm

Theorem 25. If a is an element of a group G such that O (a) = n, then the set

H = {d',a%,d°,...a"} forms a group w.r.t. the composition in G.

Proof. Let (G, .) beagroup and 4 e G. Since O (a) = n,a" = ¢ Where e is the iden-
tity in G.
Let a”’,a’ € H. Then a”.a? =a”*" =a" € H when p+gq=r(modn) as a" =e.
Hence closure is true in H.
Again (a”.a%).a" = g ProTr — gprlarr) — op o g4t a’(a?.a") for a?,a%,a" € H.
Hence associativity is true in H .
Identity in H is a" = e = a".
Also a?.a"? =a" =e=a""".a” for a?,a" ? € H.
- Every element of H is invertible and (¢”)™! = 4" ".
Hence H={e=d’=d",d",d’,...,d" '} is a group w.r.t. the composition in G.
Note 1. (Vide definition of cyclic group Art. 8.2) H is cyclic subgroup of G.
2. O(@)=n=0(H).
Theorem 26. If a is an element of order n of a group G and p is prime to n,
then a” is also of order n.

Proof. Let O(a) =n. Let e be the identity in the group (G,). Let O (a?)=m.

ca'"=e= @) =e’ @) =e=0@0@)<n=>m<n

Since n, p are relatively prime px+ny =1,
a=a =a™"m =aPq" = aP (a") =a"e’ =aPe = (a’)*
Now a™ =[(@®)']" = @”)™ =[@”)"]" =e* =e [ O@’)=m= (a’)" = ¢]
O(@)<m=>n<<m s m<pnand n<m=m=n,

Theorem 27. G is an abelian group. If a,be G such that O (a) = m,0 (b) =n
and (m,n) =1, then O (ab) = mn

Proof. G is an abelian group. Let ¢ be the identity in G. Since a,b e G such that
O(a) =m,0(M)=n wehave a" =¢ and ¢" =¢.

Also abe G. Let O(ab) = p .

Now (ab)™ = a™b™ = (a™)"(b")" =e"e" =ee=e soplmn (D)

Also (ab)? =[(ab)?]" =¢" =¢

and (ab)”" = a?”"b?" = a?" (")’ = a’"e’ = aP"e=a"" = a”" =e = mlpn

Now (m,n) =1= mip ...(2) Similarly we can have n/p ...(3)

. From (2) and (3) and from (m,n) =1 we have mn/p .4

. From (1) and (4), mn = p. Hence O (ab) = p=mn=0(a)0 (b).
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Ex. 27. Find the order of each element of the multiplicative group G = {1,-1,i,—i}.
Sol. Identity elementof G =1.
Now O()=1L(-)*=1=0(-1)=2
O =i, =-L0) =-i,() =1=>03) =4
(=) =i, () ==L (=) =i, () = 1= 0 (~) =4
Ex. 28. Find the order of each element of the group G =Z,={0, 1, 2, 3, 4, 5}, the
composition being addition modulo 6.

Sol.  Inadditive notation, ma = e = O (a) = m

In G, 0 is the identity and hence O (0) =1.

Now  I+gl+gl4gl4+414+41=0=6 (1)=0= 0 (1)=6;
2462+62=0=3(2)=0=0 (2)=3;
3463=0=2(3)=0=0 (3) =
4164+4=023 (4 =00 (4)=3;
S+465+65+65+65+65=0=6 (5)=0=0(5)=6

Ex. 29. [f every element of a group G except the identity element is of order two,
then prove that the group G is abelian. (
Sol. Let (G, .) be a group and e be the identity in G. O(e) =1. Also e’ =e
Since every element a (# ¢) of G is of order 2.
We have ¢ =e. s a’=eVaeG.
a,be G = abe G = (ab)* =
= (ab)(ab) = e = (ab)_1 =ab=b"'a' = ab

But ¢’ =¢e=aa=e=>a=a" Similarly » = »7".

ba = ab implying that G is abelian.

Ex. 30. In group G for a,be G,0(a)=5,b# ¢ and ab a”' =b*. Find O(b).

Sol. We have (ab a™")? = aba'aba™ = abeba™ = ab*a™ = gaba'a™! = a*ba>
= (aba71)4 = {(abofl)z}2 = a’ba *a*ba?
=a’b*a”? = a*aba”'a™? = a*ba?
= (abcfl)8 = (a3ba73)2 = a’ba3a’ba? = a’b*a?
=daba'a? = a*ba*
= (abcfl)16 = (a4bcf4)2 = a*ba*a*ba* = a*b*a?
=a aba_ 'a™ = a®ba™>
ButO(a)_5:>a =eand O(@)=5=>4a" =¢
: (aba™")'® = ebe =b = (b*)'® =b = b** = be
= b’ = ¢ = O (b)/31. But 31 is prime
Ob)=1or3l.But pze. .. OB #0() ie. OM) #1.
O@®) =31.
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| EXERCISE 2 (¢)|

1. S isasemi-group.If V x,ye S,x*y = y = yx*, prove that S is an abelian group.

2. G isagroup with identity element e . If x, y € G suchthat xy*> = y’x and yx* = x?y,

then prove that x =y =e.

1

3. Show that the equation x*ax = @' is solvable in a group G iff 4 is the cube of some

element in G.

4. For any two elements @, € G where G is a group, O (a) = O (b 'ab) .

5. For any two elements a,b € G where G is a group O (ab) = O (ba).

6. G isagroupand ae G.If O(a) =n and m/n then prove that O (a™) = - .

7. Inagroup G, if ae G and O (a) = m, then 0" = mm where (m, k) génotes the

H.CF. of m and k.
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Subgroups

| 3.1. COMPLEX DEFINITION |

Any subset of a group G is called a complex of G.

e.g. 1. The set of integers is a complex of the group (R,+).

e.g. 2. The set of even integers is a complex of the group (Z,+) .

e.g. 3. The set of odd integers is a complex of the group (R, +).

e.g. 4. The set (1,—1) is a complex of the multiplicative group G ={1, -1, i, —i}

Multiplication of two complexes.
Definition: If M and N are any two complexes of group G then
MN ={mne G/me M,ne N}
Clearly MN c G and MN is called the product of the complexes M, N of G.
| Theorem 1 : The multiplication of complexes of a group G is associative. |
Proof : Let M, N,P be any three complexes in a group G.
Let me M,ne N,pe P sothat m,n,pe G .
We have MN ={mne G/me M,ne€ N} so that
MN)P ={(mn)pe G/mne MN,pe P} ={m(np)e G/me M,np € NP} = M (NP)
(- associativity is true in G )
Note. If HK = KH then we cannot imply that hk = k1 for all p € H and for all
k € K. What we imply is HK ¢ KH and KH ¢ HK .
Definition : If M is acomplex ina group G, then we define M™' = {(m™' € G /m e M}
i.e. M! is the set of all inverses of the elements of M . Clearly M™' c G.
Theorem 2 : If M, N are any two complexes in group G then MN)"' = N"'M"' |
Proof. We have MN = {mne G/me M,n e N)
Now (MN)! ={(mn)' € G/me M,ne N}
=n'm'eG/meM,ne N} = N"M"!.
[ 3.2. SUBGROUPS|

Definition : Let (G,.) be a group. Let H be a non-empty subset of G such that (H,.)

be a group. Then H is called a subgroup of G.

Itis denotedby H<G or G2H. And H<G or G>Hwemean H<G but HzG.
(A.N.U.M. 97, 596,A.V.A 03,A 02, K.U.A 03, ] 02, M99, 0.96, 0.U.A 01, S.K.U. 098, 0.U. A 01)

Note : A complex of a group G is only a subset of G but a subgroup of a group G is
a group. The binary operations in a group and its subgroup are the same.

e.g. 1. (Z,.) is a subgroup of (Q,.). Also (Q*,) is a subgroup of (R,
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e.g. 2. The additive group of even integers is a subgroup of the additive group of all
integers.
e.g. 3. The multiplicative group {1,-1} is a subgroup os the multiplicative group

(-1 i—i}.

For: G ={1,—-1,i,—i} is a group under usual multiplication. ol 1|-11| i|—=i
Composition table is : 1l =1 il=
Here 1 is the identity and (i)™ =i, (i)' =i,(-1)" =-1. NIRRT

Consider H ={1,—1} which is a subset of group (G,).
Clearly (H,-) is a group. Here 1 is the identity, (-1)™' =-1.
~. H is a subgroup of G.

Similarly ({1},-),({l,-1,i,—i},-) are subgroups of (G,-).

e.g. 4. (N,+) is not a subgroup of the group (Z,+) since identity does not exist in N

i i|—i|-1]1
i |=i| i| 1][-1

under +.

Note 1: Every group having at least two elements has at least two subgroups. Suppose
e is the identity element in a group G. Then {¢} € G and we have ee = e,e” =, etc. So
{e} is a subgroup of G. Also G € G. So G is also a subgroup of G. These two subgroups
{e},G of G are called trivial or improper subgroups of G. All other subgroups, if exist, are
called non-trivial or proper subgroups of G.

2. A complex of a group need not be a subgroup of the group. But a subgroup of a
group is always a complex of the group.

3. A complex of a group (G,.) need not be a subgroup w.r.t. the binary operation, but
it can be a group w.r.t. another binary operation. For example, the complex {3", ne€ z} of
the group (Z,+) is not a subgroup of (Z,+) w.r.t. binary operation + whereas the same
subset is a group under multiplication.

It is clear that every subgroup of abelian group is abelian. But for non abelian group it
may not be true..

For example ref. Ex. 15 Chapter 2.

P; = {f1, f2. f5. f4s [5. fo} setof all bisections on three sysmbols is a non-abelian group.

But A; ={f. fs. f¢} and H ={f,, f,} an abelian subgroup of P;.

Lattice Diagram. Often it is useful to show the subgroups of a group by a Lattice
diagram. In this diagram we show the larger group near the top of the diagram followed by
a line running towards a subgroup of the group.

We give below Lattice Diagram for the multiplicative group {1, —1,i,—i}.

{I,-Li,-i}

{1.-1}

{1
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3.3. THE IDENTITY AND INVERSE OF AN ELEMENT OF
A SUBGROUP H OF A GROUP G.
Theorem 3 : The identity of a subgroup H of a group is same as the identity

of G. (A.N.U.J 03, S 02)
Proof. Let a€ H and ¢' be the identity of H .
Since H is a group, ge'=a ...(1) Let e be the identity in G.
Again ge H= a € G. ae=a ...(2)

Also e'e H= ¢'c G.
From (1) and (2), ae'= ae = e'= e (using left cancellation law).

Theorem 4. The inverse of any element of a subgroup H of a group G is
same as the inverse of that element regarded as an element of the group G .
Proof. Let ¢ be the identity in - G. Since H is a subgroup of G, e is also the identity
in H.
Let ae H. soaeG.
Let » be the inverse of ¢ in H and ¢ be the inverse of ¢ in G.

Then ab=e¢ and ac =e. = ab = ac = b = ¢ (using left cancellation law)

Theorem 5. If H is any subgroup of a group G, then H™' = H.
(S. V. U. AIl, A.N.U.M.02, S.K.U.M 02, M 09)

Proof. Let H be a subgroup of a group G. ‘Let h™' e H™'. By def. of H™!, he H.
Since H is a subgroup of a group G, h'e H.
- h'eH!'=>n'eH . H'CH.
Again he H=hleH. =0 ) 'eH ' heH!

HcH' Hence H' = H
Note. The converse of the above theorem is not true i.e. if H is any complex of a
group G such that H™' = H, then H need not be a subgroup of G.

e.g. H = {-1} is a complex of the multiplicative group G = {1,—1}. Since the inverse
of —1is —1,then H™! = {-1}.
But H = {-1} is not a group under multiplication since (-1) (-1) = 1¢ H (Closure is not

true) i.e. H is not a subgroup of G. Hence even if H™' = H, H is not a subgroup of G.
|  Theorem 6. If H is any subgroup of a group G, then HH=H. |
(S.V.U.All, S.K.U.0.97)

Proof. Let x € HH so that x = h.h, where h € H and i, € H.
Since H is a subgroup, hh, e H .. xe H .. HHCH.
Let ;€ H and e be the identity in H .

Then h; = hye € HH - HcHH. -~ HH=H.

| 3.4. CRITERION FOR A COMPLEX TO BE A SUBGROUP. |
Theorem 7. A non-empty complex H of a group G is a subgroup of G if and

onlyif ) ac H,be H= abec H, (i) ac H,a' e H
(0.U.12,A. U. 12, A.U.M.99, M97, K.U.J. 03, S 01, A98)
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Proof. The conditions are necessary.
Let H be a subgroup of the group G. To prove that (i), (ii) are true
H is a group.
By closure axiom a,b€ H = abe H and by inverse axiom e H= a' € H
The conditions are sufficient.
Let (i)and (ii) be true. To prove that H is a subgroup of G.
1. By (i) closure axiom is true in H.
2. The elements of H are also elements of G. Since G is a group, the composition in
G is associative and hence the composition in H is associative.
3. Since H is non-empty, let a€ H. .. By (i) a'e H
! aeH,aileH:aafleH
= ¢eH (v aa'eH=aa"'eG=aa
= ¢ is the identity in H.
4. Since we have ae H= a' € H and aa™" = e, every element of H possesses

! = ¢ where ¢ is the identity in G ).

inverse in H.

Hence H itself is a group for the composition in G.

So H is a subgroup of G.

Note 1. If the operation in G is +, then the conditions in the above theorem can be
stated as follows : (i) a,pbc H=a+bec H, (i) ac H= -ac H.

2. It is called Two - step subgroup Test.

Theorem. 8 . H is a non-empty complex of a group G. The necessary and
sufficient condition for H to be a subgroup of G is a,be€ H= ab™' € H where b
is the inverse of b in G. (A.N.U. All, A12, S02, S01, MO0, M99, M97, S96, 0.U.M 08, 02,099,
A.U.A.03, A 02, A01, S00, M00, S99, KU.M11, M12, M.05, M01, 099, M99, 098, S.V.U. 11, 12, 00, 098)

Proof. The condition is necessary.
Since H is a group by itself, be H=b"'c¢ H

acH beH=aecH, b e H= ab' € H (by closure axiom).
The condltlon is sufficient.

1. Since H# ¢, let ac H. By hyp. ac H,hbe H= ab™' € H.
aeH,aileH:aafleH:aafleG

Butin G, a€ G = aa™' = ¢,e is the identity in G. ec H.

2. Wehave ee Hue H= ea'e H=a '€ H . acH=a'eH.

3. peH=b'eH s aeHbeH=>ab'eH=abH'leH

= abe H

4. Since all the elements of H are in G and since the composition is associative in G,
the composition is associative in H .
H is a group for the composition in G and hence H is a subgroup of G.
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Note 1. If the operation in G is +, then the condition in the above theorem can be
stated as follows :
ac Hobe H=>a-be H
2. The above theorem can be used to prove that a certain non-empty subset of a given
group is a subgroup of the group. It is called One - step subgroup Test.
Theorem 9. A necessary and sufficient condition for a non-empty complex H

of a group G to be a subgroup of G is that HH™' c H. (A.N.U.J. 04)
Proof. The condition is necessary.
Let H be a subgroup of G. Let ab™ € HH™' sothat ae H,be H

Since H is a group we have b™' € H .
ac H=b"'e H= ab' € H, (By closure axiom)
. HH! c H. The condition is sufficient.
Let HH™' c H Let a,be H. . ab™' e HH™!
Since HH™' ¢ H,ab™' € H ~. H is a subgroup of G.
Theorem 10. A necessary and sufficient condition for a non-empty subset H
of a group G to be a subgroup of G is that HH™' = H.
Proof. The condition is necessary.

Let H be a subgroup of G. Then we have HH™' c H.
Let e be the identity in G. - e istheidentity in H.
Let he H o h=he=he" € HH
HcHH' . HH'cH The condition is sufficient.
Let HH' =H. . HH'cH - H is a subgroup of G.

Theorem 11. The necessary and sufficient condition for a finite complex H of
a group G to be a subgroup of G is a,be H= abe H.
OR
Prove that a non-empty finite subset of a group which is closed under
multiplication is a subgroup of G.(A.U.0 01, M12, K.U.A. 03, ] 02, M99, 097, M96, N.U.J
03, M 02, S97, O.U.A. 01, SKU 0 03, 0 01, 0 00, A99, 098,
S.V.U. M11, 0 02, M 01, A 00, 099, 097)

Proof. The condition is necessary.

H be a subgroup of G.

By closure axiom, a,b € H = abe H. The condition is sufficient.

Let a,be H=abe H s (e H=#0)

Let ac H. By hyp. we have € Hlae H= a.ace H=a’ € H

Again adeHacH=a’acH=adcH

By induction we can prove that ¢" € H where n is any positive integer. Thus all the
elements a, a®, a°, ..., a", ... belong to H and they are infinite in number.

But H is a finite subset of G. Therefore, there must be repetitions in the collection of
elements.

Let " = a* for some positive integers r and s such that r > s
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a".a” =a*.a”® =a"* =a" = ¢ where ¢ is the identity in G.
Since r — s is a positive integer, " * e H=e¢c H
e=a"eH.
Now r>s=r-s>=1 . r-s—120 andhence «"* '€ H
Alsoa”la=a"" =e=a.a"""

We have for a € H,a'*~' € H as the inverse of «.
Thus each element of H is invertible.
Since all the elements of H are elements of G, associativity is satisfied.
H is a group for the composition in G and hence H is a subgroup of G.
Cor. A finite non-empty subset H of a group G is also a subgroup of G if and only
if HH=H.
e.g. (Zy,+¢) is a group and (H=1{0,2,4},+,) is a subgroup of it.
For: HcCZ,. Also 0+,0=0,0+,2=2,0+c4=4,2+,4=0,4+,4=2 etc.
So a,be H=a+,bc H.
Note. The criterion given in the above theorem is valid only for finite subsets of a
group G. Itis not valid for an infinite subset of an infinite group G. (0.U. 2001)
e.g. (Z,+) is a group. Let N be the set of all positive integers.
N c Z. Also (N,+) is not a group even though a,be N=a+be N,
(N, +) is not a subgroup of (Z,+) . Hence the above theorem is not satisfied.
Theorem 12. A non-empty subset H of a finite group G is a subgroup if
ac Hobe H= abe H. (S.K.U. 01/0)
OR
A necessary and sufficient condition for a complex H of a finite group G to be
a subgroup is that ac H be H= abe H.
Proof. The condition is necessary.
Let H be a subgroup of a finite group G.Then H is closed w.r.t. the composition in G.
ac Hobe H= abe H.
The condition is sufficient.
H is a non-empty subset (complex of G) of a finite group G such that
ac Hobe H= abe H.
Now we have to prove that H is a subgroup of G.
Associativity. Since H is a subset of G, all the elements of H are the elements of
G and hence associativity is true in H w.r.t. the composition in G.

Existence of identity. Let ac H. .. a€ G. Since G is finite and since every
element of a finite group is of finite order, it follows that the order of « is finite.

Let 0(@)=n. .. a" =e where e is the identity in G.

By closure law in H, we have a*, a’, ..., a", ...€ H. (D)

Since a" = e =a", wehave ¢° = ec H i.e. identity exists in H.
Existence of inverse. Let a€ H Here ¢ =a" = d°.



SuccessClap: Best Coaching for UPSC Mathematics : For Info- 9346856874
Checkout ->22 Weeks Study Plan, Videos, Question Bank Solutions, Test Series

a€ G and 0(a) = n = n is the least positive integer such that
m-1)20. a' =e
By (1), «"' € H.
Now in G,a"'a=a" =aa"".
= d"'a=aa"" =e truein H. = a =a
= every element of H is invertible.
= H is a group and hence a subgroup of G.
| 3.5. CRITERION FOR THE PRODUCT OF TWO SUBGROUPS TO BE A SUBGROUP |

Theorem 13. If H and K are two subgroups of a group G, then HK is a
subgroup of G iff HK = KH. (S.V.U. S 93, A 97, 2K, N.U. 0 89, A 93, S.K.U. A 00
A.N.U.J 04, S 00, S98, M96, A90, 0.U.M 03, S.K.U. 0 03, M 07, O 01, 0 00, A 00, 099, A97)
Proof. Let H, K be any two subgroups of G.
1st part. Let HK = KH. To prove that HK is a subgroup of G.
So it is sufficient to prove that (HK) (HK) ' = HK .
(HK) HK)™! = HK)(K'H ") (Theorem 2.)
=HKKHH! (-- Complex multiplication is associative).
= H(K)H"! (Theorem 10) = (HK)H ' (Theorem 1)
= (KH)H '(Hyp) = K(HH ') = KH = HK .
HK = KH = HK is subgroup of G.
2nd part. Let HK be a subgroup of a group G.
(HK)' =HK = K 'H! =HK = KH = HK .
(.- K is a subgroup, K'!=K and H isa subgroup, H™! = H)
Cor. If H, K are subgroups of an abelian group G, then HK is a subgroup of G.
For : Since G is abelian, HK = KH . By the above theorem HK is a subgroup of G.
Ex.1: If Z is the additive group of integers, then prove that the set of all multiples
of integers by a fixed integer m is a subgroup of Z. .
Sol : We have Z ={...,-3,-2,-1,0,1,2,3,...}
Let H={...,-3m,— 2m,— m,0, m,2m,3m,...} =mz
where m is a fixed integer.

Let a = rm, b = sm be any two elements of H where r,s are integers.
Then a —b = rm—sm = (r —s)m = pm where p is an integer
= a-beH.
abe H=a-be H. ~. His asubgroup of Z .
Ex. 2 : Prove that in the dihedral group of order 8, denoted by D,, the subset
H = {r34, 759> X, ¥} is subgroup of D,.
Sol : Vide Ex. 17 of Chapter 2.
We can observe from the composition table of D, .
(1) Closure is obvious.

(ii) Associativity is evident since the composition of maps is associative.
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(iii) The identity element of H is r .

(iv) Each element of H is inverse of itself.

H is a group. Here H is a subgroup of D,.

Ex. 3 : From Ex. 15 of chapter 2, Py is a non-abelian group of order 6. A5 is a
subgroup of P,. Also A; is an abelian subgroup of P;.

Ex. 4 : In Ex. 16 of chapter 2, we have G ={ry,n,n, fi, 2, f3} the set of all
symmetries of an equilateral triangle, as a non-abelian group.

Consider H ={ry,n,r,}. We can see from the composition table that H is a
subgroup of G. Also H is abelian. Hence a non-abelian group can have an abelian
subgroup.

Ex. 5 : S, the set of all ordered pairs (a,b) of real numbers for which a # 0 w.rt.
the operation x defined by (a,b)x (c,d) = (ac,bc + d) is a non-abelian group. (vide Ex.
7 of chapter 2) . Let H = {(1,b) | b € R} be a subset of S. Show that H is a subgroup of
the group (S, X).

Sol : Identity in S is (1, 0). Clearly (1, 0) € H.

1 b
Inverse of (a,b) in S is (—,——) (o az0).
a a

1
Inverse of (1,¢) in S is (I_ %j e. (I,=c). Clearly (1,c)e H.Let (1,b) € H.

A4,b) (Le) ' =WLb)x(1, —c)=(1.1Lb.1-c)=(1,b—-c)e H since b-ce R.
(1,b),(I,c)e H= (1I,b)x(l,c) ‘e H - H is a subgroup of (S, X).
Note. (I,b)x(Lc)= (1. Lb.1+¢)=0b+c)=(c+b)=(,c)x(,b)
H is an abelian subgroup of the non-abelian group (S, %) .
Hence a non-abelian group can have an abelian subgroup.
| 3.6. UNION AND INTERSECTION OF SUBGROUPS |
Theorem 14. If H, and H, are two subgroups of a group G then H, N H, is
also a subgroup of G. (0.U. 01/0, N.U. 0 92, 0.U. 93, 0 02, 01, M 05,
K.U.M 04, M 01, 0 02,A 00, S.K.U.M 05 M.96)
Proof. Let H, and H, be two subgroups of G.
Let ¢ be the identity in G.

eecH and ee H, >e¢ecH nH, .. H nH, #¢
Let ae H nH,,be H nH, o a€H,ae H, and be H|,be H,
Since H, is a subgroup, ae H, and be H, = 4 ' c H;
Similarly ab™" € H,. o abeH, NnH,
Thus we have ae H, "H,,be H, nH, = ab”' € H, " H,
H, nH, is a subgroup of G.
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Note 1. Intersection of a arbitrary family of subgroups of a group is a subgroup of the

group i.e. if {H; /i€ A} is any set of subgroups of a group G, then n H; is a subgroup
i€eA

of G.

2. H, n H, is the largest subgroup of G contained in H, and H, i.e. H; N H, is the
subgroup contained in H, and H, and is the subgroup that contains every subgroup of G
contained in both H, and H,.

3. The union of two subgroups of a group need not be a subgroup of the group.

(0.U. 0 2001/0, N.U. O 92, K.U. 2004, M96, S.K.V. A 97)

e.g. Let (Z,+) be the group of all integers.

Let H ={..—6,-4,-2,0,2,4..}=27 and
H, ={..-12,-9,-6,-3,0,3,6,9...} = 3Z be two subgroups of Z .

We have H, UH, ={...,-12,-9,-6,-4,-3,-2,0,2,3,4,6,9...}

Since 4€ H, VH,, 3¢ H, UH, does not imply 4+3e H, UH,, H, UH, is not
closed under +.

H, UH, is not a subgroup of (Z,+).

So the intersection of two subgroups of a group is a subgroup of the group whereas the
union of two subgroups of a group need not be a subgroup of the group.

Thus we conclude : An arbitrary intersection of subgroups of a group G is a subgroup
but union of subgroups need not be a subgroup. (0.U.098)

Theorem 15. The union of two subgroups of a group is a subgroup iff one is
contained in the other. (A.U.M 12, N.U. S 93, S.V.U. 01, S. K. U. M 09)

Proof. Let H, and H, be two subgroups of a group (G,.)

To prove that H, U H, is a subgroup < H, c H, or H, C H,.

The condition is necessary.

Let H, c H, .. H,UH, =H,

Since H, is a subgroup of G, H; U H, is a subgroup of G.

Similarly H, ¢ H, = H, u H, is a subgroup of G.

The condition is sufficient.

Let H, U H, be a subgroup of G.

We prove that H, € H, or H, c H;. Suppose that H, ¢ H, and H, ¢ H|
Since H, ¢ H,,3 ac H, and a¢ H, . ()]
Again H, ¢ H, =>3be H, and b¢ H,. ...(2)
From (1) and (2) we have that a€ H, UH,and be H; UH,.

Since H, U H, is a subgroup, we have abe H, UH, .

abe H  or abe H, or abe H " H,.
Suppose ab € H,. Since H, is a subgroup, a € H, and ab e H,.
= a'eH, and abe H; = 4 '(ab) € H,
= (a'a)be H, = ebe H, = b e H, which is absurd by (2).

abg H, .
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Similarly we can show that ab ¢ H,. s abe H NnH,
ab ¢ H, U H, which is a contradiction that H, U H, is a group.
we must have H, ¢ H, or H, c H;.

Note. (Z,4,+,4) isa group. S={0,8},T ={0,4,8,12} under +,; are two groups. Clearly
they are subgroups of Z,,. Since SUT ={0,4,8,12} =T, we have (SUT,+,,) as a subgroup
of Z,;. Observe that SC T i.e. Sis contained in T.

Ex.6. Prove that set of all multiples of 3 is a sub group of the group of integers
under aditon. (A.N.U.M. 99)

Sol. : Consider 3Z = {3n/n e Z}

3Z # ¢ and 3Z is a subset of Z.

Let3m,3ne 3Z =>m, ne Z

3m—-3n=3(m—n)e 3Z

- (3Z,+) is a sub group of (Z, +) (using Th.8)

Note : nz={nx/xe Z} os a sub group of (Z, +).

Ex. 7. G is a group non-zero real numbers under multiplication. Prove that
(i) H={xe G/x=1or x is irrational } (ii) K={xe G/x>1} are not subgroups of G.

Sol.: (i) v2,¥2€H but V2.42=2¢H.

So H is not a sub group even though Hc G .

(ii) 1is the identity in Gand Kc G .

2eKbut 27" =(1/2)¢ K . So K is not a subgroup.

Ex. 8. (Z;={0,1,2,3,4,5},+¢) is a group. Prove that S={0,2,4}, T={0,3} are
subgroups of Z, and SUT is not a subgroup of Z.

Sol. : S={0,2,4},T ={0,3} are subsets of Z, and

From the tables O is the identity +6| 0|24 —To
6
(i) 07'=0,2"=4,4"=2 0lo]2]4 oo
2121410
i) 07'=0,3"=3 3|3
W ’ 4{4alo]2 -
Clearly (S,+),(T,+4) are subgroups of Zg. O (i)

Now SuUT ={0,2,3,4}is not a subgroup of Z, as 1,5¢ SUT .

EXERCISE 3

1. Show that all the subgroups of an abelian group are abelian.

If e is the identity in a group G, show that for all the subgroups of G, e is the identity.

3. Can an abelian group have a non-abelian subgroup? Can a non-abelian group have an
abelian subgroup?

»
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10.

Show that the set of all elements a of an abelian group G which satisfy a? = ¢ forms
a subgroup of G. (N.U. 0 90)
Let (G,.) be an abelian group and H, K be two subgroups of G. Show that HK is a
subgroup of G.

Let H be a finite non-empty subset of a group G. Prove that H is a subgroup of G
iff HHcC H.

If G is a group and N (a) = {x€ G/ax = xa} for a € G, then prove that N(a) is a
subgroup of G. (K. U. 08, S.K.U. 0 00)

Let a be an element of a group G. The set H = {a" | n € Z} is a subgroup of G. If K

is a subgroup of G and a € K, then prove that H c K.

IfG = {1, -1, i, —i} is a group under multiplication then write all the subgroups of G.
(N.U. 95)
Prove that {Q, +} is a subgroup of {R, +} and (R - Q, +) is not. (N.U. 99)

3. No; Yes 9. {1},{,,-1},{L,-1, i, —i}
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Cosets and Lagrange's
Theorem

[ 4.1. COSETS |

Definition. Let (H,.) be a subgroup of the group (G,.).

Let ¢ e G . Then the set aH = {ah | h € H} is called a left coset of H in G generated
by a and the set Ha = {ha | h € H} is called a right coset of H in G generated by a.
Here the operation in G is denoted multiplicatively. Also «H, Ha are called cosets of H
generated by a in G.(A.N.U.J 04, B.A., 0 90, 0. U. A12)

Since every element of ¢H or Ha isin G, aH and Ha are complexes of G.

If e is the identity in G,then eH ={eh|he H} ={h| he H} = H

and He = {he | h € H} = H . Hence the subgroup of G isitself a left and a right coset
of H in G.

If e is the identity in G, it is also the identity in H. Therefore, for a € G,e € H we
have ea € Ha and ae € aH . Hence the left coset or the right coset of H generated by «a
is non-empty. Further ¢« € Ha,a € ¢H and HanaH # ¢.

If the group G is abelian, then for every n e H, we shall have ah = ha. Hence
aH = Ha . However, even if G is not abelian, also we may have ¢H = Ha or ¢H # Ha .

Note 1. Left or right coset of any subgroup in a group is called residue class modulo
the subgroup of the group.

2. If the operation in G is denoted additively, then the left subset of H in G generated
by a,denotedby ¢+ H is {a+h|he H}ie. a+H={a+h|he H}.

Similarly the right coset of H is G generated by a .

=H+a={h+a|heH}.

3. Let H be a subgroup of the group G and a,be G. Then (i) a(bH) = (ab)H and
(Hb)a = H (ba) .

(il) x€ aH = yxe y(aH) for ye G = yx€ (ya)H.

4. The element a is called the coset representative of «H (Ha).

| aH |, | Ha | denote the number of elements in «H, Ha respectively.
e.g. 1. Consider the group of symmetries of the square (Ex. 17 of chapter 2) i.e.
(Dy,0) where Dy = {ry, rigo, 7360, X, ¥, dys dp} .
(H, 0) where H = {15, 130> %, ¥} 1S a subgroup of (D,,0). Then all the left cosets of
H in G are  roH = {10 rigo, 7990 360, 900 X, 1000 ¥} = {ra50 oo, do, dy}
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rigoH = {11300 1130, 71800 360> 1800 X, Tigo0 ¥} = {ne0> 10> X, y} = H
ryoH = {ry00 1igo, ... ... } = {ryg, 10, dy, dy}
rgoH = {13600 1ig0, ... ... } = {80 1360, X, y} = H
xH = {xorg,...... } ={x, ¥, 30, figo} = H
yH ={yong,...... } ={x, ¥, ngo> o} = H
diH ={dongy,...... } ={d,, d, 1y, Fy}
d,H = {d,ong,...... } ={dy, dy, 1o, 70}

We have two distinct left cosets, namely, {ry, 179, d;, d,} and {rgg, 360, X, ¥} = H

These two may be taken as r,yH and H.

Obviously rHNH=¢ and nyHUH=D,.

Similarly we can have all the right cosets of H in D, .

Note. If ae H,then «dH=H =Ha.

e.g. 2. Let G be the additive group of integers.

Now G ={...... -3,-2,-1,0,2,3,...... } and 0 is the identity in G.

Also G is abelian.

Let H be a subset of G where elements of H are obtained by multiplying each
element of G by 3 (say) i.e.,

H=1{... ~9,-6,-3,0,3,69.....)
Clearly H is a subgroup of (G,+). (. n,n,€ H=n, —n,c H)
Since G is abelian, left coset of H of an element in G = right coset of H in G.

R O+H=H=1{...... -9, -6,-3,0,3,6,...... }
Since 1e G, 1+ H={...... ,—8 =5 =2 14,17,...... }
Since 2€ G, 2+H={....... -7, -4, -1,2,5,8,.....)
Observe that (i) 3+H=6+H-=...... =0+H,
4+H=7+H-=...... =1+H,
S+H=8+H-=...... =2+H.

(ii) 0+ H, 1+H, 2+ H are disjoint.
(iii) 0+HUlI+HU2+H=G
4.2. PROPERTIES OF COSETSl
Theorem 1. H is any subgroup of a group (G,.) and he G. Then he H iff
hH = H = Hh. (S.K.U. 02002)
Proof. (i) he H to prove that zH = H = Hh.
Let ' be an arbitrary element of H. Then hh' is an arbitrary element of #H . Since
H is a subgroup of G,h,h'e H= hh'e H
Thus every element of #H is also an element of H.
hMHcH ..
Again B'=eh'= (hh)Yh'=h(h'W) e hH
[~ e istheidentityin H, he H=>h'e Hand h' e H, h'e H = h 'h'e H |
HcHH. . (2)
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~. From (1) and (2), nH=H.
Similarly we can prove H = H/ -

* he H. . hH=H=Hnh.
(ii)) Let "H = H = Hh. To prove that h e H.
Now he G . Since h = he,he hH.
But tH = H ~heH.
Similarly Hy = H = he H . hH=H=Hh = he H

Theorem 2. If q,b are any two elements of a group (G,.) and H any subgroup

of G, then Ha=Hb < ab'cH and ¢H =bH < a 'be H.
(0.U.0 03, S.K.U. M 11, M 03, A97, A.N.U.J 04)
Proof. ¢c Ho,Ha =Hb = ac Hb = ab ' € (Hb)b".
=ab'eHbOb )= ab' e He = ab™' € H.
Now ab™' € Hab™' = H = Hab'b = Hb
= Ha(b"'b) =Hb = Hae = Hb = Ha = Hb -

Similarly we can prove that ¢H = bH < o 'be H
Note. If b e H then (b ) 'eH= 0 "a'eH= pa ' c H
Similarly ¢ 'be H= b"'ac H.

Theorem 3. If a,b are any two elements of a group G and H any subgroup of

G, then ac bH & aH = bH and a € Hb < Ha = Hb (A.N.U.M.98, 0 98)

Proof. ;e pH = b7'ae b™'bH

>blaceH=b'ac H=b"'aH=H = bb 'aH = bH = aH = bH
Converse : Let aH = bH

“ aedH = aec bH Similarly other result can be proved.
Theorem 4. Any two left (right) cosets of a subgroup are either disjoint or
identical. (B.A.) (N.U. 0 90, A 93, 95, 0.U. 0 98, A.N.U.J 04, S 02,
K.U.J 03, A 02, A98, 097, A97)

Proof. Let H be a subgroup of a group G. Let «H and bH be two left cosets of H
in G. If aH and pH are disjoint, there is nothing to prove. If «H nbH # ¢, then there
exists at least one element ¢ such that ¢ € ¢H and c € bH. Let ¢ = ahjand ¢ = bh, where
h,h, € H.

" ah, = bh, = ahh,”" =bh,h = ae =b(hy ') = a=b(h, h")

Since H is a subgroup, h, h,”' € H.Let hy = h, b~

. hye H. Now a = bh,

- aH = bi,H = bH (+ hye H= hyH=H)

Two left cosets are identical if they are not disjoint.
~aHNbH =¢ or aH =bH.

Similarly we can prove that Ha "Hb = ¢ or Ha = Hb .

Cor. H is any subgroup of a group G. If the cosets «H, bH, cH, ... are all disjoint,
then G = Hu aH U bH U cH ... where H is the coset corresponding to the identity element
in G. (0.U. 0 98)

Also G=HUHaUHbUHcU...
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| 4.3. CONGRUENCE MODULO H |
Definition. Let (G,.) be a group and (H, .) be a subgroup of G. For g,be G, if
b'lae H we say that a = b (mod H) . (0.U.0.03)
Theorem 5. If H is a subgroup of group G,for abeG the relation
a = b (mod H) is an equivalence relation. (A.N.U. 03, A.U.A. 01, K.U.A 00, 0.U. O 03)
Proof. (i) Reflexive : Let ¢ be the identity in (G,.).
Since H 1is a subgroup of G, e is the identity in H.
Let ae G. Since a'a=e, we have a”lae H.

o a=a (mod H) = relation is reflexive.
(ii)) Symmetric : Let a = b (modH) for a,be G.

b laeH= (b 'a)'e H= a'be H= b = a (mod H )= relation is symmetric.
(iii) Transitive : Let a =b (modH) and b = ¢ (mod H) for g,b,ce G.
~blacH and c'be H= (c"'H)(b'a)e H
= c'bbHae H= ¢ Y(ea)e H
= ¢lae H= a = ¢ (mod H) = relation is transitive.
Since the congruence modulo H is reflexive, symmetric and transitive, it is an
equivalence relation.
Note : Let H be a subgroup of group G and a € G, then the equalence class containing
a w.r.t. the equivalence relation (=mod H) is denoted by a .
Theorem 6. Let (H,.) be a subgroup of a group (G,.). For ac G, let the
equivalence class a = {x€ G/x=a(modH)}. Then a =aH. (N.U.J 03,S.K.U 02)
Proof. To prove that a = aH
Let ¢ be the identity in G. .. e is also the identity in H.
xX€ a < x =a(modH)

s alxe H

& a'x=he H forsome he H

& a(a 'x) =ahe aH for some he H
& (aa™ ) x = ah € aH for some he H
& ex = ahe aH for some he H

& x =ahe aH for some he H
< xeaH . soa=aH.

Note 1. The equivalence relation « = b (mod H) induces a partition in G which is
nothing but the left coset decomposition of G. w.r.t. H. No left coset of H in G will be
empty. Every element of G belongs to one and only one left coset of G.

2. The relation in G, defined by a =b (mod H) if ab™' e H, is an equivalence
relation. This relation induces a partition in G which is nothing but the right coset
decomposition of G.

Theorem 7. Let (H, .) be a subgroup of a group (G,.). Then there exists

a bijection between any two left cosets of H in G. (A.U.S. 00, M99, S99)
Proof. Let aH,bH be two left cosets of H for a,b e G.
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Define f: ¢H — bH such that f(ah) = bh for he H.

For hy,h, € H,ah, ah, € aH and bh, bh, € bH .

Now f(ah) = f(ahy) => bhy =bh, = b = h, = ah, = ah, .

fis 1-1.

Now bhe bH = 3 he H such that bh € bH

= 3 he H such that ah € aH

~. For ahe aH, f(ah) = bh .. f isonto.

f 1is abijection and there exists 1—1 correspondence between any two left cosets
of H in G.

Note 1. Let H be a subgroup of a finite group G. Since there is 1 -1 correspondence
between any two left cosets of H, every left coset has the same number of elements
including H (- H is also a left coset).

2. The above theorem can be proved between two right cosets. Also every right coset
of H of a finite group G has the same number of elements including H .

(-- H is also a right coset).

Theorem 8. If H is a subgroup of a group G, then there is one to one
correspondence between the set of all distinct left cosets of H in G and the set|
of all distinct right cosets of H in G. (N.U.S$93,S.V.U.A 01, S.K.U. 01/0,

A.N.U.M 00, $93, K.U.S 01, 0.U.M 03)

Proof. In G, let G, = the set of all distinct left cosets

and G, = the set of all distinct right cosets.
Define a mapping f : G, - G, such that f(aH)=Ha' V ae G
For: Let ¢H,bH € G, .
Now aH=bH =b"ac H= b'a)' e H
a0 H'eH S Ha' =HY!' = flaH) = f(bH)
f is one-one : Let «H,bH € G,
f(aH) = f(bH) = Ha™' = Hp™!

sada'vH'eH=abeH=(@'p) e H

=b'ac H= aH = bH o fis 1-1.
fisonto: Let Hae G,. Since ae G,a' € G
~a'HeG,and f(a'H)=H@ ") =Ha .. f isonto.

There is one to one correspondence between G, and G,.

Note 1. If H is a subgroup of a finite group G, then the number of distinct left cosets
of H in G is the same as the number of distinct right cosets of H in G.

2. Since H is common to both the set of left cosets of H of a finite group G and the
set of right cosets of H of the finite group G, the number of elements in a left coset of H
is equal to the number of elements in a right coset of H .



SuccessClap: Best Coaching for UPSC Mathematics : For Info- 9346856874
Checkout ->22 Weeks Study Plan, Videos, Question Bank Solutions, Test Series

Index of a subgroup of a finite group.
Definition. If H is a subgroup of a finite group G, then the number of distinct left
(right) cosets of H in G is called the index of H in G. Itis denoted by (G :H) or i (H)
(K.U. M 12, M 05, M01, S.V.U. A 93)

[ 4.4. LANGRANGE'S THEOREM |

Theorem 9. The order of a subgroup of a finite group divides the order of the
group. (S.V.U.MII, A 02, 001, 0 00,A 97,098, S 00, S.K.U.M 09,003, M02,0 00,097,
A.N.U.M 05, ] 04, ] 03, M 02, S 01, S 00, S 99, S 97, S 96, M 96, A 93, A 90, A 85,
A.U.M. 05,A 03, A 02, M 00, S 99, S 97, S 96, A 96,
K.U. M 11, M 08, ] 03, M 01, S 00, 099, A97, 096, O.U.M. 05, 099, A99)
Proof. Since H is a subgroup of a finite group G, H is finite.
(i) If H=G, then O(H)/O (G)
G fH=#G, let OG)=n and OH) =m
We know that every right coset of H in G has the same number of elements and the
number of right cosets of H in G is finite.
Also since H = He, H is a right coset of H in G.
If Ha, Hb, H, ...... are right cosets of H in G, then
OHa) =0OMHI)=0Hc) =...... =0H)=m
Let the number of distinct right cosets of H of G be .
All these right cosets are disjoint and induce a partition of G.
O0(G)=0MHa)+O0OMHb)+O(He) +...... + O H) (k terms).

[ n
=m+m+m+...+m (k t1mes)=>n=km=>k=z

O (H) divides O (G) ie. O (H)/O(G).

Note 1. Lagranage's theorem can also be proved by taking right cosets of H in G.
2. Lagranage's theorem deals with finite groups only.

Let O(G)=n.If mis not a divisor of n, then there can be no subgroup of G of order m.

3. Since k =2~ number of distinct left (right) cosets of H in G = l%:
m

order of the group G

- order of the subgroup H of G =Index of Hin G=(G:H).

4. Converse of Lagrange's theorem is not true.

(i) Consider G = {1, —1, i, —i}. Clearly G is a group of order 4 w.r.t. multiplication.
Since 2 is a divisor of 4 i.e. the order of the group G, let us examine whether a complex H
(of order 2) of G, which is a subgroup of G, exists.

Consider acomplex H, ={i, —i}.Since —i.i =1 andsince 1 ¢ H,. H, is nota subgroup
of G.

Again consider a complex H, = {I, —1}. Clearly H, is a subgroup of G.

-~ In conclusion, even if m is a divisor of n, a subgroup of order m in G need not
exist.
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(ii)) Consider Ex. 16 of Chapter 2.

G is a finite group of order 6. Since 3 is a divisor of 6 i.e. the order of the group G, let
us examine whether a complex H (of order 3) of G, which is a subgroup of G, exists.

Consider a complex H, = {r,, f;, f,} of G. Since fio f, = 1, andsince r, ¢ H,, H, is
not a subgroup of G.

Again consider acomplex H, = {r,, n, r,}.Clearly H, is a subgroup of G with identity
ry and with ;™' =7y, =1, and r,”' = 5.

.. In conclusion even if m is a divisor of n ,a subgroup of order m in G need not exist.

Thus the converse of Lagrange's Theorem does not hold.

Cor. : The order of an element of a finite group divides the order of the group. (Vide
Th.2, Art 8.2)
Theorem 10. Suppose H and K are subgroups of a group G such that

K <H < G and suppose (H : K) and (G : H) are both finite. Then (G :K) is finite,
and (G:K)=(G:H)(H:K) (K. U. M12)

Proof : H and K are subgroups of a group G such that K<H<G and suppose
(H : K) and (G : H) are both finite.
(G : H) = the index of subgroup H in G is the number of distinct left cosets of Hin G

and (H : K) = the index of subgroup K in H is the number of distinct left cosets of K in H.
Thus by Lagrange's Theorem :

|G| - [ HI
G:H)=— and (H:K)="—
( )|H| | K|

|G| [H|_|G]|
LS(GHMH:K)=—.—="—=(G:K)

|H| |[K| [K|
implying that (G : K) is finite and (G :K)=(G:H) (H:K)
OR :

Suppose that the collection of distinct left cosets of Hin G ={q;H:i=1,2,.....,r} and

the collection of distinct left cosets of K in H={b jK :j=12,....,s}. Now we show that

{a;0;K:i=12,...r,j=12,...s} is the collection of distinct left cosets of Kin G.

G= |J 4H.4eG and H= |J bK,b;eG

i=ltor i=ltos

Now xe G= xe| JgH= x=ah he H and

]

he H=he| Jb;K=h=bK ke K
j

wx=ah=abK ke K=xe| JabK=G=JqbK
iJ ij
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Now we show @b K=ay by Ko i=i,j=]

If i=i,j=j . then ab;K =ar by K

If possible, ;b K =ayb;K when i=i,j#j.

Then b, KNb;K=0= a;b;Knab;K=0¢

= itis a contradiction. .. j=j

If possible, a;b, K =ay by K when i#i,j=j".

Then ;K =b;K and ¢HnayH=0= ¢;b;KNnayby;K=9¢
= it is a contradiction. ... i=i".

when i#i, j=j,aHNnayH=0¢ and
bKNb,K=¢=ab;Knab;K=0
“abK=abKoi=i,j=]

Thus G is the collection of distinct left cosets of K in G.
Hence (G : K) is finite and (G : K) = (G : H) (H : K)
Theorem 11. If n is a positive integer and a is an integer relatively prime to n

then o™ ={(modn) where ¢ is the Euler's O-function.

(Euler's ¢0-function. 1t is the function ¢:Z* — Z* defined as (i) For 1€ Z",¢ () =1

and (i) for n(>1)e Z",0 (n) = the number of positive integers less than n and relatively
prime to n.)

Proof : Let x be any integer. Let [x] denote the residue class of the set of integers
mod n. G = {[a]/a is an integer relatively prime to n}.

Then G is a group of order ¢p(n) with respect to multiplication of residue classes.

The identity in G is [1]

lale G = [a]”® =[1]= [a]*™ =[1] = [aaa....to ¢ ((n) times] =[1]

= [a®™]=[1]= a®™ =1(mod n)

This theorem is known as Euler's theorem.
| 4.5. NORMALIZER OF AN ELEMENT OF A GROUP |

Definition. If « is an element of a group G, then the normalizer on ¢ in G is the set
of all those elements of G which commute with « . The normalizer of a in G is denoted by
N (a) where N(a) ={xe G/ax = xa}. (N.U. 0 88, 2K)

The normalizer N (a) is a subgroup of G (Refer Theorem .17 Chapter 5)

Note. If ¢ is the identity in group G, ex=xe=x V¥V xe G = N(e)=G
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Ex. 1.Use Lagranage's Theorem to prove that a finite group cannot be expressed
as the union of two of its proper subgroups.

Sol. Let G be a finite group of order »n. Assume that H UK = G where H,K are
two proper subgroups of G.

Since e€ H and e € K at least one of H,K (say H ) must contain more that half the
number of elements of G.

Let O(H) = p

% <p<n (- H isaproper subgroup of G)
n is not divisible by p which contradicts Lagranage's theorem.
Hence our assumption that H UK = G is wrong.
A finite group cannot be expressed as the union of two of its proper subgroups.
Ex. 2. Show that two right cosets Ha, Hb of a group G are distinct if and only if
the two left cosets a'H,b™'H of G are distinct. (S.K.U.A00)
Sol. Suppose that (Ha) = (Hb) .
Ha=Hh o ab'eHeo a ' H=He a'ab’H=a'H
eb'H=ad'He a'H=b"H
Ha, Hp are distinct iff ¢ 'H and »™'H are distinct.
Ex. 3. Show that every finite group of prime order does not have any proper
subgroup.
Sol. Let G be a finite group of order n where » is prime.
If possible, let H be a subgroup of order m , say
Then m < n. But by Lagrange's theorem m is a divisor of n.
Also since n is prime, either m =1 or m = n.
H = {¢} or H =G . But these two are improper subgroups of G.
Any group of prime order does not have any proper subgroup.
Note. Thus the total number of subgroups of a group of prime order is 2.
Ex. 4. Vide Ex. 15 of Chapter 2.
P; = {f, />, f3. f4» S5, fe} 1S anon-abelian group over S.
H = {f,, f,} is a subgroup of P;.
Let us form the left cosets of H in P;.
fH=H, LH=H, f;H=H={f3, fe}, f{H ={f4, fs5}
fsH=H={fs, f4}, feH ={fs. f3}
Thus we get only three distinct left cosets i.e. H, f3H, f,H of H in P;.
Thus P; = HuU f;H U f,H and index of subgroup Hin Py is 3.
Observe that the number of elements in each left coset is the same as in H.
Further f;H # Hf; since Hf; = {f3, f5}.
We can observe similar results by taking all the right cosets of H in G.
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that

Note. A; = {f}, fs5, f¢} is a commutative subgroup of P .
Two distinct left cosets of A; are A;, f,A;where f,A; ={f5, f5, fa}-

Also P, = A; U f,Ajand index of subgroup of A; in Py is 2.
Ex. 5. Let H be a subgroup of a group G and let T ={xe G/xH = Hx}. Show

T is a subgroup of G. (N.U. A 85,0.U.93)
Sol. H is a subgroup of a group G.

Let x,,x, e T. s xH=Hx, x,H = Hx,

Now x,H = Hx, = x, " (x,H) x,” = x,7 (Hxy) x, '

= sz_l = XZ_lH = .xZ_l S T
Also (xx,™") H = x, (x,” ' H) = x,(Hx, ") = (x H)x, ™'
= Hx)x, =H(xx, Y= xx, €T

Thus x,,x, e T= x,x, ' €T - T is a subgroup of G.

4.6. SELF-CONJUGATE ELEMENT OF A GROUP |

Definition. (G,.) is a group and a€ G such that ¢ = x'ax ¥ xe G. Then « is

called self conjugate element of G. A self-conjugate element is sometimes called an invariant
element.

Here a =x'ax=> xa=ax V x€ G
The centre of a group.
Definition. The set Z of all self-conjugate elements of a group G is called the centre

of the group G.

Thus Z ={ze G/zx=xz V x€ G}
If G is abelian, then centre of G is G. (Vide Theorem 18 Chapter 5)

EXERCISE 4

IfH={l -1} and G = {1, -1, i, —i} then prove that (H, .) is a subgroup of the group
(G,.) . Find all the right cosets of H in G.
Prove that ({0, 3, 6, 9, 12}, +,5) is a subgroup of (Z;s, +5) . Find the left cosets of the

above subgroup in Z,s . Find the index of the supgroup in G. (K.U.A. 03)
(i) Determine the coset decomposition of the additive group of integers relative to a
subgroup of all integral multiples of 4 =47 . (0.U.12)

(i7) Find all cosets and index of the subgroup <4 > of Zy,. (K.U.12)

H,K are two subgroups of a group G. Show that any coset relative to HNK is the
intersection of a coset relative to H with a coset relative to K. (N.U. A 85)
Let G be a finite group. If H;,H, be finite subgroups of prime order p and ¢

respectively of (p # ¢) then show that H, " H, = {e}. (A.N.UM.97, K.U.J 02)
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. 1H=H -DH={-L 1}, H ={i, —i},(-)H = {-i, i}
2. 0+sH={0,36912)=H,1+s H={1, 4, 7,10, 13}, 2+,s H={2, 5, 8, 11, 14},
3+s H=H, 4+sH=1+sH=1+5H, 5+ H=2+;5 H, etc.
3. () Z=0+HuUd+HUR+H)UB+H).
(i) Zyp, =0+, HUl+, HU2+, HU3+, H where H={0,4,8) =<4>.

The index of the subgroup H of Z, is 4.
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Normal Subgroups

5.1. Let G be a multiplicative abelian group and H a subgroup of G . For x € G, xH
is a left coset and Hx is a right coset of H in G such that xH = Hx . However, even if G
is not abelian there exists a subgroup H of G such that xH = Hx for x € G . This fact was
first discovered by a great French mathematician Galois. Such subgroups of a group G are
termed normal subgroups and they play a very important role in Abstract Algebra.
[ 5.2. Normal Subgroup. |

Definition. A subgroup H of a group G is said to be a normal subgroup of G if
VxeG and Vhe Hyxhx ' e H . (S.V.U. S 93, N.U. 95, S.V.U. A 00, M. 03, S99,

M.98, S97, M.96, A92, 090, A89, A.U. M05, S00, S98, K.U. M11, 096,

0.U.M11, M12, O 03, 0 02, A 00, 099, A99, S.K.U. 099, 097)
From the definition we conclude that

(i) H is a normal subgroup of G iff xHx'cHVY xe G
where xHx™! = {xhx™! |he H, xe G}
(ii) H is a normal subgroup of G iff r'HxcHVY xe G
(r xéeG=x'eGVheH x'h(xH) ' e H= x'hxe H).
(iii) the improper subgroup H = {e} 1s a normal subgroup.
(v eeH= xex'eHV xe G)and
(iv) the improper subgroup H = G is a normal subgroup.
(o he G=xhx'e GV xeG)
H = {¢} and H = G are called improper or trivial normal subgroups of a group G and
all other normal subgroups of G, if exist, are called proper normal subgroups of G.

Notation. If N is a normal subgroup of G we write N<G. We read N<G as
"N normal subgroup G

Note. Any non-abelian group whose every subgroup is normal, is called a Hamilton
group.

Theorem 1. A subgroup H of a group G is normal, if xHx' =H V x€ G.
(S.V.U.M 11, S 93, 00) (B.A.) (N.U. O 90)(A.N.U. J 03, M01, M98, M96, A91,
A.U.S8.98, M98, K.U.M99, O.U.M 03, O 02, S.K.U.M 01, 097)
Proof. (i) Let xHx'=H V xe G. We prove that H is normal.
Since xH x™!

c H V xe G, H is a normal subgroup of G.

(ii) Again let H be a normal subgroup of G. We prove that xHx' =H V x€ G.
xHx'cHVY xe G (D

Also xe G = x"'€ G andhence V xe G, x 'HGx)"' cH
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= x_legH=>x(x_le)x_1 ngx_1
Hc xHx™! . (2)
From (1) and (2), xHx' =H V x€ G.
H<Ge xHx'=H, V/xeG.
Theorem 2. A subgroup H of a group G is a normal subgroup of G iff each
left coset of H in G is a right coset of H in G.
(S.V.U. S 93, N.U. 92, A.N.U.J 04, ] 03, M 03, S2002, S 01,596, S93, A.U.A 01, M.99,
$96, A96, K.U.J. 02, 097, 096, M96,S.K.U. M 03, S.V.U. M 05, S 03)
Proof. (i) Let H be a normal subgroup of G.
Then xHx'=HVxe G=>(xHx)x=HxVxe G
= xH=HxVxe G
= every left coset of H in G is aright coset of H in G.
(ii) Let every left coset of H in G be a right coset of H in G.
Let xe G. Then xH = Hy for some ye G.
Since e€ H, xe = x € xH
Since xH = Hy, x € Hy Hx = Hy (vide Th. 3, Chapter 4)
xH=HxVxeG.
= xHx'=Hxx'VxeG= xHx'=HVxeG
= H is a normal subgroup of G.
H <G < every left coset of H in G is aright coset of H in G.
Theorem 3. A subgroup H of a group G is a normal subgroup of G iff the
product of two right (left) cosets of H in G is again a right (left) coset of H in G.
(A.N.U. ] 04, M 03, M99, 092, A.U.M.00, M97, K.U.A 03, A 00, N.U. S 93,
S.K.U.M11,S.V.U. 096, 098, M 00, M 09)
Proof. (i) Let H be a normal subgroup of G. Va,be G,abe G.
Ha, Hb,Hab are right cosets of H in G.
Then Ha Hh = H(@H)b = HMa)b =HHab (.- H isnormal = ¢H = Ha)
=Hab (- HH=H)
.. The product of two right cosets of H in G is again a right coset of H in G.
(ii) For a,b € G,Ha Hb = Hab .
For he H,xe G, we have xix™' = (ex) (x™") € (Hx) (Hx ™)
= xix'e Hax' = xix' e He= xix' e H
= H is a normal subgroup of G.
Similarly we can prove the theorem for left cosets.
Note 1. Let H be a normal subgroup of (G,.). Let a,be G. Then Hg, Hp are two
right cosets of H in G. Then cosets multiplication is defined as
Ha Hb = Hab
(s a,be G=abe G; H isnormal = ¢H = Ha; HH = H)
This multiplication of cosets is also true for left cosets since H is normal.

U
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2. If H is a normal subgroup of a group (G,.) then the following statements are
equivalent to one another.
(i) x'hxe H for xe G and he H. (i) xHx'e€ Hx for xe G.
(ili) xH = Hx for x e G.
(iv) the set of right (left) cosets of H in G is closed w.r.t. coset multiplication.
Theorem 4. Every subgroup of an abelian group is normal.
(0. U. M12, 06, N.U.M12, M 04, M02, S01, S00, M00, S99, S97, A.U.S 00, S.K.U. M 05, 097),
Proof. Let H be a subgroup of an abelian group G.

Let he H,xe G and e be the identity in G.

“ h=eh=(0xYh=x(x"h)=xhx™) (-» G isabelian = x'"h=hx")
ie. he H= xix'e H, Vxe G =H<G.
Theorem 5. If G is a group and H is a subgroup of index 2 in G, then H is
a normal subgroup of G. (A.N.U. M 04, M98, A92, A.V.S99, K.U.A. 03, M 01, M96,
0.U.A. 00, A99, S.K.U.M. 03,0 00, N.U. A 92, S 93, 0.U. 93, 0 99, S.K.U. O 2K)
Proof. Since the index of the subgroup H in G is 2, the number of distinct right
cosets of H in G = the number of distinct left cosets of H in G = 2.
Let xe G .. The right cosets are H,Hx and two left cosets are H, xH .
Now xe H or xe¢ H
If xe H, then Hx = H = xH and hence H<G.
If x¢ H, then Hx is distinct from H and xH 1is distinct from H . Since the index of
H is 2, G = HuU Hx = Hu xH. Since there is no element common to H, Hx, we must
have Hx = xH. .. H<G.
Theorem 6. The intersection of any two normal subgroups of a group is a
normal subgroup.(A.N.U.M. 02, S99, 0.U.M 05, M 03, A 02, A 00,001, S.K.U. A 00,A.U.12)
Proof. Let H,K be two normal subgroups of a group (G,.) . Since H, K are subgroups
of G,H nK is also a subgroup of G.
Let ne HNK and xe G . ne H and ne K
. xnx'e H and xnx'e K (- H,K are normal subgroups in G)
xnx'e HNK for xe G ~ HNK<G.
Cor. The arbitrary intersection of any number of normal subgroups of a group G is
also a normal subgroup of G.
Theorem 7. A normal subgroup of a group G is commutative with every
complex of G. (A.N.U.S. 02)
Proof.Let N be a normal subgroup and H be a complex of G. To prove that NH = HN.
Let nhe NH where ne N and he H
Since N is normal subgroup and nh = hh™'nh

= h(h 'nh), nh € HN -~ NH c HN. (D
Similarly 7n € HN = hn € NH ¢+ hn=(hnh™")h e NH)
HN c NH (2

From (1) and (2) NH = HN.
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Theorem 8. If N is a normal subgroup of G and H is any subgroup of G,
then HN is a subgroup of G. (A.N.U.S. 02)

Proof. Since a normal subgroup of G is commutative with every complex of G, we
have HN = NH.

Now Hand N are two subgroups of G such that HN = NH. (Theorem 12, Chapter 3)
. HN is a subgroup of G.

Theorem 9. If H is a subgroup of G and N is a normal subgroup of G, then
(i) H NN is a normal subgroup of H (ii) N is a normal subgroup of HN.

(S.K.U. 2001/0, S.V.U. A 99)
Proof. (i) H,N are subgroups of G = H n N is a subgroupof G = HNN isa

subgroup of H. (- HANCH)
Let xe H sLoxeG
Let ye HNN. .. yeH and ye N.

Now ye N= xyx' e N, since N is normal in G and
yeH, xeH=xeH, yeH, x'e H= xyx' € H.

xyx'e HAN. 5. H A N_is anormal subgroup of G.
(ii) eec H and e€ N. Let ne N.

Since H # ¢, N # ¢, we have HN # ¢. Since ene HNVne N, N c HN.

Since HN is a subgroup of G, N isasubgroupof G and N ¢ HN, N is also a subgroup
of HN.

Let ne N and iyn, € HN where i € H and n, € N.
Now (mn)n(hn)™" = hlnlnnl_lhl_l & hl(nlnnl_l)nl_1 eN
(+ meH=heG and N isnormal in G)

~. N is normal in HN.

Theorem 10. If N, M are normal subgroups of G, then NM is also a normal

subgroup of G. (A.N.U. M 04, M 03,A93, 091, S.K.U. 0 02, 0.U. 01/0, NU. A 93, A99)
Proof. Since N # ¢, M # ¢, we have NM # ¢ and MN # ¢ .

Since a normal subgroup of G is commutative with every complex of G, NM = MN.

Since N, M are subgroups of G,NM is also a subgroup of G.
Let xe G and nm e NM.

. X (nm) x—x (nx_lx) mx ' = (xnx_l) (xmx_l) € NM s NM«G.
Theorem 11. If M,N are two normal subgroups of G such that M NN = {e}.
Then every element of M commutes with every element of N.

(K.U. 099, 097,A97,0.U. A 01, M 02, N.U. O 88, 0 89, A 95, 2K, S 02, S.V.U. S 89)
Proof. Let me M and ne N to prove that mn = nm .

Since ne N, n”' € N. Since N is normal in G and m € G, we have mn'm™' € N
Also by closure in N, nmn™'m™ € N . ()
Since M is normal, nmn~' € M. Also m™ € M .
By closure in M, nmn™'m™ € M

..(2)
. From (1) and (2), nmn™'m™ e M AN But M NN = {e}.



SuccessClap: Best Coaching for UPSC Mathematics : For Info- 9346856874
Checkout ->22 Weeks Study Plan, Videos, Question Bank Solutions, Test Series

. -1_-1 _ -1 _ _ _

. nmn m = e = nmn =em =m = nm = mn.

. Bvery element of M commutes with every element of N.
5.3. SIMPLE GROUP

Definition. A group G is called simple if it has no proper normal subgroups.
(A.V.M. 05,0.U. 02, S.V.U.A 02, S.V.U. S 93)
Note. G is simple < G has no normal subgroups other than G and {e}.
Theorem 12. Every group of prime order is simple.
(A.N.U.S. 00,A.U.M. 05, S.V.U.A. 02)
Proof. We know that a group of prime order has no proper normal subgroups.
(Ex. 3, Art 4.5)
| Theorem 13. No abelian group of composite order is simple. (N.U. 00) |
Proof. We know that every abelian group of composite order possesses a proper
subgroup. Also every subgroup of an abelian group is normal. (Theorem 4, Art 5.2)
Every abelian group of composite order possesses a proper normal subgroup.
Hence no abelian group of composite order is simple.

5.4. QUOTIENT GROUP OR FACTOR GROUP
Theorem 14. H is a normal subgroup of G. The set % of all cosets of H in

G w.r.t. coset multiplication is a group. (A.N.U.M. 04, M 02, M 01, M98, 092, 090, A89,
A.VA 02,A 02, K.U.M 04, S 00, 099, 0.U. M 05, 099, S.K.U. M 07,0 02, S.V.U. A 97)

Proof. H is a normal subgroup of (G,.). For ae€ G, aH = Ha.

. % is the set of all cosets of H in G. For ¢,b e G, we have Ha, Hb %
We define coset multiplication on % as (Ha) (Hb) = H (ab) .

We prove that the operation is well defined.

Let Ha = Hq, and Hb = Hb, in %

. ea =a = ha, for some h € H and eb =b = h,b, for some h, € H
Now  Hab=H (hay) (hyb)=Hh(a;h,) b, = H h(hya,) b,
[+ H isnormal in G, ¢H = Ha, so that a;h, = ha,, for some h; € H]
= H(lyhy) (aby) = Hagb, [ hy € H= H(hyhy) = H]
i.e. HaHb = HaHb,

.. Coset multiplication is well defined.

. G
Closure: Ha, Hb e %:Ha Hbe %.smcea,be G = abe G and HaHb = Hab € m

G
Associativity : Ha, Hb, Hc e i = (HaHb)Hc = Ha (Hb Hc) ,

since (Ha Hb)Hc = Hab Hc = H (ab) c = Ha (bc) = HaHbc = Ha (Hb Hc) .



SuccessClap: Best Coaching for UPSC Mathematics : For Info- 9346856874
Checkout ->22 Weeks Study Plan, Videos, Question Bank Solutions, Test Series

G
Existence of identity : Let Ha € % - dHe(=H) e i

such that Ha He =Hae = Ha =Hae = HeHa .

. Identity exists in % and itis He (= H) .
Existence of inverse : Let Hae G

Since ae G = a”' € G, we have Ha™' € H

Now HaHa™! =H (aa™') = He = H(a 'a) = Ha 'Ha.

! is the inverse of H «

. Bvery element of ¢ is invertible and H a~
G . H o
" m is a group w.r.t. coset multiplication.
Definition. Let H be a normal subgroup of a group (G, .). For a € G, H a s the right
coset of H and ¢H is the left coset of H in G. Since H is normal, Ha = aH. Thus E is
the set of all cosets of H in G. Define an operation, called coset multiplication, on % such

that Ha, Hb € % = Ha Hb = Hab. Now % is a group w.r.t. coset multiplication. This is

called the Quotient group or Factor group of G by H.

91_0«;)

Theorem 15. If H is a normal subgroup of a finite group G, then 0( "l om

Proof : O(%j = number of distinct cosets of H in G.

_ numberof elementsinG _ O(G)

" number of elementsin H O (H)

| Theorem 16. Every quotient group of an abelian group is abelian. |

Proof. Let H be a subgroup of an abelian group G. But every subgroup of an abelian

group is normal. So H is a normal subgroup of G. Let% be the quotient group of G by H.

For a,b e G, ab = ba since G is abelian.

.. Ha,Hb e % Now (Ha) (Hb) = (Hab) = (Hba) = (Hb) (Ha)
. G/H is abelian if G is abelian.

Note. Converse.If G/H is abelian, then G is abelian.
Converse is not true.

Definition. If G is a group and a€ G, then N(a) = {xe G : ax=xa} is called normalizer
of ain G. (A.N.U.M 03, M 00, 0.U.A 02)
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Theorem 17: If G is a group and ac G then the normalizer N(a) of ain G is a
subgroup of G. (K.U.A 00, 0.U.M 05, A 02, S.K.U. O 00)
Proof : Let G is a group and ae G
Consider N(a) = {xx€ G, ax = xa}
We have ee G and ae = ea = a = e€N(a)

.. N(a) is a non-empty subset of G.
Let xj,x € N(@) = ax; =xa and ax, = x,a.
a(xxy) = (ax))xy = (x1a)xy

=x1(axy) = x1(xpa) = (x1x2)a

. XX, € N(a)
Let xe N(a)= ax=xa= x oo =y vax !
sy lazax = xle N(a)
N(a) is a sbugroup of G.

Note : N(e) = G.

CENTRE :

Definition : If G is a group then {xe G/ax=xaVae G} is called the centre of G. It is
denoted by Z or Z(G). (A.N.U.M 04, S.98, 5.97, 0.U.A. 00, S.V.U.A.98)

Theorem 18 : If G is a group then the centre Z of G is a normal subgroup of G.
(A.N.U.M. 04, S98, S97, S.V.U.A.98)

Proof : G is a group and Z = {x€ G/ax=xaVae G}.

First we prove that Z is a subgroup of G.

Let x,x,eZ. soaxp=xa and ax, = xaVae G
Now axy = xya= x5 (ax))x;' =33 (pa)x;"
2= 261 X2 ax2 )C2 —)C2 .X'ZCZ )C2

=>x2_1a =ax51 = xgl e’
Also (xlxgl)a =x (xgla) = xl(ax2_1) = ()cla)xz_1
= (axl)xgl = a(xlxil) = xlxgl ez

Thus x,x € Z = xx; € Z

Z is a subgroup of G.
Now we show that Z is a normal subgroup of G.
Let ae G and xe Z.
Then axa™' = (ax)a_1 = (xa)a_1 = x(aa_l) =xe=x€eZ
Thus a€ G,xe Z=axa el
. Z.is a normal subgroup of G.
Note : If G is abelian then Z = G .
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Ex. 1. G ={r,n,n, fi. f2, 2} is a non-abelian group.

(Vide Ex. 16 of chapter 2, composition table)
Show that H = {r,, r, »} is a normal subgroup of G.
Sol. We have to show that ¢H = Ha for a€ G.

Observe that fiH = Hf, .
L,H =Hf,, f;H = Hf;
rnH=Hr,=H
nH=H=Hrn
nH=H=Hr, and H, f{H are distinct left cosets.

. H is a normal subgroup of G.
Also % is a quotient group where % ={H, f{H} Since f{H= f,H = f;H.

Composition table for G/ H is:

H | fH

H | H | fH

AH | AH H

Ex. 2. Show that H = {1,-1} is a normal subgroup of the group of non-zero real
numbers under multiplication.
Sol. Let G = R - {0} and the composition in G be multiplication. (G,.) is a group.

Clearly H c G and H is a group under multiplication.
1 -1

_ 1
For x e G,x.l.)fl =x.l:1and x(-Dx R | | ) )
X X -

-1[ -1 1

- For he H and xe G, xhix"' € H.

H is a normal subgroup of G. composition table

Ex. 3. Show that H = {1,—1} is a normal subgroup of the group G ={1,-1, i,- i}
under multiplication. Also write the composition table for the quotient group G/H.
(N.U. 0 89, A90, A.U.S 2000, S.97, S.V.M. 2003)
Sol. Clearly H ¢ G and H is a group under multiplication.
1is the identity in HLIH = {I,— 1} = H, — 1H = {-1,1} = H, iH = {i,— i}, — iH = {-i,i}.
Also 1H = HI, (-)H = H(-1), iH = Hi, (=) H = H (=i). q | om
H is a normal subgroup of G. al ul m

G /H is the quotient group of G by H.
Its composition table is :

Ex. 4. Show that H ={1,-1, i,—i} is a normal subgroup of the group of non-zero

iH| H| H

complex numbers under multiplication.
Sol. Let G = C-{0} and . be the composition in G.
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G is a group under . (multiplication)
Clearly H ¢ G and H is a group under.

_ 1 ,
For z€ G, z1.z ' =z.—=1, z2(-Dz ' =1, z.i.z7 =i, z2(-i) 7" = —i.
Z

For he H and z€ G, zHz' = H - H is a normal subgroup of G.
Ex. 5. Vide Ex. 15 of Chapter 2.

A5 ={fi, fs» fe} is anormal subgroup P;,

For: filA; = Asfi = Az, f5A; = Asyfs = Az, Ay fs = oAy = Ag,
LA =/ 5 f) = A0, LA =100 )=A50,,
fAs = 0. [ ) =ALf,

The distinct left cosets of A5 are A;, f,A;.

.. The quotient group of P; by A; ={A;, f,A;5}

&

Aj

ie. ={A;, fLA3}.

Clearly P5 is abelian. Note that P, is not abelian.
3

| EXERCISE 5 |
1. If H is a subgroup of a group G such that x*> € H for every x e G, then prove that
Z isnormal in G.
2. IfGisagroupand Z ={xe G/ax = xaV a € G} prove that Z is normal in G.
3. N isnormal in the group G. Show that G /N isabelianiff Vx, ye G, xyx'y ' e N
(N.U. 0 88)
4. Define a maximal normal subgroup of a group G. Prove that a normal subgroup N of

a group G is maximal iff the quotient group G /N is simple.

5. H is a subgroup of G and N(H) = {g € G/gHg™' = H}. Show that (i) N(H) is a
subgroup of G, (ii) H is a normal subgroup of N (H), (iii) H is a normal subgroup
in G iff N(H) = G. (N.U. A 85)



SuccessClap: Best Coaching for UPSC Mathematics : For Info- 9346856874
Checkout ->22 Weeks Study Plan, Videos, Question Bank Solutions, Test Series

Homomorphisms,
Isomorphisms of Groups

[ 6.1. HOMOMORPHISM INTO |

Definition. Let G,G' be two groups and f, a mapping from G into G'. If for
a,be G, f(a.b) = f(a). f(b) ...(1) then f is said to be homomorphism from G into G'.
(A.N.U.S97, $96, A92, 091, A90, A.U.S 00, M99, O.U. M11, M. 03, A 01, S.V.U. A 93, 98)

The . on the L.H.S. of (1) indicates the composition in G and the . on the R.H.S. of
(1) indicates the composition in G'. Generally, we omit writing . in (1).

The property of f i.e. f(a.b) = f(a).f(b) is commonly described as the image of a
product under f is equal to the product of images. Also we say that "the homomorphism f
preserves the binary operations of G and G'". It is for this reason we call that the
homomorphism as "the structure preserving mapping".

Note. There always exists a homomorphism
between any two groups. For : Let f be a function G

from a group G to a group G’defined by
f(a)=¢€ ¥V ae G, where ¢’ is the identity in G”. For

a

every a,a,€G, f(a a,)=e=¢ée'=f(a)f(a,).

This is called least homomorphism. ab

Image of Homormorphism : Let f:G — G’ is ahomomorphism. Then {f(a)/a€ G}
is called homorphic image of f or range of f.

It is denoted by AAG) or I ().

Thus AG) =1 (f) = {f(a)/ac G} . Itis clear that f(G)cG’.

Homomorphism onto. Let G,G' be two groups and f a mapping from G onto G
If for a,b e G, f(ab) = f(a) f(b)then f is said to be a homomorphism from G onto G'.

Also then G' is said to be a homomorph or a homomorphic image of G. We write this
as f(G) = G'. In this case we write (G, .)~(G', .) or G ~G' (read as G is homomorphic
to G'). Homomorphism onto is sometimes called as epimorphism.

Monomorphism. Definition. If the homomorphism into is one-one, then it is called
monomorphism.

Endomorphism. A homomorphism of a group G into itself is called an
endomorphism.
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Isomorphism. Definition. Let (G, o) and (G',.) be any two groups and f be a
one-one mapping of G onto G'. If for a,b € G, f(aob) = f(a). f(b) then f issaid to be an
isomorphism from G to G'. In this case we say that G is isomorphic to G' and we write

(G, 0)=(G', ) (A.VA.01,S.V.U. A 93,5 93)
Automorphism : Definition : An isomorphism from a group G onto itself is called an
automorphism of G.

Note. If the group G is finite, then G can be isomorphic to G' only if G' is also finite
and the number of elements in G is equal to the number of elements in G'. Otherwise, there
will exist no mapping from G to G'. which is one-one and onto.

e.g. 1. Consider the multiplicative group G of all 2x2 non-singular matrices whose
elements ar real numbers. Let G' be the multiplicative group of non-zero real numbers.

Define a mapping f : G — G' such that

f(A) =|A| for A e G.
Forany p(#0)e G', we can find a 2x 2 matrix P € G, such that f(P) =|P|=p.
f is onto.
Further : For A,Be G,AB € G. Also |A|#0, |B|#0,|AB|#0.
f(AB)= |AB| =|A|[B|=f(A)f(B).
f is a homomorphism from G onto G'.
Also G' is the homomorph or homomorphic image of G. i.e. G = G".

e.g. 2. Let G be the additive group of integers and G' be the multiplicative group with
elements 1 and —1 only. (N.U. 0 87)

Define a mapping f : G — G' such that for ne G,

_ | lwhenniseven
flm = {— 1when nis odd
For 1 or —1 in G' there is preimage (even number or odd number) in G.
f 1s onto.
Let p,q € G. Then we have the following possibilities.
Case (i) Both p and ¢ are even. .. p+q iseven.

fp=1 f@=1 f(p+qg =1=1.1= f(p).f(q) .
Case (ii) One of p,q is even and the other is odd.

Let p beevenand g be odd. . p+¢q is odd.
fp=1 fe=-1 f(p+g=-1=1.-1= f(p) f(q).
Case (iii) Both p and g are odd. . p+gq iseven.

f) ==L f@=-1 f(p+qg =1==DED = f(p) f(@.
-~ f isahomomorphism of G onto G' i.e. G ~¥ G| i.e. f isanepimorphismof G
to G'.
e.g. 3. Let G be the additive group of integers.
Let G' =Z ={0, 1, 2, ... , m—1} be the group of residue classes modulo m Ww.r.t.
addition of residue classes (Theorem 15 Chapter 2).
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Define a mapping f : G — G' such that f(a) =a for ae G. Every ae G has a
unique image in G'. Similarly every element of G' is the image of some element in G.
f is onto.
Also for a,be G, f(a+b)=a+b=a+b = f(a)+ f(b).
f is a homomorphism of G onto G
Note. fisnot 1-1. Forif a=mg+r,0<r<m, thena=7r,a#r.
e.g. 4. Let G be a multiplicative group with identity e .
Define a mapping f : G — G such that f(a) =e for g G.
For a,be G,ab e G. s fla)=e f(b)=e
flab) =e=ee= f(a)f(b). .. f isahomomorphism from G into G .
i.e. f is an endomorphism in G.
e.g. 5. Let G be the additive group on integers.

Define a mapping f : G — G such that for a € G, f(a) =a +2.
For a,be G, a+be G. s f@=a+2, fby=b+2 and f(a)+ f(b)=a+b+4
fla+by=a+b+2. But f(a+b)# f(a)+ f(b).
f is not a homomorphism.

How to show that Groups are Isomorphic : We now give an outline showing how
to proceed from the definition to show that two groups G and G’ are isomorphic.

Step 1 : We Define a function f which gives the isomorphism of G with G”.

Step 2 : We show that fis one-to-one function.

Step 3 : We show that f is onto G”.

Step 4 : We then show that f{xy) = fix) f(y)

We illustrate this technique with some examples.

e.g. 1. The additive group G ={....,-3,-2,-1,0,1,2,3,......} and the additive group
G’ ={...,—2m,—m,0,m,2m,...... } for any given integer m, are isomorphic.

Sol. Consider f:G -G’ such that f(a)=ma for ac G,mac G’

Clearly fis 1-1 and onto. Let a,be G. Then ma,mbe G”.

s fla+b)=m(a+b)=ma+mb= f(a)+ f(b)

= f is a homomorphism.

-~ f is an isomorphism.

e.g. 2.G is a group of positive real numbers under multiplication. G' is a group of all
real numbers under addition.

Let f:G — G’ such that f(x) =log, x.
(1) Since for a,b e G, a = b = log,y a = log,y b, f is a function from G to G'.
(i1) Let x;,x, € G. Then f(x;) = f(x,) = log;o ¥, + logo x,

= 10810 =802 = x = x, = f is [—1.
(ili) Let ye G



SuccessClap: Best Coaching for UPSC Mathematics : For Info- 9346856874
Checkout ->22 Weeks Study Plan, Videos, Question Bank Solutions, Test Series

10" is a positive real number i.e. 10” € G
f10%) = log;,(10") = y.
. Forevery ye G',310” € G such that f(10") =y. - f isonto.
@iv) Let a,bG. .. abe G. Also f(a), f(b)e G'
f(ab) = log,y ab = log,y a +logn b = f(a) + f(b) .
f is ahomomorphism from G into G'.
. From (i), (i1), (ii1), (iv) f is an isomorphism from G to G'. Thus G =G”.
e.g. 3. Let G be the additive group of integers and G' be the multiplicative group
whose elements are 2" for me Z.
Consider the mapping f : G — G'/ f(m) =2" for me Z.
fis one-to-one , fis onto.
For m,ne G, m+ne G and for 2",2" € G', 2".2" € G
F(m+n)=2""=2"2" = f(m)f(n).
f is aisomorphism of G into G’

e.g. 4. Let H be the subset of M, (R) consisting of all matrices of the form {a _b}
a

for a,be€ R. Show that ¢:(C,+) — (H,+) defined by ¢ (a+ib) = B B } is an isomorphism
a
Sol. (M, (R),+) is a group and H be the subset of it. (0.U.08)
Let x=[a _b}, y ={c _d}e H
b a d c
c 4
Clearly y™' = k when k =c* +d*.
C
kK

ac+bd ad-bc ac +bd _(bc—adj
. xy71 = k k = k k eH
bc—ad bd+ac bc—ad ac+bd

k k k k

-~ (H,+) is a subgroup of (M, (R),+)and hence a group.
Also (C,+)1is a group.

-b
Now ¢:(C,+) = (H,+) defined by ¢ (a+ib) = [Z }is one - one and onto.
a

Let a, +ib,,a, +ib, € C where a;,b,a,,b,€ R.
. a +ib +a,+iby, =(a; +a,)+i(b+by,)e C.

o0 (a +ib +a, +iby) =0 ((ap +ay) +i (b +by))
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=(al+a2 —bl—b2]=(a1 —blj+(a2 —sz ‘ .
b+b, a+a, b q b, a, =0 (a +ib)+0 (a; +ib,)
= ¢ is an isomorphism.
How to show that Groups are not Isomorphic : Suppose two groups G and G’ are

given. If we want to show that G and G’ are isomorphic we have to prove that there is no
one-one function defined from G onto G’ with the property f(xy) = f(x)f(y).

If G and G’ are of finite order and have different number of elements then there will
not be any one-one function defined from G onto G”.

An algebraic property of a group is one whose definition is just in terms of the binary
operation of the group and does not depend on the names of some other non-structural
characteristics of the elements. To show that two groups G and G’ are not isomorphic
though there is a one-one mapping from G onto G”, we prove one group has some algebraic
property that the other does not possess, that is G and G’ are not structurally the same.

e.g.l: Let G =Z,={0,1,2,3} with modulo addition. G" = S, = Group of all
permutations on six symbols. Since the number of elements in G is 4 and in G” is 6 !. It is

not possible to define a one-one function from G to G”. Hence an isomorphism cannot be
defined from G to G’. Thus G is not isomorphic to G”-

e.g.2 : Consider G =Z and G’ =Q, both under the operation addition. Since Z is cyclic
(Art. 8.2) and Q is not cyclic, they are not isomorphic.

e.g.3 : Let G = Q* = set of all non-zero rational numbers and G’ =R* = set of all non-
zero real numbers both under multiplication. The equation x* = 2 has a solution in R* but the
equation has no solution in Q*. Thus G’ has an algebraic property which G does not have.

So G"and G, both under multiplication, are not isomorphic.

egd: G=(Z,,+,) isnotisomorphicto G’= Klien -4 group since G is cyclic and G’
is not cyclic.
[ 6. 2. PROPERTIES OF HOMOMORPHISM |

Theorem 1. Let (G, .), (G', .) be two groups. Let f be a homomorphism from
G into G'. Then (i) f(e) = ¢' where e is the identity in G and ¢' is the identity in G'.

(i) fa™) ={f@)". (A.N.U.M.96, 091, S.K.U.0O 02, 099, M 03,

S.V.U.S03,A00,0.U.A 00,A 01, N.U. S 95)

Proof. () f(e) = f(ee)

= flee) = f(e)

=  fle)fle)=¢"f(e) [+ f is a homomorphism and e, f(e)€ G'
=  f(e)=¢ (By right cancellation law in G')

(i) Let ae G. & a'eGand aal=e.

o f@f@™") = flaa™) = f(e) = ¢ where f(a).f(a'),e'e G'

o f@h =1f @1
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Theorem 2. If f is a homomorphism from a group (G, .) into (G',.) then

(f (G), .) is a subgroup of G'. OR (0.U. 2001/0)

The homomorphic image of a group is a group.

Proof. By definition, f(G)={f(a)/ae G} and f(G) c G'

Let a',b'e f(G). s~ JabeG suchthat f(a)=da', f(b)=b".

s a®) = f@iFey T = f@fe™h = f@™h (v fisahomomorphism)

But a,be G = a,b'e G=ab ' eG.
. For ab™, f(ab™) = a'(b')™" and hence
a' () e f(G) for a',b'e f(G).

Also f(G) c G'. .. f(G) isasubgroup of (G, .).

i.e. the homomorphic image of the group G 1is a subgroup of G'.

i.e. the homomorphic image of a group is a group.

Theorem 3. Every homomorphic image of an abelian group is abelian.

_(A.U.M1I12, 0.U. 2001/0)

Proof. Let (G, .) be an abelian group and (G', .) be a group.

Let f : G — G' be a homomorphism onto.

. G' is the homomorphic image of G i.e. G'= f(G).

Let a’.b’e G'. ~. 3 elements a,b e G such that

f(a)=a', f(b) =b". Also ab = ba since G 1is abelian.

woa'b'= f(a)f(b) = f(ab) = f(ba) = f(b)f(a) =b'd

. G'is abelian.

Converse : If the homomorphic image of a group is abelian then the group is abelian.

The converse is not necessarily true.

Consider P;/ A;.(Ex. 15, chapter 2) It is the quotient group of P; by A5 and is also
the homomorphic image of the group P; (Theorem 8). Now P;/ A, is abelian whereas P,
is not abelian.

Note. Even f is an isomorphism:

(i) Substitute 'isomorphism'’ for 'homomorphism' in theorem 1 and it is true. The same
proof holds. (N.U.A 95)

(ii) Substitute 'isomorphism' for 'homomorphism' in Theorem 2 and it is true. The same
proof holds.

(iii) Substitute ‘isomorphism' for homomorphism onto' in Theorem 3 and it is true. The
same proof holds.

The converse of the Theorem 3 is not true.

[ 6. 3. TRANSFERENCE OF GROUP STRUCTURES |
Theorem 4. Let G be a group and G' be a non-empty set. If there exists a
mapping f of G onto G' such that f(ab) = f(a)f(b) for a,b e G, then G'is a group.
Proof. f : G — G' is onto such that f(ab) = f(a)f(b) for a,be G.
To prove that G' is a group we have to prove that the group-axioms are true in G'.
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Closure. Let o', b'e G'. Since f isonto, 3 q,b e G suchthat f(a) =a' and f(b) =

Also a,be G and f(ab) € G'.
a'b'= f(a)f(b) = f(ab) i.e., f(ab)=a'b. .. a'beG'.

Associativity. Let «',0',c'e G'. Since f onto 3 exist a,b,c € G such that
flay=d, f)=0b", fc)=c".

Now a'(b'c") = f(@) (f(b)f () = f(a)f(bc) = f(a(bc))

= f(ab)c) = f(ab) f(c) = (f(a) f(b)) f(c) =(a'b")c".

Existence of identity. Let 4'c G'. Let ¢ be the identity in G.

f(e) =e'e G'. Also 3 ge G suchthat f(a)=a'.
a'e'= f(a)f(e) = f(ae) = f(a) =a' and e'a'= f(e)f(a) = f(ea) = f(a)=a'.
ae=éea=a".
Identity exists in G' and itis f(e) =¢'.
Existence of Inverse. Let 4'c G'. 3 ae G such that f(a) =a'.
a'eG and f(a)eG'.
f@ha'=f@Hf(@=fa"a)=f(e)=e and
df@)=f@f@")=flaa™)=fle)=¢
f@ha=af@)=e.
f(a™") is the inverse of @' in G'.
Every element of G' is invertible. -~ G'isa group.
Note 1. When f is a one-one mapplng of G onto G', this theorem is also true.
2. In G', inverse of f(a) is f(a").
6.4. KERNEL OF A HOMOMORPHISM]

Definition. If f is a homomorphism of a group G into a group G', then the set K of
all those elements of G which are mapped by f onto the identity ¢' of G' is called the
Kernel of the homomorphism f i.e. Kernel f ={xe G| f(x) =¢'} =K

(A.N.M.05, K.U.M. 01, 0.U.0 02, A. 02, M. 05, N.U. S 93, S.K.U. 01/0, S.V.U. 01)

Sometimes Kernel f is written as ker f .

Note. If ¢ is the identity in G, then f(e) =¢' i.e. e€ ker f

Hence ker f is non-empty.

We know that the function defined over group of positive real numbers under
multiplication to group of real numbers under addition such that f(x) =logx is a
homomorphism. '0' is identity in R. f(1) =log,1=0 and 1 is the only element with this
property.

Ex. 1. Consider the function f from <R,+> to <R* +> defined as

f(x)=d",a>0,#1ne Z. We know that f(x) is a homomorphism. f(0) = ¢” =1 where 1

as identity in <R",+>,0 is the only element with this property.
ker f ={0}
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Ex. 2. G is the additive group of the integers and G' be the multiplicative group with
numbers 1 and —1. Define f : G — G' as follows : f(n) =1, n is even
=-1, n is odd.
1 is the identity of G'. We prove that fis a homomorphism. ker f ={n/n is even}.
Theorem 5. If f is a homomorphism of a group G into a group G', then the
Kernel of t is a normal subgroup of G. (A.N.U. M05, S01, S 00, M98, M97, $96, A92, A90),
0.U. M 08, 0 02, A99, A.U.S. 00, M99, M98, S97, M97,
K.U.J03,M01,099,A98,A97, M 07,S.K.U. M 03, M 02, 01, A98, S.V.U. 0 02, 0 01, M 09)
Proof. Let ¢ be the identity of G and ¢' be the identity of G'.
Also f:G — G' is a homomorphism. Let K = ker f .
K={xeG| f(x)=e¢'}
Since f(e) = €', e K i.e. K is non-empty.

Let a,be K. . f(a)=¢,f(b)=¢". Also a,beG. = ab'e€G.
Now f(ab™") = f(@)f(b™") = f@IfB)] " =€) =ee=e¢
ab' e K. ~. K is a subgroup of G. Let xe G.
fxax™) = fOf@f ") = fe{f))
= fOUf M =e . xax"' € K. ~. Kisnormal in G.

Theorem 6. The necessary and sufficient condition for a homomorphism f of
a group G onto a group G' with kernel K to be an isomorphism of G into G' is that
K = {e}. (A.N.U.M. 01, S93, 085, A.U.M. 05, KU.M. 04, S 00, 0.U.A 02, O 00, A 00,
S.K.U. M 02, A 01, A97, S.V.U. 0 00)
Proof. Let f be a homomorphism of a group G onto a group G'.
Let e,e' be the identities in G, G' respectively. Let K be the kernel of f .
Suppose that f is an isomorphism of G onto G'.

Then f is 1-1.
Let ae K. s fla)=e= fla)=fle)= a=ce.
e is the only element of G which belongs to K. ~ K={e}.

Converse. Suppose that K = {e}.
Let a,pe G. Now f(a) = f(b) = f@If O] = fFOIf O]

= fl@fb)=e= fa™)=¢

Sab'eK=ab ! =e

=Sab'b=eb =ac=b=a=b

fis1-1. - f is an isomorphism of G onto G'.
Theorem 6 (a). Let f be a homomorphism froma group G into a group G' then
f is monomorphism < ker f = {e} where ec G is identity.
Proof follows from Theorem 6. (0.U. M11, K.U.J. 03, M99, 098, A97)
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Theorem 7. Let f be a homomorphism from a group G onto a group G'. Let
ker f =K. Let a be a given element of G such that f @) =a'c G'. Then the set of all
elements of G each element of which has the imagea’ in G'is the coset Ka of Kin G.

Proof. Let ¢ be the identity in G and ¢' be the identity in G'. K is the kernel in G.
Let a € G such that f(a) =a'e G o fMa)y={xeG| fx)=a'}.
Now to prove that f'(a') = Ka -

Let y e Ka. Then for some k € K,y = ka and f(k)=¢".

f)=flka)=fk) .fa)=e'f(a)= fla)=d" ie. ye f(a).
Kac f'(a) ()

Let ze f™'(a'). Then f(z)=a'.
fza) = ff@ ) =alf@]" = f@lf@]" =e
ale K s (zaHYaeKa= zeKa. o fNa)cKa ...Q2)
From (1) and 2) f'(a)=Ka.
Theorem 8. Let G be a group and N be a normal subgroup of G. Let f be a

mapping from G to G/N defined by f (x)=Nx for x e G. Then fis a homomorphism

of G onto G/N and ker f =N. (A.N.U. $98,A91, 0.U.M. 05, S.V.U. A 00)
Proof. Let f:G — G/N such that f(x)=NxVxe G.
Let Nxe G|N. Then xe G and f(x) = Nx. - f isonto.

Let a,be G. Then ab e G and f(ab) = Nab = (Na) (Nb)
= f(a)f(b) (- N is normal)
f is a homomorphism of G onto G/N .
Let K be the kernel of f . The identity of the quotient group G/N is the coset N.

K ={ye G/ f(y) =N}. Now to prove that K = N .
Let ke K. ..  f(k)=N.Butdef.of f,f(k)=Nk for keG. (-KcCG)
Now N =Nk = ke N. .. KcN ..(D
Let ne N. Then we have f(n) =Nn=N. L neK . NcK ..(Q2

From (1) and (2), K = N.
Definition : [The mapping f : G — G/N such that f(x) = Nx for xe G is called
Natural or Canonical homomorphism.]

Ex. 1. If for a group G, f : G — G is given by f(x) = x*, x€ G is a homomorphism,
prove that G is abelian. (A.U.M12,A.01, KUM. 01, S.K.U.M 03, S.V.U. S 89, A 99)
Sol. f:G — G suchthat f(x) = x*, xe G is a homomorphism.
xyeG=xeG . f =22 () =y% fO) = ().
Since f is a homomorphism, f(xy) = f(x)f(y)
= () ="y = () (W) = () () = x(my=x(0)y
= yx=xy (.. Cancellation laws are true in G)
= G isabelian.



SuccessClap: Best Coaching for UPSC Mathematics : For Info- 9346856874
Checkout ->22 Weeks Study Plan, Videos, Question Bank Solutions, Test Series

Ex. 2. Let G be a multiplicative group and f:G — G such that for
a€ G, f(a)=a'. Prove that f is one-one onto. Also prove that f is homomorphism
iff G is commutative. (N.U.M82,S.V.U.S 89)

Sol. f:G — G is a mapping such that f(a) =a”' for ae G.

(i) To prove that f is 1-1.

Let a,be G. o a',b'eG and f(a), f(b)e G

Now fa)=fb)=a'=b"'=w@H=0")>a=b. o fis1-1.
(ii) To prove that f is onto.

Let ae G. .. a'eG suchthat fa™)=@"H™' =a. - f isonto.

(iii) Suppose f is a homomorphism.

For a,be G,abe G. Now f(ab) = f(a)f(b)

@ '=a b Spla =ap ! = ab = ba - ~. G isabelian.

(iv) Suppose G is abelian.

For a,be G, f(ab) = (ab) = b7'a™ =a'b7 = f(a)f(b)

f is a homomorphism.

Ex. 3.1t f:G — G defined f(x)=1if x>0 and -1 if x <0 where G ={set of
non-zero real numbers) and G = {1,—1} are groups w.r.t. multiplication. Prove that f
is a homomorphism and find kernel. (A.U.M11,0.U.A 97)

Sol. Clearly G = R - {0}, G = {1,— 1} are groups w.r.t. multiplication. Identity in G =1.
Let x,ye G. Then f(x), f(y)e G .

x>0, y>0= xy>0. o f=1f(=1and f(xy) =1
Now f(xy)=1=D 1) = f(x)f(y)
(i) x<0, y<0= xy>0. o f(®=-1f(y)=-1and f(xy)=1.

Now f(xy) =1=(-D)(=1D = f(x)f(y)
(i) x>0, y<0 or x<0, y>0=xy<0
f)=Lf(y)=-lor f(x)=-1 f(y)=land f(xy)=-1.

Now f(xy)=-1=1)(=1) or (=) (D) = f(x)f(y)
From (i), (i), (iii) we have Vx,ye G, f(xy) = f(x)f(y).

. f is a homomorphism from G to G.
ker f =K ={xe G/ f(x) =1, identity in G}={xe G/x>0}.
Note. We give below the proof for ker f to be a normal subgroup.
Thus K =ker f = set of +ve real numbers.
Let q,pe K. . f(a)=1, f(b)=1 and ab”'€G.
o flab™)=f@ foT) = f@lLfOr =0 m)=1
= ab™' € K=K is a subgroup of G.
Let xeG. .~ xax'eG. Now f(xax)=ff@fG)=f)OFW" =1

. xax'eKand K=ker f isanormal subgroup of G.
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Ex. 4. Show that the group (G =7Z,={0,1,2,3}, +,) and the group

(G'={L,-1, i,— i}, .) are isomorphic (A.U.M12,0.U.91)
Sol. We have to find an isomorphism f from G to G' such that f is one-one onto.
(G, +4) (G', )

+4 (0] 1[2]3 e | 1 |=1]i |=i

ofo]1|2]3 1|1 [=-1]i [

Lt 2f3]0 1| -1 1 |=i]|i

21213l ol 1 il i [=i|]-1]1

31 3lol 1] 2 =i =i|i |1 |-1

Identity in G is 0 and identity in G' is 1.

Let f(0)=1 and f(a™") =[f(a)]" for a€ G.

We note the fact that an isomorphism is also a homomorphism.

Now define : f(1) =i, f(3) = —i, f(2) = —1.

Since the image of an inverse must be equal to the inverse of the image.
f@=rah=rrmrt=it=-i
f@=r@hH =@ =t =-1.

For a,be G, f(a+ ,b) = f(a)f(b)

Since f(0+,2)= f(2)=-L f(O0)f(2)=1(-1) =-1 etc.

f is a homomorphism. Also f is one-one and onto.

Thus f : G — G'is an isomorphism such that

FO) =1, F) =14, £(2) = -1, f(3) = —i. . G=G'.

Ex. 5. Let A ={a;b,c}. Let G ={a,B,y} so that o.P,y are bijections on A such
that o = {(a,a),(b,b),(c,c)},B = {(a,b),(b,c),(c,a)},y ={(a,c), (b,a),(c,b)} .Now G is an
abelian group w.r.t. composition of mappings. Let G'={l,m, 0>} where o,* are the
complex cube roots of unity. Now G' is an abelian group under multiplication.

Show that G = G'.

Sol. (G, o) is a group (G', .) is a group
OfafB] vy Here 1| ol o Here
oo | By gl=y 1 1| ol o ol =0’
Y|« Y_1_B Q) o | o 1 and
= 21 _
ylvyloalp mz mz 1 o (%) "=o

o is the identity in G. 1 is the identity in G'.
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Now we have to produce 1 -1 homomorphism f from G onto G'.Let f(a) =1 and
f@™") =[f(@]" for a € G.We note the fact that an isomorphism is also a homomorphism.

Now define : f(o) =1, f(B) = o, f(y) = ©°

Observe that fB) = FyH) =/ = (@) =0 and

f=rBH =B =@ =0
For a,be G, f(aob) = f(a). f(b)
since f(Boy) = f(o) =L fB)f(¥) = w0’ = 0’ =1 etc.
f is a homomorphism. Also f is one-one and onto.
Thus f :G — G' is an isomorphism such that
floy=1Lf@) =o f(y)=o0’. L G =G

Ex. 6. Let (G, +) is a group of real numbers under addition and (G', .) is a group
of positive real numbers under multiplication.

Let f:G — G' be a mapping such that f(x) =e* for xe G. Show that f is an

isomorphism. (K.U.J 02, N.U. O 85, 091)
Sol. If x is a real number, ¢* > 0 and hence ¢* € G'
Let a,be G. s e’ eG. Now ¢ =¢®” = a=b .. [ isone-one.

Let ce G', i.e. ¢ is a positive real number and log ¢ is a real number, positive or
negative or zero.
Also logc € G.
f(ogc) = e8¢ = ¢. Thus Jloge e G such that f(loge) =c.
f 1is onto.
Let a,b e G. S a+beG.
Then f(a+b)=e"*? = e = fa)f(b)-
f is a homomorphism which is one-one and onto.
f : G — G' is an isomorphism.
Note. ker f = {0} since 0 is the identity in G, 1 is the identity in G', and L =1.
Ex. 7. If f is a homomorphism of G onto G' and g a homomorphism of G' onto
G", show that gof is a homomorphism of G onto G". Also show that the kernel of f
is a subgroup of the kernel of gof .
Sol. f:G — G'is a homomorphism of G onto G' and
g : G'—= G" is a homomorphism of G' onto G".
gof : G = G" is a mapping of G onto G" such that
(gof) (x) = g (f(x)) for xe G.
Let a,be G.
Then (gof) (ab) = g (f(ab)) = g (f(a)f (b)) (~- f is a homomorphism)
=g (f(a)g(f®)) (.. g ishomomorphism)
= [(gof) (a)] [(gof ) (D)]
gof 1is a homomorphism from G' onto G",
Let ¢' be the identity in G'. If K' is the kernel of f then
K'={yeG/f(y)=¢}.
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Let ¢" be the identity in G". If K" is the kernel of gof then
K"={ze G/(gof)(2) = €"}.
To show that the kernel of f is a subgroup of the kernel of gof i.e. to show that
Kv ; Kn .

Let k'e K'. s fk) =eé'. Also k'e G.
Now (gof) (k') = g (f(k')) =g (e') =¢" (- g is a homomorphism)
k'e K". Thus k'e K'= k'e K". .. K cK'".

Ex. 8. Show that the mapping f :G — G' such that f(x+iy)=x where G is a
group of complex numbers under addition, G' is a group of real numbers under addition,
is a homomorphism onto and find ker f. (0.U. 93)

Sol. Let a=aqa, +ib,b=a, +ib, € G

a+be G, f(a) = f(a +ib) =aand f(b) = f(a, +ib,) = a,

Now f(a+b)= f((a;+ay,)+i (by+D))=a,+a,= f(a)+ f(D)

f is a homomorphism.
If ¢ is any real number then ¢ G' and c +iye G
so that f(c+iy)=c for ye R. . fisonto.
f is a homomorphism from G onto G'.

The identity in G' is 0.

Since ker f = (x+iye G/ f(x+iy) = x =0) we have ker f ={0+iy/ye R}.

Note. We give below the proof for ker f to be a normal subgroup.

Thus K =ker f ={0+iy/y€ R}.

Let z,2,€ K. . f(z)=0,f(z,)=0and zz,'€G.

Sz = F@) ()= @) ()] =(0)(0)=0
= 7,2, € K= K is a subgroup of G.
Let ze G and 7 €K.
w277 €G.
W fEn )= fRQFEFED=FROfRI =0=2z7" e K.
~. K=ker f is a normal subgroup of G.
Ex. 9. Show that the mapping f :G — G' such that f(z) =|z|, for ;e G where

G is a multiplicative group of non-zero complex numbers and G' is a multiplicative

group of non-zero real numbers, is a homomorphism. Find ker f.
Sol. Let z;,z, € G.
f(@) =z |, f(z2) =z |
Now f(z12,) =lzz2| =1z |z2] = f(z) f(z2) -
The identity in G' is 1.

ker f = {a +ib such that |a + bi| = Va® +b* =1}.
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Ex. 10. If ¢:Z,, > Z,, be a homomorphism defined by ¢ (1)=8, then find ker f
and ¢ (3). (S.V.U.M11, K. U. 07)
Sol. (Z;; ={0,1,2,3,......9},+¢),(Zy, ={0,1,2,....,20},+,,) are two cyclic groups and
0:Zyy—> Lo .
Also 0 is identity in Z,,and O is identity in Z,, such that ¢ (0)=0.
Given ¢ (1) =8.
Now 02)=0A+;p D=0 1)+ ¢ (1) =8+,,8=16,
0B)=00+p2) = (D+3 0 (2) =8+, 16 =4,
OB =0+1p3)=0(D)+5 0 (3) =8+, 4=12,
0B =0+ 4 =01+ ¢ (4)=8+,12=0,
00 =0(I+)5) =0 D)+ ¢ (5) =8+,,0=8,
O (N =0 1+196) =0 (1)+3 0 (6) =8+, 8=16,
0@ =0+ 7)=0 D+ ¢ (7) =8+, 16=4,
0D =00+,p8) =0 1) +5 ¢ () =8+,;4=12.
~ Kerop={0,5)and 6 (3)=4.
Ex. 11. (Z,+),(G ={1,-1,i,~i},") where i* =—1, are groups. Show that f:7Z.—G
defined by f(n)=i"VneZ is an onto homomorphism. Also find ker f .
Sol. When 7 is an integer, 1=i"",=1=i*"% - =i*" ="
It is clear that f is onto but not one-one.
For a,be Z,a+be Z and f(a+b)=i"" =i.i* = f(a). f(b)
~. f:Z— G is an onto homomorphism.
Ker f ={ne Z/ f(n) =1} where 1 is the identity in G.
Since f(4n)=i*"" =G*)" =1 for ne Z. Ker f ={4n/neZ}.
| 6.5. FUNDAMENTAL THEOREM ON HOMOMORPHISM OF GROUPS (N.U. A 95)|

Theorem 9. Every homomorphic image of a group G is isomorphic to some
quotient group of G. OR

If ¢ is a homomorphism from a group G onto a group G', then G /ker¢ is
isomorphic with G'. OR

If f:G — G' is a homomorphism and onto with kernel K, then prove that

G/K =G (S.K.U. M 09, M 05, O 02, O 00, 099, A98, S.V.U. M 01, A99, 097,

A.N.U. M11, M12, 07, M 01, M 00, M96, A93, 092, A91, 090, 089, A.U.A 03, A 02,

0 01, M 00, S99, M97, S96, A96, K.U. 08, A 02, 097, 096, M96, O.U.O 03, M 01, A 00)
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Proof. Let f be a homomorphism from a group G onto a group G'
. G ~G' (G' is the homomorphic image of G under f )
(We change G'to ¢ (G) if need be)

Let ker f = K. Then K is a normal subgroup of G and G/K is the quotient group of
G by K.
Now we shall prove that % = G. For a€ G, Kae G/K and f(a)e G'.
Define a mapping ¢ : G/K — G' such that ¢ (Ka) = f(a) for a€ G.
For a,beG, Ka=Kb=ab'ce K= f(ab")=¢
= f(a)f(b"') = ¢ where ¢ is the identity G'.
= f@fG)fb) = e fb)
= fla)e'= f(b) = f(a) = f(b) = ¢(Ka) = ¢(Kb).
<. ¢ 1s well defined.
(ii) To prove that ¢ is 1—1
For a,be G, Ka,Kbe G/K. Now ¢(Ka) = ¢ (Kb) = f(a) = f(b)

= f@UfBY = fOLFOI = fl@fehH=e
= flab™)=¢ = ab™' € K = Ka = Kb
0is1-1.
(iii) To prove that ¢ is onto.
Let xe G'. Since f:G — G'isonto. 3 g e G such that f(a) = x.
Ka € G/K and so ¢ (Ka) = f(a) = x. o 0 is onto.
(iv) To prove that ¢ is a homomorphism.
For a,be G, Ka,Kbe G/K .
Now ¢[(Ka) (Kb)] = ¢ (Kab) (- coset multiplication is defined in G/K )
= f(ab) = f(a)f(b) = 0 (Ka) 0 (Kb)
¢ is an isomorphism from G/K onto G'. S GK=G'.
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Note. By the fundamental theorem of homomorphism, G is homomorphic to G' and

% = G' where N is a normal subgroup of G.

~. The set of homomorphic images of G is having 1—-1 correspondence to the set of
quotient groups of G. In other words, the number of all possible homomorphic images of a
group is same as the number of quotient groups of G.

Conversely, for every normal subgroup of G we have a quotient group of G and
hence a homomorphic image of G. In other words the number of normal subgroups of G is
same as the number of homomorphic images of G.

6.6. AUTOMORPHISM OF A GROUP

Definition. If f:G — G is an isomorphism from a group G to itself, then f is

called an automorphism of G.
eg. Let f:Z — Z be a mapping such that f(x) =—x for xe Z where Z is an
additive group of integers.
Now: (i) x,, € Z=>—-x,-x,€Z and —x, == x, = x; =x,
(ii) For x € Z (co-domain), 3 - x € Z (domain) so that f(-x) = —(-x) = x.
(i) x,x,€Z=x+x,€Z and f(x; +x,)
=-(q+x)=0Cx)+Ex) =)+ f(x).
Hence we infer that f is an automorphism of Z .

Ex. 12. If G is an additive group of complex numbers, show that f:G — G
such that f(z) = pz (P is a non-zero complex number) for z€ G is an automorphism
of G.

Sol. Let z;,z, € G (domain). s f(z)) = pz, f(z3) = pz, € G (co-domain)

Now f(z)) = f(z5) = pz; = p2 = 2 = 25-

'

Let z'e G (co-domain). 3 ‘e (domain) ¢ p#0)

such that fi =p.£=z'.
p p

Also f(z1+22) = p(z+22) = pzy + pzo = f(z) + f(z) .

Hence f if an automorphism of G.

Ex. 13. Show that the mapping f:G — G such that f(a)=a'Vae G, is an
automorphism of a group G iff G is abelian. (N.U. 0 88, A 92, 90, S20, S.K.U O 03)

Sol. Let f:G — G such that f(a)=a™' for ae G.

(i) Let f be an automorphism. To prove that G is abelian.

Let x,ye G, soxeG

fen =" =y = f(f@=fOx) (= f isahomomorphism)
= xy = yx (. fisl-1)

= G 1is abelian.
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(ii) Let G be abelian. To prove that f is an automorphism in G.

Let x,ye G. SOXy =X
Since f(x) = f()=x"'=y' =2 )= H=x=y fisl-L
For xe G, x'e G Also f(xH =" =x. - f isonto.
For x,ye G, f(xy) = (xy) " =y 'x' =x7'y' (- G is abelian)
= f)f ()
f 1s composition preserving. -~ f is an automorphism of G.

Ex. 14. Let G be a group and H a subgroup of G. Let f be an automorphism
of G and f(H)={f(h)/he H}. Prove that f(H) is a subgroup of G.

Sol. H is a subgroup of the group G. f is an automorphism of G and
fMH)={f(h)/he H}.

Let abe H. . able Hand f(a), f(b)e f(H) .
flab™e fH)= f@fbHe fHE) = f@IfBI e fH).
Since f is automorphism and x, ye f(H) = xy~' € f(H).
- f(H) isasubgroup of G.

| 6.7. GROUPS OF AUTOMORPHISMS OF GROUPS]

Theorem 10. The set of all automorphisms of a group G forms a group w.r.t.
compositions of mappings. (S.V.U.A 97, N.U. 0 88, S 84, 92, M 05, A.U.O 01)

Proof. Let A(G) = { f : f is an automorphism of G }

Here f :G — G is a one-one onto homomorphism.

Let 'o' be the composition of bijections over G.

Closure.Let f,ge A(G). .. f,g are bijections and hence gof is a bijection.

Let a,be G. = (gof)(ab) = g (f(ab)) = g (f(a)f (D))

=[g (f (a)]lg (f ()] = [(gof) (a)ll(gof ) (D)]
gof is a homomorphism of G and hence an automorphism of G.
gof € A(G).

Asssociativity. Composition of mappings in A (G) is associative.

Existence of identity. Let 1: G — G be the identity mapping. Since I is one-one,
onto and structure preserving, 1€ A (G). Since for fe A(G), fol=10 f = f, identity
existsin A (G) anditis I.

Existence of inverse. Let f e A (G).

f isone-one ontoin G and hence 77! exists and it is one-one onto in G. We have
to show that 77! is a homomorphism.

Let fYa)=a, f ') =b for a',be G o f@)=a,f()=b.
Now f~Y(ab) = f(f(a")f (b))
= (f@b)=(f"fab)y=ab=f"a)f " ®).
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7! is a homomorphism and hence an automorphism in G. i.e. f™' e A (G) such
that ff'= flfr=1.
.. Every element of A (G) is invertible.
A (G) is a group w.r.t. composition of mappings in G.
[ 6.8. INNER AUTOMORPHISM, OUTER AUTOMORPHISM|
Theorem 11. Let a be a fixed element of a group G. Then the mapping

f. :G — G, defined by f,(x)=a'xa for every xe G, is an automorphism of G.
(A.N.U. 090, KU.M 12, S 00)

Proof. q is a fixed element of a group G. f, : G — G such that f, (x) = a 'xa for
xe G.
To prove that f, is one-one
Let x,ye G. s f,(0, f,(») € G (co-comain).
Now f,(x) = f,(y) = a"'xa=a""ya
=x=y ( a a',x, ye Gand cancellation laws are true in G)
f. 1s one-one.

To prove that f, is onto.
Let ye G (co-domain). Since a € G,a"' € G. .. a'yae G (domain).

falaya™) =a(aya™)a = (@ 'a)y(a'a) = y w. fo s onto
To prove that f, is a homomorphism
Let x,ye G. . xeG.
foy) =a ' (xy)a=a'xaa ya = (a”'xa) (@ ya) = f,(0)f, ()
f, 1s an automorphism of G.
Inner automorphism, outer automorphism
Definition. Let G be a group. If the mapping f, : G — G, defined by f,(x) = a 'xa
forevery x e G and a, afixed element of G, is an automorphism of G, then f, is known
as inner automorphism of G.
An automorphism which is not inner called an outer automorphism.
Theorem 12. In an abelian group the only inner automorphism is the identity
mapping on the group. (S.V.U. S 93)
Proof. Let G be an abelian group and f, is an inner automorphism of G where
a is a fixed element of G.
x€G, f,(x)=a'xa=a"'ax ("~ G isabelian)

=éex = X.

£, 1s the identity mapping of G. We know that it is an automorphism.
The identity mapping is the only inner automorphism of an abelian group.



SuccessClap: Best Coaching for UPSC Mathematics : For Info- 9346856874
Checkout ->22 Weeks Study Plan, Videos, Question Bank Solutions, Test Series

EXERCISE 6

1. If G isagroupand ¢ : G — G is defined as ¢ (x) = x! Vx € G, then show that ¢ is

not a homomorphism.

2. If G is a group of non-zero real numbers under multiplication prove that ¢ : G — G
where ¢ (x) = x* Vxe G is a homomorphism. Determine kernel ¢ .

3. (Z, +) is the group of integers. Prove that f :Z — Z where f(x) =2xVxe Z is a
homomorphism. Find ker f. Is it onto homomorphism?

4. (Z, +) isthe group of integers (Z,, +,) is the group of integers under addition modulo

n.If ¢:Z — Z, is defined by ¢ (x) = remainder of x on division by n, prove that ¢
is a homomorphism.

5. G,,G,,G; are three groups. If f : G, — G,, g : G, — G5 are isomorphisms, prove
that gof : G — G5 is an isomorphism.

6. When do you say that two groups are isomorphic? Prove that under an isomorphism of
agroup G ontoagroup G' (i) the identity ¢ in G is mapped into the identity ¢' in G'
(ii) the inverse of any element a of G is mapped into the inverse image of a« in G'.

(N.U. 0 85)
7. Let (R*,.) be agroup and f:R" — R" be defined by f(x)=x*Vxe R*. Prove
that f is an automorphism. (K.U.M. 2004)

g = G.
{e}

8. Show that for a group G,

9. Prove that : If (G, .) and (G, .) are two isomophic groups, then (G, .) is abelian iff
(G, .) is abelian.

10. Let (G, .) and (G, .) be two finite groups. If f: G — G be an isomorphism and if for
a € G,o0(a) = n, then prove that o (f(a)) =n. (A.N.U.M99, K.U.J 2000, O.U. 2001)

11. Define isomorphism of groups. Show that the group G = {0,1,2,3} addition modulo 4
is isomorphic to the group G'= {1, 2, 3,4} multiplication modulo 5. (S.V.U.A93)

12. If G={0,1,2,3,4} with operation +;defined on it and G’is the cyclic group
{a,a®,a’,a*,a® = e}, show that the mapping f:G — G’such that f(n)=d" Vne G is
an isomorphism of G onto G’ (vide ch. 8 for definition of cyclic group)

13. Show that f:C, — C, defined by f(z)=z" where ze Cyand n is a fixed positive

integer is an endomorphism of the multiplicative group C, of non-zero complex num-
bers. Find ker f.
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14. (Z,+) and (G ={1,-1,i,—i},") are two groups. Show that the mapping f defined by

f(n)=i" ¥V ne Z is a homomorphism from (Z,+) onto (G,-) and determine ker f.

2. ker¢={1,-1} 3. {xe Z/2x=0}={0}; Not an onto homomorphism
13. ker f={™""",r=0,1,2,.....(n-1)} 14. ker f={4"/neZ)}
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Permutation Groups

[ 7.1. PERMUTATION |

Definition. A permutation is a one-one mapping of a non empty set onto itself.
Thus a permutation is a bijective mapping of a non-empty set into itself.

Ex. f:R—R defined by f(x)=x+1 is a permutation of R since f is an one-one

mapping onto itself.

If S={a,a,,...... ,a,} then a one-one mapping from S onto itself is called a
permutation of degree n. The number n of elements in S is called the degree of
permutation.

Equal permutations. (A.N.U. 898, A92, 0.U. 02000)

Definition. Two permutations f and g defined over a non-empty set S are said to be
equal if f(a) = g(a) for a€ S.

Permutation multiplication or product of permutations.

It is the composition of mappings defined over the non-empty set S. If g, f are two
permutations (bijective mappings) defined over S, then the product of permutations f, g is
defined as gof or gf, where (gf)(a) = g(f(a)) for a€ S. Further gf is also a bijective
mapping over S. In this context we say that permutation multiplication is a binary operation
in the set of permutations defined over S.

Product of permutations or Multiplication of permutations or Composition of

permutations in S, .

a, a, ...a

Let f =
! (bl b, ...b

b b, ...b
”j and g =£ e ”j be two elements (permutations) of

n Cp Cp ...Cy

S, . Here, b,,b,,...,b, or ¢,c,,...,c, are nothing but the elements q,,a,,...,a, of S in
some order.
Now f(a)) = by, g(by) = c;; f(ay) = by, 8(by) = ¢, , etc.
By definition we have ¢, = g(b)) = g(f(a))) = (gf) (a;) i.e. (gf)(q) =¢.

Similarly (gf) (ay) = ¢;, (8f)(a3) = c3, ..., (&) (a,) =¢,.

n

Obviously gf is also a permutation of degree n on S and hence gf e S, for g, f€ S,.

Thus : gf'is a permutation obtained by first carrying out the operation defined by fand
then by g which we followed.
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But some renowned authors write gf as fg implying that f is to be operated first

and then g is to be operated next. In this case (fg)(a))=g (f(q)=g(b)=cetc.

al an
So, fg=

]. This may be taken note of carefully.
(&) 15 RTTTISTTTION C

[ 7.2. PERMUTATION GROUP |

Theorem 1. The set A (S) of all permutations defined over a non-empty set S
Jorms a group under the operation permutation multiplication. (0.U.0. 00)

Proof. Let o be the permutation multiplication (composition of mappings in A (S) ).

(For completion of the proof please refer to Ex. 12, Chapter 2).

Note: 1. The above group is called group of permutations.

2. In the above theorem S is not assumed to be finite. However, from now on, we deal
with permutations defined on finite sets only.

The permutation group is also known as the symmetric group of degree n on n
symbols.

The permutation group on n symbols is generally denoted by S, or P,. The elements
of S can be denoted also by L2, ..., n or by any other symbols.

Identity permutation. If fis a permutation of S such that f(a)=a Vae S, then fis
identity of S and we denote f as L.

Order of permutation. If 7 ¢ S ' such that f™ =1, the identity permutation in S, ,
where m is the least positive integer, then the order of the permutation f in S, is m.

Order of S, is n!

For: Let f be a permutation on S with »n elements (symbols) «a,,a,, ..., a, .

The image of a, under f can be any one of q,,a,,...,a, . So the image of a, can be
chosen in n ways. After the image of g, is chosen, to choose the image for a, we have
(n —1) choices only. The image of @, can be chosen in (n —1) ways. Similarly the images
of as,ay,...,a, can be chosen respectively in (n —2) ways, (n—3) ways, ....1 way. Since
the ways of choosing images are independent, the total number of ways of choosing the
images of a,,a,,...,a, is n(n—=1)(n—-2)...1 i.e. nl.

Note. If the number of elements in S is 1, then o(S,) =1!=1 and hence S, forms an
abelian group.

If the number of elements in S is 2, then o(S,) =2!=2 and hence S, forms an
abelian group.

If the number of elements in S is 3, then o (S,)) =3!=6 and hence S, forms a group
and so on.

In fact S, forms a non-abelian group if S contains 3 or more than 3 elements.
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7.3. SYMBOL FOR A PERMUTATION WHEN S = {a,,a,,...,a,}.

Let f:S — S be a permutation such that f(a)) = b, f(ay) =b,, ..., f(a,) =b,
where b, b,,...,b, are nothing but the elements a,,a,,...,a, of S in some order. So we

a,adr,...,a . . .
bl b2 b" , where each element in the second row is the f image of the
1>U25 0 Uy

corresponding element (element lying above) in the first row. Then we have 5! elements of

write f =

the type f in S, where S, is the set of all permutations defined on S.
If S=1{1,2,3,4,5} and f:S — S is a permutation such that f = {(1,3),(2,5), 3, 4),
(4,2),(5,1)} then we write

12345 . 21453
f_&5421 . We can also write f as [r53214

in which the order of the elements in the first row is not followed whereas their
corresponding images only are written in the second row (following the order of the elements
in the first row). Here we see that :
1-532—->53—>44—->2and 5 > 1.

Equality of permutations on S ={1,2,3,4,5} : If

(12345 21453 \
135421 and g = 53914 then f =g since f1)=3=g (1), f2)=5=g(),

fB)=4=80).f4=2=¢@), [ =1=¢g(5).

In particular, Identity permutation on S = {a,, a,,...... ,a,} in S, is given by
_(ay ay ...a

. b b, ...b, ,
I= or where the elements «,a,,......,a, of S are nothing

a a, ...a, b by ...D,
but the elements a;,a,,...,a, of S in some order.

If S={L 2, 3,4, 5}, then Identity permutation on A is

12345 43152
I= = , etc.

112345 43152
123 123
Ex1:If A= [ ,B = , then find AB and BA. (A.N.U 92)
231 312

Sol. Since (AB)(1) = A(B(1)) = A(3) =1; AB(2)=2,AB(3)=3, AB= G i ;J

Sil’lCC (BA) (1) — B(A (1)) =B (2) = 1’; BA(Z) :2, BA(3) = 3, we haVe BA = (1 j i)

ez it o2 and o<1 23%5) then find fe and
X.2 “l53241) 4 8= 5,5 thentindfgand gf

Sol. Since gf() =g (f())=g(5) =5, gfi2) = 1, gf(3) =3, gf(4) =2, gf(5) = 4

12345]

e have =
we have gf [51324
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12345

imilarl _
Similarly fg [42531

Jsmwfmm=f@@»=ﬂ@=zew

Note 1 : Obviously fg # gf . Thus we notice that multiplication of permutations is not
commutative.

2.]01_12345 12345_12345_f dsimilarly 1 f —
’ “ls324a1){12345]) (53024 /7 anasumray fF=r-

3 : Sometimes we may have fg=gf.

1234
If f= 1234 =[ ]wehave fo = 1234) gf (N.U.A95)

2341 % (3412 4123
Ex.3: Multiplication of permutations is associative. Show that.

£ f= 12345 (12345 dhe 12345 N
=3 1as50 8 13452 8d=] 5,5 |then (&)= r(sh)

Sol. We have gh—[12345) fo (12349
oL Wehave 8=\ s 4321178345211

(f)h_12345 df(h)—12345 S e "
=g 5413) M TED= 55 4 5] S0 U= T(8h).
Inverse of permutation : It is also a permutation (bijection).
. 4 . (b by ...b
If f= @ G2 e , then its inverse, denoted by £7!is b "
b b, ...D, a a, ...qa,

¢ fla) =b = f'(b) = q, etc)
Also  flp= b by ...b, \(a a, ...qa, _[a a -..q, 1
ay a, ...a, |\ b by ...b, a, a, ...a,
ind Fp= a, a, ...a,\(b by ...b, _ b by ...D, 1
bl b2 bn a ap ...a, bl b2 bn
6
Ex.4: Find the inverse of the permutation 5

123 456) (1 6
Sol.: Inverseof | 3 4 5 ¢ | 2[18|5 6 1 2 3 4

Note 1. The set S, of all permutations on n symbols is a finite group of order n!
w.r.t. multiplication of permutations. For n < 2, the group is abelian and for n > 3, the group
is non-abelian. This can be proved as in Ex. 15, Chapter 2, taking f, f, .... as permutations.

2. To write the inverse of a permutation, write the 2nd row as 1st row and 1st row as
2nd row.

(A.N.U. M98)
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Ex.5 : Find the order of the cycle 1 4 5 7). (0.U. M. 08)

1 2 3 4 5 6 17
Sol. Let f=(1 4 5 7)=[ ]

4 2357 6 1

f2_12345671234567_1234567
14 23576 1423576 1] (523716 4f
f3_f2f_1 3456 7\(1 2 456 7) (1234567
B |15 2 3 7 6 414 2 576 1] |7 231465
f4_f3f_123456712 456 7)(1 23456 7).
B 17 2 31 6 5/|4 2 5 6 111 2 3 456 7]

~. Order of the cycle = 4.
Note. The cycles of fare (1 4 5 7)(2)(3)(6).
[ 7.4. ORBITS AND CYCLES OF PERMUTATION |

Definition. Consider a set S = {q;,a,,...... ,a,} and a permutation f on S. If for
s € S there exists a smallest positive integer I depending on s such that /(s) = s, then the
set {s, f 1(s), f 2(s), e f ! 71(s)} is called the orbit of s under the permutation f . The ordered
set {8, £1(5), £2(s)s..., f'7'(s)} is called a cycle of £ .

. . 123456
e.g. 1. Consider S ={1,2,3,4,5,6} and a permutation on S be f = 213564]
We have f!(1) =2, f2()= f(2)=1. . orbitof l under f = {1, f(1)} = {1,2}
We have £'(2)=1, f?(2)= f1)=2. .. orbitof2under f ={2,1}
We have f'(3)=3.. . orbit of 3 under f = {3}

We have f!(4)=5,f>(4) = f(5) =6, f’(4) = f(6) = 4.
orbit of 4 under f = {4,5,6}.
We have f1(5)=6,/%(5) = f(6) =4 f'(5)=f(4)=5.
orbit of 5 under f = {5,6,4}.
We have f1(6) =4, f*(6) =5, f>(6) = 6. - orbit of 6 under f = {6,4,5).
Hence the cycles of f are (1,2),(3),(4,5,6).

123 456 7 8

e.g. 2. Find the orbits of & =(
2 35 146 87

j. Also find the order of o .

(K. U.M07)
Sol. Consider S ={1,2,3,4,5,6,7,8} and a permutation on S be 6 =(

We have 6'(1)=2,6°(1)=06(2)=3,6°(1) =6(3)=5,6* (1) =0(5) =4,06°(4) =1
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. Orbit of 1 under 6={1,6'(1),6%(1),6°(1),6* (1),0° 1)} ={1,2,3,5,4}

We have 6'(2)=3,62(2)=06(3) =5,6°(2) =6(5) =4,6*(2) =6(4) =1,6(2) = 6(1) =2

= Orbit of 2 under 6 ={2,6'(2),6%(2),6°(2),6*(2),6°(2)} ={2.3,5,4}

We have 6'(3)=5,6°3)=06(5)=4,6°3)=0(4)=1,6*3)=0(1)=2,6°3) =5(2) =3
= Orbit of 3 under 6 ={3,0'(3),6%(3),6°(3),6*(3),06°(3)} ={3,5,4,1,2}

We have 6'(4)=1,06>°(4)=0(l)=2,6°(4) =0(2) =3,6*(4) =06(3)=5,6°(4)=0"(5) =4
. Orbit of 4 under 6 =1{4,1,2,3,5}

We have 6'(5)=4,6%(5)=0(4)=1,6°(5) =o(1) =2,6*(5) =06(2) =3,6°(5) =6(3) =5
. Orbit of 5 under 6={5,4,1,2,3}

We have ¢'(6)=6

. Orbit of 6 under ¢ = {6}

We have ¢'(7)=8,6%(7)=06'8) =7

.. Orbit of 7 under 6 ={7,8}

We have ¢'(8)=7,6%(8)=0(7)=8

. Orbit of 8 under 6 ={8,7}

[Hence the cycles of ¢ are (1,2,3,5,4),(6),(7,8) ]

. 1 23 45 6 7 8
Again o =
2 3514 6 87
, (1234567
=0 =
354 2 16 7
X 23456
=0 =
5413 26
, (123456 738
=0 =
4 1 2 5 3 6 7 8
:>G5:12345678=1(Herec5’"=lWheremisleast)
12 3 45 6 7 8

~. Order of o is 5.
Cyclic permutations

Definition. Consider a set S = {q;, a,,...... ,a,} and a permutation

(@ ay a3... ap apy, - a,
f= on S.

a2 a3 a4... al ak+1...an

Le. fla)=a,, fla))=as,... f(a,)=a, f(a,)=a., ... f(a,)=a,
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This type of permutation f is called a cyclic permutation of length k and degree
n. It is represented by (a, a, ... a;) or (a,,a,,as,...,a,) which is a cycle of length k or
k-cycle. (K.U.M. 00, M.99)

Thus : The number of elements permuted by a cycle is called its length.

In this type of notation we ignore elements that are mapped onto themselves. Also we
can write the cycle (a,a,a5...a;) as (a, ay...a;, @) or (azay ...a; a; a,) etc.

123456

eg. 1. If S={1,2,3,4,5,6} then a permutation f on S is (3 146502

J. It can be
written as (1 3 4 6 2) since f() =3,f3) =4,f(4)=6,f(6)=2,f2) =1and f(5 =5.
f is a cycle of length 5. f can also be written as (34 6 2 1) or (4 6 21 3) etc.

following the cyclic order.
1234567

eg. 2. 1f S=1{1,2 3 4,5, 6, 7} then a permutation f on S is 3254761 .Itcan

be written as (1 35 7). f is a cycle of length 4. f can also be written as (357 1) or

5713 or (7135).
( ) ( ) 123456

eg. 3. If S=1{1,2,3,4,5,6} then a permutation f on S is 435126 f isnota
cyclic permutation since f(1) =4, f(4) =1 f(2) =3, f3) =5, f(5) =2, f(6) =6.

Note 1. A cyclic permutation does not change by changing the places of its elements
provided their cyclic order is not changed.

2. A cycle of length 1 is the identity permutation since f(q,) = a,, f(a,) = a,,...
fla,) =a,.

Transposition :
Definition. A cycle of length 2 is called a transposition. (0.U. 0 98)
i.e. trasposition is a cycle (a, b) where a and b are only interchanged keeping the rest of the

elements unchanged.
12345

eg. If S=1{1, 2, 3, 4,5) and a permutation f on S is
g { I petmu f 1[13245

] then f = (2, 3) is
a cycle of length 2 and degree 5.

Observe that f(2) =3, f(3) = 2 and the image of each other element is itself.

Here f7' =(3 2) where f =(2 3)i.e. f™' = f.i.e. the inverse of a transposition is itself.

Disjoint cycles.

Definition. Let S = {4, qa,,...... ,a,}.If f,g betwo cycles on S such that they have
no common elements, then they are called disjoint cycles.

eg. Let S={1,23 4,5, 6, 7}

@ If f=a37and g =(245) then f,g are disjoint cycles.

@If f=@137and g =(2345) then f,g are not disjoint cycles.

Product of two cycles over the same set S = {1, 2, 3, 4, 5, 6}.

eg. 1. f=(0143),g=025).
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Now we find products gf, fg .
gf:lo4d4and 4 54=1-14
(from f) (from g)
2—2, 25 =25
(from f) (from g)

3—>land 151=3—-2514—-53,3>53=4->3

5 s35and 552=5-52,656,656=6—>6

123456
451326

Also fo—(l 4 @ 5L 42356) (123456
SO = = = .
§ 435126 (451326

Note 1. The multiplication is the multiplication of disjoint cycles and fg = gf .
2. We leave identity permutation (s) while writing the product of cycles.
eg. 2 f=(236),g=(46)

Now we find products fg, gf

s fg=(236)(146)

123456)\(123456) (123456
_ - =(14236)
136452)|423651) |436251
and gf = (14 6)(2 3 6)
123456)(123456) (123456
- » =(146223)
423651)(136452] (431652 :

Observe that f, g are not disjoint and fg # gf.

sogf= Q2 5)(143)=[

N. U. 07)

3 —123456_(152)(34)(6)
€23 =5 5526

(15234 since (6) is the identity permutation and it need not be shown
=3 4)(1 5 2). Observe that (3 4)(1 5 3) are disjoint cycles.

e.g. 4 (12)(13)(15)—(12)123456 123456

=12 123456—12153—1532
=2 L ]Fuasy=as32

eg.5 3H3536)=3HB65=03654)

and 3HB54HB6)=354)36)=3654)
eg. 6. (153)(46)#(14)(536)
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. 123456)(123456 123456
since (153)(46)= =
521436)(123654 521634
1

3456
and 1 4)(536)=
426135

eg.7.If f=(134),g=23),h=(542) then we have (fg)h = f(gh)

Inverse of a cyclic permutation

eg. 1. If f=(2341) of degree 5, then f™' =(1432)

. 12345 4 (23415 12345
since f = and f7 = = =(1432)
23415 12345 41235

eg. 2. If f=(1346) is a cyclic permutation on 6 symbols, its inverse = f~!
=6431)=(01643),etc.If fF=3561, then f'=1653)=@3165),etc.

eg. 3. If F=(12345876),g=(41567328) are cyclic permutations, then
show that (fg)™' = ¢g~'f7\. (N.U. A 95)

f=(12345876)= 1234567
Sol. - 123458167

123456738
e=(@41567328) =
58216734
o (12345678) L (12345678
£ 187321645 & Tls4378621)
12345678 12345678
Also f7'= and g7' = .
61234785 43781562
Lo (12345678 L
T =ls4378621) w e =g

eg. 4 If f=(134),8=23h=0(5 42
then we have (i) (fg)''=g7'f™' and Gi) (fgh)y'=h"'g7'f!
Order of a cyclic permutation

LIf f = 123
eg. 1. =153

> L. (1233)(123) (123 3 5 123\(123 123

! _ff_£231 231 (312 =S = 5] T2 7]
Thus the order of f which is a 3-cycle in S5 is 3.
eg. 2. A={1234},f=(213), then

f2_1234 1234) (1234 C423-23D
13124]13124] (2314] B ’

f3—ff2—(213)(231)—(1 23 4]—1
_ - -/ -

] is a permutation in the permutation group S;, then

2 3 4

Here f'is a cyclic permutation of length 3 and degree 4. Order of f =3.
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eg. 3.If f=(12345), then
, (12345)(12345) (12345
o= = =(13524)
23451)|23451) (34512 ’
3 2 4 5 12345
fP=ff’=14253),f*=015432)and [’ = -

12345/
If fisacycle of length 5 and degree5, then f° =1 and hence the order of f is 5.

eg. 4. If A={1234567} and f=(7325),

5 1234567\(1234567
then f~ =

1234567
1524763)(1524763

1754362]:(27)(35)’

1 37 426 5

L (1234567
and f*=1. Order of f=4.

Theorem 2. The multiplication of disjoint cycles is commutative.
(A.N.U.S 01, S.K.U 097)

Proof. Let S ={q,qa,,...... ,a,} Let f=(x,xy,...... ,x) and S ={aj,a,,...... ,a,}
be two disjoint cycles on S.
To prove that gf = fg i.e. to prove that (gf) (x) = (fg)(x) for xe S.
For x € A, the following cases arise.
Case (i). Let xe {x,x,,...x;.} s f) e, xy, . x, )
Since f, g are disjoint cycles, {x,...x;} N {y;,...¥»,} =0
x fx) € {y...y} g(x)=x and g(f(x)) = f(x).

Now (/) (x) = g(f(x)) = f(x) and (fg) (x) = f(g(x)) = f(x) and hence

(gH(x) =(fg)(x) for xe S.

Case (ii). Let xe {y;, yo.... v} gx) e (¥ vy}

- Since f, g are disjoint cycles,

{x, X0 NGy, 1 =0
X, 8(x) & (o, xp, ... X ) - s f(x)=x and f(g(x)) = g(x).

Now (g/)(x) = g(f(x)) = g(x)and (fg)(x) = f(g(x)) = g(x).

and hence (gf) (x) = (fg) (x) for xe S.

Case (iii). Let x & {x;, x,...x,} and x & {y, y5,... ¥}

s f(x)=x and g(x) =x
Now (gf)(x) = g(f(x)) = g(x) =x and (fg)(x) = f(g(x) = f(x) = x
and hence (g/) (x) = (f8) (%)
In all the cases fg=gf for xe S.
Theorem 3. Every permutation can be expressed as a product of disjoint cycles,

which is unique (apart from the order of the factors). (N.U.D 84)

Proof. Let f be a permutation on set S = {q,,a,,...... ,a,} and a,be S. We note
that f € S, the permutation group on S. Then we define a relation ~ on S by

a~b= f"(a) =b for some integer n .
The relation ~ is
(1) Reflexive : fo(a) =I(a)=q for ae S andthus ¢ ~aVae§.
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(if) Symmetric ta ~ b= f"(a) =b=a=(f")"(b)
Sa=f"b)=>b~a-
(iii) Transitive: a ~ b,b ~ ¢ = f™(a) = b and f"(b) = ¢ for some integers m,n .
= [ (f"a)=c
= (f"f"@=c
= f"""(a) = ¢ for some integer n +m
=a~c
. The relation ~ is an equivalence relation on S. Then the set S ={q,,...q,} is
partitioned into mutually disjoint classes. Each class consists of elements which can be
carried into each other by f"(a) =b and so f generates a cycle on the elements of each
class. Since every element of S is in someone of these classes, and cycles on disjoint
classes of elements have no elements in common it follows that the permutation f is a
unique product (in any order) of the disjoint cycles associated with the equivalence classes.
Ex. 1. Write down the following products as disjoint cycles.

HA32)GB6NQR6DMAS) () 1361357671234  (S.KU. 2001/0)
Sol. ) (1325672 61)45)

(1234567 1234567
13124675 2635417
from the first two disjoint cycles from the last two disjoint cycles
1234567
= =D(275463)
1726435

Since 7 is the maximum in any cycle, we take every cycle as a permutation of degree7.
() (136)1357)(6 71234
1234567)(1234567)(1234567

3264517)(3254761)12341576
1234567 1234567_[1234567

6254713)(2341576 2546731
Ex. 2. Express the product (25 4)(1 4 3)(2 1) as a product of disjoint cycles and
find its inverse.
Sol. 25414321
:(254)(12345](12345]:(12345J[12345]
42135)121345 15324)124135
=(12345J=(1543)(2)
52134
OR : Cycle1:2 55,54, 4—2.
Cycle 2:1 54,453, 3->1.
Cycle 3:2>1,1— 2.

Start with cycle 3, then go into cycle 2 and end with cycle 1 while writing the image of
every element.

]:(1257)(346)
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12345

.. Required product = (5 5134

J=(15 4 3)(2)

(Since : from cycle 3, 1 — 2; from cycle 2, 2 — 2; from cycle 1, 2 — 5; etc.)
2nd part: [(254) (143) 2D
=12@3B41H452)= 12345
= “135451|=03452=345D(2)
Note. (1543)'=3451 and 2)"' =(2)
Ex. 3. Express the product (4 5)(123)321)(5 92 6)(1 4) on 6 symbols as the
product of disjoint cycles.
Sol.(4512332DG 42 6)(14)

=456H260A4 [~ B2 =123 andB2D'G2D)=1]

=2614 [+ G =@15)]
| Theorem 4. Every cycle can be expressed as a product of transpositions. |
The truth of the theorem is only verified here.

Ex. 1. Let f =(2 4 3) of degree 4.

ool (PR3N30 0,
Then f= 1324 1432 l1423]

Alsowe have: f=23)12)2 D2 4),f=013)G D2 3)Q 4),
f=13)3D23d4¢ADQ2 4, etc.
Also f =@ 32). .. Wecan have
f=@42)43, f=GH03)HA 21 2),2 1)#4 3), etc.
Thus every cycle can be expressed as a product of transpositions in many ways.
Ex. 2. Let f=01234). Wecanhave f=(14)1 3)(1 2)
Also f=2341. .. Wecanhave f =2 1)(2 4 (2 3), etc.
531465 (S.V.U. S 93)
Then f=(0123)@4)G6) =13)12)(G56)
or f=(312)@)56) =032 31D 6)
=4505493B23DES o), etc.
Ex. 4. Let f =(a,,a,,...qa,) -
We can have f =(a, a,)(a a,_;)...(a; a3)(a; ay) i.e. a cycle of length n may be

123456
Ex. 3. Letf=[ j

expressed as a product of (n — 1) transpositions.
Note. In the case of any cycle the number of transpositions is either always odd or
always even.
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Theorem 5. Every permutation can be expressed as a product of transpositions
in many ways.

It is a consequence of Theorems 3 and 4.
[ 7.5. EVEN AND ODD PERMUTATIONS |

Definition. A permutation is said to be an even (odd) permutation if it can be
expressed as a product of an even (odd) number of transpositions.

To study the theorem that ensures it is worthwhile to consider the following illustration.
We consider a polynomial Ps(x)in 5 distinct symbols xj,x,,x3,x4,x5 defined as the
product of all factors of the type X; —x; where 1<i<4and 2<j<5

Consider Ps (x)= ()Cl - )Cz) (xl - )C3) (xl - .X'4) ()Cl - .XS) ()C2 - .X'3)

(X = x4) (X3 = x5) (X3 — x4) (X3 — X5) (x4 — Xs5)

=mn(x; —x;) where i< j, 1<i<4 and 2< j <5
(4;5 =10 factorsj

Consider a transposition (2 5) on Ps(x).
We can have P5(x) = +LM (x, — x5) where

L= = (xi—xj)z(xl—x3)(x1—x4)(X3—x4)
i,j#2,5

[factors which do not contain x,, x5 ]

M= .7&725 (x; —xz)(xj - X5)

=(x1 —xp) (X —x5) (X3 =xp) (X3 —x5) (x4 —x3) (x4 —x5)
= (0 = xp) (X = x5) (x5 = x3) (X3 = X5) (X3 — xg) (x4 — x5)

. (2,5) P5(x) =(2,5)[+ LM (x3 — x5)]
=+ (2,5 L.(2,5M.(2,5)[x, — x5]
=+LM [~ (%, —x5)]=— [+ LM~ (x, —x5)] = —P5(x)

Again consider a transposition (2,4) on Ps(x). We can have -- where

P5(x) =—LM (x5 — x4)

L= m (x;—x;)=0q—x3)(x —x5)(x3 = x5)
i,j#2,4
[factors which do not contain x,, x, ]
M = %7;4()‘1‘ — X)) (X = xy) = (X = xp) (a3 = xp) (x5 — x3)

(= xg) (a3 = x4) (X5 = Xy)
(0 = x2) (3 = x4) (X3 — x3) (X — x5) (%3 — x4) (x4 — Xs5)
Then 2,49L =L, (2,4HM =M and (2,4)[(x, — x4)] = x4 — X, = — (x5 — X4)
(2, HPs(0)=(2, 4 [- LM (x, —x,)]
=-(2, L. 2, HM. (2,4 [x, — x4]

=—LM [(x, —x)]=— LM. [- (x; —x))] == [- LM [(x, —x4)]=-P5(x)
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. A transposition changes Ps(x) to —Ps(x).
Note: P;(x) =tLM (x, — x4) = (r,5)Ps(x) = —Ps(x) where 1<r, s<5.
Theorem 6. Let S ={a,,a,,...,a,} . If f is a permutation on S which can be
expressed as a product of r transpositions and again as a product of s transpositions,

then both r, s are even or odd.
Proof. To prove the theorem we take a polynomial in x corresponding to S.

Let P,(x) = (x; — x3) (x; = x3)...... (X —x,)

(xp-1 = %)

=n(x; —x;) where i< j, 1<i<n-land 2<j<n

(product of (n _21) 1

factorsJ

Now P, (x) can be split into the following three types of products corresponding to a

transposition (r, s) .

i L= m (x-x;) [factors that do not contain x, or x; ]
1, j#71,8

() M= n (x,—-x,) (x;—x,) [ takes all values but not x, or x,]
I#r,s

(iii) x, — x;

v P(x) =+ LM (x, — x,)
We consider the effect of transposition (r,s) on P, (x)
Then (r, s)L =L (- any factor I does not contain either (x, or x,))
(r, )M =(r,s)[x T (x; —x,)(x; —x,)] =M
i#7,8
(rys)[(x, —x)]l=x, —x, = —(x, —x,).
(r, ) [P, ()] = (r,s)[£ LM (x, — x)]
==x(r,s)L.(r,s) M.(r,5) (x, — x;)
=+[ILM {(x, —x)}] = £[LM {-(x, —x)}] =-P,(x).
. A transposition (r, s) changes P,(x) to — P, (x)
Let f be apermutationon S.If f can be expressed as a product of r permutations,
say fi, f2s---, f, then
SR, (X)) = fi, forees [ [P, (0]
= fis frreos fro (CD'PL(0) = (D' P,(x)
Again if f can be expressed as a product of s transpositions, then
f(P,(x)=(-D"P,(x).
Since f isa permutation (bijection), f(P,(x)) is unique.
(-D"P,(x) = (-D)'P,(x) .
For this to be true, both r, s must be even or odd.
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Note 1. If f is expressed as a product on n transpositions then either n is even
or n is odd but cannot be both and n is not unique.

In other words, a permutation can be expressed as a product of an even number
of transpositions or an odd number of transpositions.

Hence the permutation group S, on n symbols can be split up into two disjoint
sets, namely, the set of even permutations and the set of odd permutations.

2. Every transposition is an odd permutation.

Cor. 1. Identity permutation I is always an even permutation since I can be expressed
as a product of two transpositions.

eg.I=122D=0122D3B D3 etc.

Cor. 2. A cycle of length »n can be expressed as a product of (n — 1) transpositions. If
n is odd, then the cycle can be expressed as a product of even number of transpositions. If
n is even, then the cycle can be expressed as a product of odd number of transpositions.

Cor. 3. The product of two odd permutations is an even permutation.

Proof. Let f, g be two odd permutations. Let f can be expressed as a product of r
(odd) transpositions and g can be expressed as a product of s (odd) transpositions.

~. gf can be expressed as r+s i.e. even number of transpositions. Hence gf is
even.
Cor. 4. The product of two even permutations is an even permutation.
Cor. 5. The product of an odd permutation and an even permutation is an odd permutation
is an odd permutation.
Cor. 6. The inverse of an odd permutation is an odd permutation. (A.N.U. 97)
Proof. Let f be an odd permutation and I be the identity permutation.
- f7'is also a permutation and f7'f = ff7' =1.
Since T is an even and f is an odd permutation, we must have 7' to be an odd
permutation.
Cor. 7. The inverse of an even permutation is an even permutation.
Proof. Let f be an even permutation and I be the identity permutation.
- £~ is also a permutation and f7'f = ff7' =1
Since I is an even and f is an even permutation, we must have f~' to be an even
ermutation.

Theorem 7. Let S, be the permutation group on n symbols. Then of the n!

permutations (elements) in Ly are even permutations and Ly are odd
2

2

permutations.

Proof. Let S, =(e,e;...,¢,, 0, 0,,..., 0,) be the permutation group on »n symbols
where e,...,¢, are even permutations and 0;,...,0, are odd permutations.(- any
permutation can be either even or odd but not both).

p+q=n!
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Let r€ S, and ¢ be a transposition.
Since permutation multiplication follows closure law in S
tey,te, ... te,,10.,10,...,10, as elements of S, .

., we have
Since ¢ is an odd permutation.

tej,te, ..., te, are all odd and 70,,70,...,10, are all even.

p

Let tg=tej for i< p,j<p.

Since S, is a group, by left cancellation law €; = e; which is absurd.

. te; #te; and hence the p permutations fe;,te, ...,te, are all distinct in S, . But
S, contains exactly ¢ odd permutations.

p<gq ..(D

Similarly we can show that ¢ even permutations #0,,20, ...,70, are all distinct even
permutationsin S, .

© g<p ...(2)

~. From (1)and (2) p=¢q = %n! ¢ p+qg=n)

. . . . 1
. Number of even permutations in S, = Number of odd permutation sinS,, = 5 n!.

Definition. Let S, be the permutation group on »n symbols. The set of all %n! even

permutations of S, , denoted by A, is called the alternating set of permutations of degree n .

Theorem 8. The set A, of all even permutations of degree n forms a group of

order 1/2 n! w.r.t. permutation mulfiplication. (A. U. M11, N.U. 00)

Proof. Closure. Let f,ge€ A, are even permutations.

gf 1s an even permutation and hence gfe A, .
Associativity. Since a permutation is a bijection, multiplication of permutations
(composition of mappings) is associative.
Existence of identity. Let f€ A, .Let I be the identity permutation on the n symbols,
then T€ A, , since I is an even permutation.
fI=1f for fe A, . Identity exists in A, and I is the identity in A, .

1

Existence of inverse. Let fe A,. .. f isaneven permutation and f~' is also an

even permutation on the n symbols such that f7'f = ff™' =1 for fe A,,.
~.Every element of A, is invertible and the inverse of f is f7'.
- A, forms a group of order% n!since the number of permutations on n symbols is % n!
Note 1. The group A, is called alternative group or alternating group of degree n and

. .1
the number of elements in A, is —Zn.
2. The product of two odd permutations is an even permutation and hence the set of
odd permutations w.r.t. permutation multiplication is not a group.
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Theorem 9. The set A, of all even permutations on n symbols is a normal

subgroup of the permutation group S, on the n symbols.
(A. U. MI1, A.N.U. M03, S93, A93, S.V.U. M03, 001, 099)
Proof. S, is a group on » symbols w.r.t. permutation multiplication and A,(c S,,) is
the set of even permutations. Also A, is a group w.r.t. permutation multiplication.
Let feS, and ge A,.
. g 1is aneven permutation and f is an even or odd permutation.
If f is an odd permutation then 77! is also an odd permutation.
Also fg is an odd permutation.
. fgf" is an even permutation and hence fgf~'e A,
If f isaneven permutation, then f~' is also an even permutation. Also fg isaneven
permutation.
. fgf! is an even permutation and hence fgf'e A, .
Thus feS,,geA, = fgf ' €A,
. A, is anormal subgroup of S,
Ex. Find A, the normal subgroup of P;. (K.U.S. 00,0.U. 01/0)
Sol. Let S ={a,b,c} and Py ={f\, />, f3, f4. [5, f¢} be the permutation group on S.

abc
Now fi = [a b C] =(a b)(b a) - fi is an even permutation.
abc
fr= b =(a b) - f, is an odd permutation.
ac
abc
f3= = o) -, f; is an odd permutation.
ach :
abc
fa = =(a c) - f, is an odd permutation.
cba
abc
5=, g7 @b =(acyabd) - fs is an even permutation.
abc
fe = cabl” (a cb)=(ab)lac) . fe 18 an even permutation.

A5 ={fi, fs, f¢} is a normal subgroup of P;.
[ 7.6. CAYLEY'S THEOREM |

Theorem 10. Every finite group G is isomorphic to a permutation group.
(K. U. 07, A.N.U. M 01, S 00, S98, S97, S96, S93, A90, A89, A.V.0. 01, A 01, M 00, S96,
S.K.U. M 03,0 02, M 01, 0 00, A 00, A99, S.V.U. S 03, 0 02, O 01, A98, 097, A97)

Proof. Let G be a finite group. Let a € G . Then for every xe€ G,axe G .
Now consider f, : G — G defined by f,(x) = ax for xe G.
For x,y e G, ax,aye G, Lox=y=2ax=ay = f,(x)= f,(y)

£, 1s well defined.
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f, is one-one since for x,y € G we have f,(x) = f,(y) = ax=ay=>x=y.
f. 1s also onto since for xe G, 3 a'xe G

such that f (a™'x)=a (a'x)=(aa™") x=ex=x.
Thus f,: G — G is one-one and onto.

. f, is a permutation on G.

Let G'={f, |ae G} ie., let G' be the set of all permutations (one-one and onto
mappings defined on G ) defined on G corresponding to every element of G. We shall
show that G' is a group w.r.t. permutation multiplication.

Closure. For a,be G, f,, f, € G'.

For x € G.(f,f,) (%) = f,(f,()) = f,(bx) = a (bx)

= (ab)x = f,,(x) since abe G .
~ Jfafy = fu and fy, € G'. Hence f,f, € G'
Associativity. For a,b,c€ G, f,, f,, f. € G'.

For X € G’ ((fafb)fc)(-x) = fa((fb)fc(x)) = fafb(fc)(-x)
= fafb(fc(-x)) = fa(fbfc(x))

= (fafh)fc = fa(fhfc)
Existence of identity. Let ¢ be the identity in G.

. feEG and fefa:fea:fa' fafe:fae:fa"
- Identity in G' exists and itis f, .
Existence of inverse. If ae G, then 47' e G.
. fa—l S G' and fa’lfa Zfafla :fe'fafafl :faaA zfe‘
Every elementin G' is invertible and [f,] = S
. G' is a group.
Flnally we show that G = G'.
Consider ¢ : G — G' defined by ¢ (a) = f, for ae G .
¢ is one-one since ¢(a) =¢(b) = f, =f, = f, () =fL(x) > ax=bx=a=b
for xe G and a,be G.
¢ is onto since for f, € G',a € G such that ¢ (a) = f,.
¢ is structure preserving since for a,b€ G and ab e G and
O@ab) = fop = fufp =0 (@) 0 (D).
G=G' G' is called a regular permutation group.

Note 1. The above theorem can also be stated as :
Any finite group of order » is isomorphic to a sub-group of the symmetric

group S, (A.U. M 74)
2. Cayley's theorem is true even if the group G is not finite. If G is infinite then the

statement of the theorem is : Every group is isomorphic to a group of one-one onto functions.
(N.U. 0 88, S 93)
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Above proof holds even here with the exception that the word permutation must be
replaced by one-one onto function.

Ex. 1. Examine whether the following permutations are even or odd.

12345678J

. 123456 )
@) 324567 1|AUMILNU99,2K) (i) (3155624

i) 1234502345 (N.U. 99, $2000, 091)
, 123456789
(iv) 61432572809 (A.N.U. A91, 89, S.K.V. 2003)
1234567
Sol. (i =(134567Q2
0(3245671) ( )@

=(134567)=0716)1d514A 3) [Product of 5 transpositions]

.. The permutation is odd.

(i) [12345678

73185624

=(3)(1217) (48 [Product of 4 transpositions]
The permutation is even.

i) 12345023455 =01203A40A5HA2)A3)4)5)
=(12)13)1 4 (545 Product of 5 transpositions.
The permutation is odd.

(1234567809
(w)( L 432808 8)=(1652)(34)(7)(89)=(12)(15)(16)(34)(89)

The permutation is odd.
Ex.2. Find the regular permutation group isomorphic to the multiplicative group

{1, 0,0} . (A.N.M99, M98, S.K.V. M2001)
Sol. We use Cayley's Theorem.

=1723)48)(5(6)

G ={l,0,0°} and f, : G — G be a mapping defined by f,(x)=ax for each ae G

and x is any element of G.

The regular permutation group ={f}, fo,» f,7 }

1 o o 1 o (1)2
1 lo 1 (identity permutation)
o Lo’

_ 1 o o
ol 0o 0o’ 0 o o o o 1
o’ o o 1 o o
and fo = = = ,
0.1 0’0o oo’ o o o o 1 o

where fj —[

e
I
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Ex. 3. Find the regular permutation group isomorphic to the multiplicative group
, -1, 4, —i}. (A.V.S. 00, S99, $98, S97, A.N.V.M97, S.V.U. 098)

Sol. We use Cayley's theorem,

Let G={l, -1, i, —i} and f, : G — G be a mapping defined by f,(x) = ax for each
a€ G and x is any element of G.

Then the regular permutation group = {f,, f_, f:, f_;} where

1.1 1.-1 1.i 1.—i -1 1 i —i
-1 i =i -1 i —i
f_lz(—l.l -1 -1 —l.—i]:[—l 1 i ij’
1 =1 i =i (1 -1 i i
f’:[i.l -1 Qi i.—i]z[i i -1 1}’
S L SO A T
f_i:[—i.l By —i.—i]z[—i i1 —J

Ex. 4. G ={e,x,y,xy}. '0' is an operation defined on G such that x

1 -1 i —i -1 1 i —i
h= = . =I (identity permutation)

2 2
:y =e

and xy = yx. Find the regular permutation group isomorphic to the group (G, o).
Sol. We use Cayley's theorem. e is the identity of G let f, : G — G be a mapping

defined by f,(x) = ax for each a € G and x is any element of G.

Then the regular permutation group ={/,.f. /> fy}

e x y xy e'x y xy
where fe=[ =( ]=I,

ee ex ey exy e X y xy
e X y y e X y Xy

I =[xe XXXy xxy =[x e xy yJ since xxy = x’y =ey =y,

(e x oy xy) (e x y xy

f”_[ye woyy )y o oe XJ

f_exyxy_exyxy
xy_xye Xyx  xyy xyxy_xyyx e

since xyx = yxx = yx* = ye = y, xyy = xy° = xe = x,

since yxy = xyy = xy* = xe = x,

XyXy = Xyyx = xy’x = xex = x> = e .
Ex. 5. Write down all the permutations on four symbols 1, 2, 3, 4. Which of these
permutations are even permutations?
Sol. Let S ={1,2,3,4}. Let S, be the set of all permutations on S.
Then S, ={1)d 2),(L,3),(1,4),(2,3),(2,4),(3,4).
123),0132),124),1042),134),
143),234),243),1234),1243)
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13 24),1342,01423),0432),
1 2)(3 4),2 3HA 4),3 D2 4).}

Now S, is a non-abelian group under permutation multiplication.

Let A, be the set of all even permutations in S. A, contains %(4 D) elementsi.e. 12
elements.
Then A, ={(D( 2 3),(13 2),d 2 4),(142),(34)
143),234),243),12)34),2314,3D(24).}
Note. S, is anon-abelian groupi.e. A, is a non-abelian sub-group of the non-abelian

group S, . Hence a non-abelian group can have a non-abelian subgroup.

Ex.6. Find the order of n-cycle in the permutation group S, . (N.U. 89)
Sol. Let S, be a permutation group on S = {qa, a,,...... s, )
a a, dx ... a,_; a .
Let f=| ' 27 "1 77| ben-cyclein S, .
a, as a, ... a, q
a a, as...a,_, a a, a, as...a,_| a
Then f2=ff= 1 %2 ©3 n—1 “n 1 3 n—-1 “%n
a, ay a4 ... a, ay|\a, ay a,...a, q
_ al Cl2 Cl3... an—2 an—l an
as a, as...a, a, a,
Thus in f%:a, — a3, ay — a, ..., a, = a,;
3 .
m f>:a —ay, a, >as, ..., a,—>a;
in (' a a,, a > a, ..., a, > a;
in f":a. > ay, a, > ay, ..., a, > a,

f" =1, the identity permutationin S, .
Orderof n-cycle f in S, is n.

Ex. 7. S, be a symmetric group of n symbols and let A, be the group of even

. . . 1
permutations. Then show that A, is normal in S, and O(A,)= " l.

(A.N.UM03,N.U. S 93,493, S.V.U. M, O 96, O 01, 099, M 03)
Sol. Let the n symbols be 1, 2, 3,...n. S, is the symmetric group of the n symbols
w.r.t. permutation multiplication and A, (c S,) is the set of all even permutations.
We know that G = {1, —1} is a group under usual multiplication and 1 is the identity in G.
Define a mapping f :S, — G such that ¢€ S, ,

1, when ¢ is an even permutation

f(¢)={

—1, when ¢ is an odd permutation
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Thus all the even permutations of S, under f are mapped into 1 and all the odd
permutations of S, under f are mapped into —1. now we prove that f :S, — G is an
onto homomorphism with A, as Kernel.

Let ¢,,¢, beeven = ¢, ¢, is even. (ii) both ¢,,¢, are odd (iii) one is even and the

other is odd.
@) ¢,,9, are even = ¢, ¢, 1s even
FO)=1f(@,)=1 and f(¢;0,) =1
and hence f(¢;0,) =1=1.1= f(¢).f(95).
(i) ¢;,0, are odd = ¢, ¢, is even.
’ fO) =-Lf(,)=-1 and f(¢,9,) =1
and hence £(¢; ¢;) = (=D (=D = f(¢1). f(9,) -
(iii) ¢, is even and ¢, odd (say) s 0 ¢, is odd
Also f(¢;) =1 f(0) =-1 and f(¢;. ¢,) = -1
and hence f(¢; ¢,) =-1= O (D = f(@). f(9p)
-~ In all the cases (i), (ii) and @ii) f(0, 05) = £(¢). F(D,)
s f:S, > G is ahomomorphism.
Also from the definition f is onto.
Since all the pre-images of 1 of G are even permutations of S, and since no other
permutation of S, has its image as 1, ker f = A, (the set of all even permutations)

But ker f is a normal subgroup of S,

S, =G.

n

.. By the fundamental theorem on homomorphism,

>

O (Sn))=2=>0 (An)=10 (Sn)=ln!.

03 |-0 @226
A 0 (A 2 2

n n

EXERCISE 7

123456
312465

2.  Write down the inverses of the following permutations.

by [12343 (4231 5

1. Express f = ( ] as a product of transpositions. (S.V.U.A93)

(123 4 1 2345
(V) || 3 4 o] (0.U.A2000,493) M|y 3 1 5 4|0U.0%)
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3. Find whether the permutation is odd or even..
123456789
614325798

Also show that the inverse of the permutation is odd.
4. Write down the following permutations are products of disjoint cycles.

12345678
D [37148265 (i) (43125)(1452) (on5symbols)

(iii) (1325).(143).251) (K.V.M. 04, 0.U.A. 01, 0 01, S.V.U. A 93)
5. If f=(123456) showthat f2=246)135) and f>=(14)(25@36).
(S.V.U.093)

6. Provethat 1234..n "' '=(m(-1...4321).
7. () Express (12 3)(4 5 (167 89)(15) as the product of disjoint cycles and find its

inverse. (0.U. 91)
(ii) Express (1 2 3)(4 5 6)(1 6 7 8 9) as a product of disjoint cycles. Find its inverse.
(0.U. 098)

8. IfA= (1 23 5] B = [1 22 5] calculate AB,BA,A™', A’B,B"'A?
: 23154 13452 b ’ >
9. If f=(12345876), g=(41567 32 8) arecyclic permutations then show that
(f =g
10. Verify whether the following permutation is even or odd.

(1 234567
@ |5 5 5| (S.KU.02003)

4 6
(123 5
(i) |, 3 6

e |

J (S.V.0.593)
6
1

7
7 9 8] (K.U.M. 2004, 099)

(1234567809
s g 2196 37 4 KUMI

1 2345673809
Ml 948351 6 7] KUMIG

1 2 3 456
(vi) 312 46 5 (S.K.U.A.99)
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1. 12)13)(5 6)

(12345),  (1234) (1234567 (1234 12345
2'(1)[54231](11)[3412J(111)(5674213(1V)14z3(V)31254
3. odd 4. () 13)276)(58 (i) (13) (i) (154 2)

7. G 23456789 () 145678923),329876541)
12345 12345 4 12345
8. AB = , BA = AT = s
21543 34125 31254
1 2 3 45
AZB = B_1A2:12345
3245 1) 2 15 3 4

10. (i) even (ii) odd (iii) odd (iv) even (v) odd (vi) odd.
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Cyclic Groups

8.1. Before defining a cyclic group, we prove a theorem that serves as a motivation
for the definition of cyclic group.

Theorem. Let G be a group and a be an element of G. Then H = {a" /ne Z}

is a subgroup of G. Further H is the smallest of subgroups of G which contain
the element . (N.U. 92)
Proof. Let (G, .) be agroupand a € G.

1

For 1€ Z we have a =a€ H which shows that H is non empty.

Suppose now that a”,a’ € H. We will show that (i) «’a’ € Hand (a")™" € H which

will prove that H is a subgroup of G.
a', i e H=r,seZ=r+s,—reZ

wa".a*=a"eH and (') '=a"€eH

. H is a subgroup of G.

(ii) Suppose K 1is any other subgroup of G such that 4 € K. Then ¢" €e KVne Z.

~. H c K which shows that H is the subset of every subgroup of G which contains a .

Thus H is the smallest of subgroups of G which contain « .
| 8.2. CYCLIC SUBGROUP GENERATED BY « |

Definition. Suppose G is a group and a is an element of G. Then the subgroup
H = {a" /ne Z)} is called a cyclic subgroup generated by a . a is called a generator of H .

This will be written as H =< g > or (a) or {a}.

Cyclic group.

Definition. Suppose G is a group and there is an element a€ G such that
G ={a" |ne Z}. Then G is called a cyclic group and « is called a generator of G.

We denote G by < a >. (A.N.U.J 04, M99, 091, A90, A89, A.U.M. 05, S 00, K.U.096,

0.U.M12,0 02,A 01, A99, S.K.U.098, A97, S.V.M. 03, 0 01, S 03, A99)

Thus a group consisting of elements which are only the power of a single element
belonging to it is a cyclic group. (0.U. 098, S.V.U. S 01)

Let Gbe a groupand a€ G . If the cyclic subgroup of G generated by a i.e. < a > is finite, then

the order of the subgroup i.e.|< a >|is the order of a. If < a > is infinite then we say that the order

of a is infinite.

Note. If G is a cyclic group generated by a, then the elements of G will be
a?al,a =ed,d?, ... in multiplicative notation and the elements of G will be
...—2a,—a,0a =0,a,2a,... in additive notation. The elements of G are not necessarily

distinct. There exist finite and infinite cyclic groups.
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eg. 1. G ={1,-1} is a multiplicative group. Since (-1)° =1,(-)! =-1,(G, .) is a
cyclic group generated by —1 i.e. G =< —1>. Itis a finite cyclic group of order 2 and
O(-1)=2.

eg. 2. G={..—-4,-2,0,2,4,...} is an additive group.

Since G ={2m/m=...-1,0,1,2,...}, G 1is a cyclic group generated by 2 i.e.
G =< 2 >. Itis an infinite cyclic group.

e.g. 3. (Q,+),(Q", ) are groups but are not cyclic.

eg. 4. {12"/ne Z} is a cyclic group w.r.t. usual multiplication.

Its generators are 12,1/12.

e.g. 5. <18> is a cyclic subgroup of the cyclic group (Z,4,+5,) and since

18" =18,18% =18+, 18 =0, 18° =18 +,, 18 =18,18" =18 +, 18 =18+, 18 =0,.......,
we have <18>=/{0,18}.

eg. 6. Let G=S;and H={(1),(13)}.
Then the left cosets of Hin G are :

IH—HlZH—123 123—132H
ou=mazu=| |0 Tlsoeon

(13)H=H,(23)H=(123)H. (Analogous results hold for right cosets)

Theorem 1. Let (G, ) be a cyclic group generated by a. If O (a)=n, then a" =e

n—1

and {a,d’,....,d"",d" = e} is precisely the set of distinct elements belonging to G
where e is the identity in the group (G,-).
(For proof, vide Theorem 13 of Art 8.5)
Theorem 2. If G is a finite group and a € G, then o(a)/o(G)
(N.U.091,A. U. M. 98, K. U. J. 02, 0.U. 01/0)
Proof. G is a finite group. Let 0 (G) = m .

Let H be the cyclic subgroup of G generated by a.
Let o(a) =n s o(H) =n (Vide Theorem 25, Art. 2.17.)
But by Lagrange's Theorem, o (H) /o (G).
nl/o(G) ie. o(a)/o(G).
Note. If o(a) =n and a€ G, then o(H) <0 (G).
Theorem 3. If G is a finite group of order n and if a <€ G,

then a" = ¢ (identity in G). (N.U. S 99)
Proof. Let o(a)=d and ¢ =¢ and d <n.
If H is a cyclic subgroup generated by a, then o (H) =d =0 (a).
But by Lagrange's Theorem, o (H)/0(G) i.e. d/n.
. Jq positive integer ¢ such that n = dgq . na"=a" =@ =l =e.
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Note. The statement of the above theorem may be : If G is a finite group, then for any

ae G, a’® =¢.

Ex. 1. Let A = ! 0,B= 0 1,C= -0 and D=0_1.
01 -10 0 -1 1 0

We have that G = {A,B,C,D} with matrix multiplication as operation is a group
whose composition table is given below.
Sol. Here O(G)=4,A is
the identity element in G. Now we can see that
B'=B,B°’=B.B =C,
B’ =B’>.B=C.B =D,

y s A|lB|C|D
B'=B’B=D.B=A.

Thus B e G generated the group G and Al A|B|C|D
hence G is a cyclic group with B as generator sl Blclpla
ie. G=<B>.
Note that O (B) = 4 = O(G) and B®©) = A . Cl|€C|D|A|B
Also G is abelian. D| D|A|B|C
Note : A, C, D are not generators of the group G.
Ex. 2. Prove that (Z, +) is cyclic group. (S.V.U. S 93)

Sol. (Z, +) isagroupand 1€ Z.
When we take additive notation in Z,a" -becomes na .
1°=01=0,1'"=11=11>=21=2, etc.
Also 17'=-1,17%=-2.1=-2, etc.
1 is a generator of the cyclic group (Z, +) i.e. Z=<1>.
Similarly we can prove that Z=<-1>,
Note 1. (Z, +) has no generators except 1 and —1.
For: Let r=4€Z.
We cannot write every element m of z in the form m = 4n. For example, 7 = 45 is
not possible for ne Z . Thus when r is an integer greater than 1, r is not a generator of Z .
Similarly when r is an integer less than —1 also, r is not a generator of Z .
Thus (Z, +) is a cyclic group with only two generators 1 and —1.
2. (Z, +) is an infinite abelian group and it is a cyclic group.
Ex. 3. Show that G ={l1,-1,i,— i} the set of all fourth roots of unity, is a cyclic
group w.r.t. multiplication. (S.K. U 02,0.U. 099)
Sol. Clearly (G,) is a group.We see that (i)' =i, i> =i.i = -1, i°
it =ii=(=i=1
Thus all the elements of G are the powers of i e G i.e. G =< >. Similarly we
can have G =< —i >. Note that 0 (G)=0()=0(-i)=4. Also G is abelian.
Note. (G, .) is a finite abelian group which is cyclic.

2. . .
=i"i=-li=-.
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Ex. 4. Show that the set of all cube roots of unity is a cyclic group w.r.t.
multiplication. (N.U. 99)
Sol. If  is one of the complex cube roots of unity, we know that G = {1, m, w*} is
a group w.r.t. multiplication. We see that ©' = 0, 0” = 0o = 0*, 0’ =1.
Then elements of G are the powers of the single element g e G .
G =<0>
We can also have G =<w?>. ¢ @) =0 @) =00 =]
Ex. 5. Prove that the group ({1,2,3,4},%5) is cyclic and write its generators.
Sol. 2x52=4,2%52Xs 2=4X52=3,2X5 2X5 2X5 2 =1, 2X5 2X5 2X5 2Xs 2 =2
= 2 is a generator of the group = the group is cyclic.
Also for the group 3 is a generator.
1, 4 are not generators of the cyclic group.
Ex. 6 (a). Show that (Zs,+) where Zs is the set of all residue classes modulo 5, is
a cyclic group w.rt. addition (+) of residue classes.
Sol. The composition table for the group (Zs,+) is;

We can have + g I 2 § %
1=1, (M =2(D)=1+1=2 SN ES SRk
M =1+ =2+1=3 e e e
oy my = 2|2[3]4]0]1
M*=0)P+(1)=3+1=4 SRRRRE
Thus (Zs,+) is a cyclic group with 1 as generator. 212101711213

(Z, +)=<1>.
Similarly we can prove that 2, 3,4 are also generators of this cyclic group.

Ex. 6 (b). Show that (Z,. +), where Z,, is the set of all residue classes modulo-m
and + is the residue class addition, is a cyclic group.

Sol. We have (Z,,, +) as an abeian group.

We can have (1)' =1, (1)’ =2(1)=1+1=2
D" ' =" 2+ D' =m-)T+T=m-1

and (D" =)"'+M)!'=m-D1+1=m=0

Thus 1 is a generator of (Z,, +) ie. (Z,, +)=<1>

Note. We can prove that m—1 is also a generator of (Z,, +).

Ex. 7. If G is the group of all symmetries of an equilateral triangle (vide Ex. 16,
Chapter 2) we have that H = {r,,n,1,} is again a group w.rt. the composition of maps.
Show that (H,o0) is a cyclic group.

Sol. The composition table for the group (H,0) is :

We can have
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_ 2 _ _ 3_ 2 _
R=Hh, T =RHOK =1y, I =1 0K =10n =1 ol nl nl m»

Thus r, is a generator for the group (H, o).
. . || n|
(H, o) is cyclic group.

Similarly we can prove that nfnf 2|

r, is also a generator of the group (H,0). Rl n|n|n

Ex. 8. Show that the set of all n™ roots of unity w.r.t. multiplication is a cyclic
group. (0.U. A 2001, N.U. A 92,A.U. A 76)

Sol. We know that (vide Ex. 8, Chapter 2)

G={0’=1L0"0%,.. . 0""}
2kmi

where of =¢ " , k=0,1,2,...,(n—1) is a group under multiplication.

We can have 0’ =1=c,0' = 0,0’ =0.0=0%,0° = 0> .0 =0>,... 0" = "".

Thus every element of G is some power of ® ie. (G, . =<0>

Ex. 9 (a). Z,is the set of residues under addition modulo n. Show that (Z,,+,) is
an abelian cyclic group.

Sol. Clearly Z, ={0,1,2,3,.....,(n—1)} is an abelian group under +,

(Theorem. 14, Art. 2.12)

Now 1'=1,1 =1+, 1=2,.....
1" =14, 14, 1+, e, 1 (n—1times) = n—1,
1" =1+, 14, 14, . n times =0

. 1 is a generator of (Z,,+,)and hence (Z,,+,)1s a cyclic group which is abelian.

The other generator is n—1. (Theorem. 4, Art 8.3)
Thus Z, =<1>=<n-1>.
Ex. 9 (b). Show that (nZ, +) is a cyclic subgroup of (Z, +)where n is a positive
fixed integer. (A.N.U. S 00)
Sol. We have to prove that (nZ, +) is a subgroup of (Z, +). (vide Ex.1 of Chapter 2)
We have nZ=1{0, xn, +2n, +3n, ...}
. (nZ, +) =<n> and (nZ, +) =<-n>.
Note. (nZ, +) is a subgroup of the group (Z, +) and (nZ, +) is cyclic.
8. 3. SOME PROPERTIES OF CYCLIC GROUPSl
Theorem 4. Every cyclic group is an abelian group. (K. U.MI11, S.V.U. 92,
N.U. S 93, A 92, O 89, M99, M98, 0.U. M12, 93, A99, O 00, A 02, 03, 08
Proof.  Let G =<a> by a cyclic group.
We have G ={a" /ne Z}. Let a.a'€e G . 4".q° =q"* since r,s€Z
=a"" =d'.ad - G isabelian.
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Note. Converse is not true i.e. every abelian group is not cyclic. Klein's group of 4 is

an example. (Ex. 11, Chapter 2) (0.U.A. 02, 08, N.V.S93)

e=el=¢ :e4;a:a,a2 :e,a3 :a,a4:e

b= b,b2 = e,b3 = b,b4 =e,c= c,c2 = e,c3 = c,c4 =e
None of the elements of G generates G even though G is abelian i.e. G is abelian
but not cyclic. (N.U. S 93)

e. g. Consider the set G ={A,B,C,D} where

oy ol ey oy )

and the matrix multiplication as the binary composition on G.
Composition table is :

Clearly G is a finite abelian group

(of order 4) with identity element A .

Also B> =A,C* =A and D*> = A

i.e. each element is of order 2 (except the identity A )

. G is abelian.
Hence there is no element of order 4 in G.

gla|= (> |»>
QIO |» |(m|w
Akd iAol o]
>|lw(a|o|o

gz |»>

. G is not cyclic and hence every finite abelian group is not cyclic.

Theorem 5. If a is a generator of a cyclic group G, then o' is also a generator
of G. OR

If G =<a>, then G =<a™' >. (A.N.U.M. 00, S99, S98, M96, 0.U.A.99)
Proof. Let G =<a> be a cyclic group generated by a. Let a” € G,r € Z. We have
a" =(a " since —-re Z.
.. Each element of G is generated by ¢7'. Thus 47! is also a generator of G
ie. G =<a'>.
Theorem 6. Every subgroup of cyclic group is cyclic.
(K. U. M12, 07, S.K.U. A 01, S.V.U. O 01, A 00, A.N.U. ] 04, M 03, M 01, M 00, S98,
M96, A92, 091, A90, 089, A.U.M. 05, M 00, S99, S98, S97, M97, A96,
K.UM. 05, M 04, M 03, 099, A98, 097, M96, O.U. M12, O 02, O 01)
Proof. Let G =<a>. Let H be a subgroup of G. Since H is a subgroup of G, we
take that every element of H is an element of G. Thus it can be expressed as a" for some
ne Z.Let d be the smallest of the positive integers such that «" € H. We will now prove
that H = <a? >.
Let ¢ € H where me Z.
By division algorithm we can find integers ¢ and r suchthat m=dg+r, 0<r<d.
woa" =a"t =a%a" = (a).a"
But a’e H=> @)Y eH=a" >a%cH
Now ¢",a®cH=>da"a“cH=a"“cH =ad cH.
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But 0 < r < d and a" € H is a contradiction to our assumption that of smallest integer

such that «? € H. nor=0 m = dgq
i.e. a” = (a?)? which shows that every " € H can be written as (a?)?,q€ Z.
~H=<d">
Hence a subgroup H of G is cyclic and «“ is a generator of H.
Note : The converse of the above theorem is not true. (S.V.U. 0 2001)

That is though the subgroup of a group is cyclic, the group need not be cyclic.
e.g. We know that (Z, +) is a subgroup of (R, +). We also have that (Z, +) is a

cyclic group generated by 1 and —1. But (R, +) is not a cyclic group since it has no
generators.
Cor. Every subgroup of a cyclic group is a normal subgroup. (0.U. 93)
Proof. Every cyclic group is abelian (vide Theorem 4) and every subgroup of a cyclic
group is cyclic (vide Theorem 6).
.. Every subgroup of a cyclic group is abelian. Hence every subgroup of a cyclic group
is a normal subgroup.
| 8. 4. CLASSIFICATION OF CYCLIC GROUPS |

Let G =<a>. Then
(i) G is a finite cyclic group if there exist two unequal integers / and m such that
a =am.
If a group G of order n is cyclic, then G is a cyclic group of order n .
(ii) G is an infinite cyclic group if for every pair of unequal integers [ and m, a' # a™.
| Theorem 7. The quotient group of a cyclic group is cyclic.  (S.V.U. S 89, A.U.11 j
Proof. Let G =<a> be a cyclic group with a as generator.

Let N be a subgroup of G. Since G is abelian (Th.14, Art 5.4).

we take that N is normal in G. We know that % ={Nx/xe G}

Now ae G = Nae G/N = <Na> c G/N ..(D
AlsO Nxe G/N = xe G =<a> s x=a" forsome ne 7.
“ Nx=Na=N(@aa..... ntimes) when n is a +ve integer

=NaNa...... n times = (Na)”
We can prove that Nx = (Na)” when » = 0 or a negative integer.
Nx e G/N = N(x) € <Na>
G/N c <Na > ...(2)
From (1) and (2) G/N =<Na> which shows that G/N is cyclic.
Theorem 8. If p is a prime number then every group of order p is a cyclic
group i.e. a group of prime order is cyclic.
(A.U. 075, N.U. 92, A 93, 95, 0.U. 0 99, A.N.U. M 04, S96, A93, 092, 090, A8Y,
0.U. M 06, 0 01, 0 00, 099, A.U. A 01, S00, M99, K.U.M. 08, 05, A 03, A 02, A 00,
M99, 097, A.97, 096, S.K.U. M 05, O 01, O 00, A97, S.V.U. S 03, 098)
Proof. Let p > 2 be a prime number and G be a group such that O (G) = p. Since
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the number elements is at least 2, one of the elements of G will be different from the
identity e of G. Let that element be « .

Let <a> be the cyclic subgroup of G generated by a. .. a€ <a>= <a># {e}.
Let <a> have order £, - By Langrange's Theorem #| p

But p is a prime number. ... k=1 or h=p

But <a>+# {e}. o h#1andhence h=p

. O(<a>)=p ie. <a>= G which shows that G is a cyclic group.

Note 1. We have by the above theorem if O (G) = p, a prime number, then every
element of G which is not an identity is a generator of G. Thus the number of generators of
G having p elementsisequalto p—1.

2. Every group G of order less than 6 is abelian. For : We know that every group G
of order less than or equal to 4 is abelian.

Also we know that every group of prime order is cyclic and every cyclic group is
abelian. If O(G) =5, then G is abelian. (S.V.U.A 01)

Thus the smallest non-abelian group is of order 6.

3. Is the converse of the theorem "Every group of prime order is cyclic" true ? Not
true.

For 4" roots of unity w.r.t. multiplication form a cyclic group and 4 is not a prime
number. Thus a cyclic group need not be of prime order.
| 8. 5. SOME MORE THEOREMS ON CYCLIC GROUPS |

Theorem 9. If a finite group of order n contains an element of order n, then
the group is cyclic. (B.A.) (N.U. O 90)

Proof. Let G be finite group of order n.Let a € G such that O(a) =n ie. a" =e¢
where n is the least positive integer.

If H isacyclic subgroup of G generatedby a i.e.if H={a"/re Z} then O(H) =n
because the order of the generator « of H is n. Thus H is a cyclic subgroup of G and
OMH)=0(@G).

Hence H = G and G itself is a cyclic group with a as a generator.

Note. Suppose G is a finite group of order » and we are to determine whether
G is cyclic or not. For this we find the orders of the elements of G and if a € G exists such
that O (a)=n then G will be a cyclic group with a4 as a generator.

Theorem 10. Every finite group of composite order possesses proper
subgroups.

Proof. Let G be a finite group of composite order mn where m (# 1) and n (# 1) are
positive integers.
(i) Let G =<a>. Then O(a) = 0O (G) = mn .
: a™ =e= (a")" =e = 0(a") isfinite and < m.
Let O(@")=p where p<m. Then (¢")! =e=d" =¢
But p<m= np <mn Thus a™ = e where np < mn .
Since O (a) = mn,a"” = e is not possible, so p = m
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20 @)y=m.
- H =<4" > isacyclic subgroup of G and O (H)=0 (¢") -
Thus OH) =m .
Since 2 < m < n,H is a proper cyclic subgroup of G.
(ii)) Let G be not a cyclic group.
Then the order of each element of G must be less than mn. So there exists an
element, say » in G such that 2 <O (») < mn. Then H =<b> is a proper subgroup of G.
Theorem. 10 (@). If G is a group of order pq where p,q are prime numbers,
then every proper subgroup of G is cyclic. (K. U.07)

Proof. Let H be a proper sub group of G where |G |= pq (p,q are prime numbers).

By Lagrange's Theorem, |H| divides |G |.

.. Either |H|=1 or p or g. - |H|=1= H = {e} which is cyclic;

|H|=p (pisprime) = H is cyclic and |H|=¢ (g is prime) = H s cyclic.

~. H is a proper subgroup of G which is cyclic. Hence every proper subgroup of G is
cyclic.

Theorem 11. If a cyclic group G is generated by an element a of order n,

then o™ is a generator of G iff the greatest common divisor of m and n is 1 i.e. iff
m,n are relatively prime i.e. (m,n) = 1.
(K. U. 08, A.N.U. M11,M97, S.V.U. M11, A.98, M 09, O.U. O 98)

Proof. Let G =<a> suchthat O(a) =n ie. ¢" =¢.

The group G contains exactly » elements.

(i) Let m be relatively prime to n . Consider the cyclic subgroup

H=<qg"> of G.Clearly Hc G ...(1)

since each integral power of «” will be some integral power of a.

Since m, n are relatively prime, there exist two integers x and y such that mx +ny =1.

a=d =ad™" =d™.ad" = a™.(d") = a™e’ = a™e = (a")"

~. Bach integral exponent of « will also be some integral exponent of a™ .

~ GcH

- From (1) and (2), H = G and ™ is a generator of G.

(ii) Let G =<a™ >. Let the greatest common divisor of m and n be d(z1) ie.

d >1.Then m/d, n/d just be integers.
Now (am)% = am% = (an)% = e% —e o 0@)<n (S<n}

. @™ cannot be a generator of G because the order of ™ is not equal to the order of
G. So d must be equal to 1. Thus m and n are relatively prime.
Note 1. If G =<a > is a cyclic group of order n, then the total number of generators of
G will be equal to the number of integers less than and prime to n.
2. Zg is a cyclic group with 1, 3, 5, 7 as generators.
Note that <3>={3,(3+3)mod8,(3+3+3)modS8,.....} = {3,6,1,4,7,2,5,0) = Zy

<2>={0,2,4,6} # Zg implies 3 is a generator and 2 is not a generator of Zg.
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Theorem 12. If G is a finite cyclic group of order n generated by a, then the

subgroups of G are precisely the subgroups generated by a™ where m divides n.
Proof. Since G is a finite cyclic group of order n generated by a, then 4™ generates

a cyclic subgroup, say H of G.

Since O (G) = n,a" = e where e is the identity in G.

Since H is a subgroup of G,e€ H i.e. ¢" € H.

If m is the least positive integer such that ¢ € H then by division algorithm, there
exist positive integers ¢ and r suchthat n=mg+r, 0<r<m.
wa"=ad™" =a™.a" =@").a"
But " € H. o (@)?eH=d"eH=a"€cH.
Now ¢"e H=>a "™ eH=ad"ecH=ada €H.
But 0<r<m and a” € H is a contradiction to our assumption that m is the smallest

positive integer such that ™ € H. Sor=0
n=mgq i.e. m divides n and ¢" = a™ = (a")? € H which means that a"

generates the cyclic subgroup H of G.

Ex. 10. Find all orders of subgroups of Z¢,Zg,7.5,Z¢-

Sol. (Z,+¢) is a cyclic group and its subgroups have orders 1, 2, 3, 6(Theorem. 12)

(Proper subgroup of order 2 is ({0,3},+), Proper subgroup of order 3 is ({0,2,4},+4) )

(Zg,+) is a cyclic group and its subgroups have orders 1, 2, 4, 8.

(Z,,,+,)1s a cyclic group and its subgroups have orders 1, 2, 3, 4, 6,12.

(Zgy,+¢o) 1s a cyclic group and its subgroups have orders 1,2,3,4,5,6,10,12,15,20,30,60.

Ex. 11. Write down all the subgroups of a finite cyclic group G of order 18, the
cyclic group being generated by a .

Sol. Let e be the identity in G =<a>.

Now G, {e} are the trivial subgroups of G and generatedby ¢ and «'® = ¢ respectively.

The other proper subgroups are precisely the subgroups generated by «™ where m

divides 18. Such m's are 2, 3, 6, 9. These subgroups are

2 2 4 6 8 10 12 14 16 18 3 3 6 9 12 15 18
<a”">={a",a",a,d,a ,a",a ,a,a’ =e},<a >={a’,a’,a,a",a’,a" =e},

12,a18=e},<a9>={a9,a18=e}.

<a®>= {aé,a
Theorem 13. The order of a cyclic group is equal to the order of its generator.
(A.N.U.M 02, S 01, S.K.U.M 01, S.V.U.M 05, 097)
Proof. Let G be a cyclic group generated by a i.e. G =<a>
(i)Let O(a) = n, a a finite integer.
Then e = a°,d",a?,...... ,a" e G
Now we prove that these elements are distinct and these are the only elements of G

such that O(G) =n.

Let i, j (<n-1) be two non-negative integers such that a' = a’ for i # j.
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Now either i > jori<j.

Suppose i > j.Then ¢/ =a/ 7 =47 =q"=¢ and 0<i-j<n.

But this contradicts the fact that O(a) =n. Hence i = j.

o a®dad?,...... ,a"™! are all distinct.

Consider any «” € G where p is any integer. By Euclid's Algorithm we can write
p = ng +r for some integers ¢ and r such that 0 < r <n.

Then a? =a"""" = (") .a" =e?.a" =e.a" =a"

But " is one of a°,d!,...... ,a"!

Hence each a” € G is equal to one of the elements a,d', ... ... ,a

ie. OG)=n=o0(a).

(ii))Let O (a) be infinite. Let m,n be two positive integers such that ™ = a" for
n*m.

Suppose m > n.Then a"™" =a” = e = O (a) is finite.

It is a contradiction to the fact that O (a) is infinite.

. n=m i.e. for every pair of unequal integers m and n, a

Hence G is of infinite order.

Thus from (i) and (ii) , the order of a cyclic group is equal to the order of its generator.

Note. Thus : Let (G,-) be a group and ¢e G .

m ¢ aVl

If a has finite order, say, n, then <a>={e,a,a’,......,a" '}and a' =a’ if and only if n
divides i—j .
If a has infinite order, then all distinct powers of a are distinct group elements.
Theorem. 14. If G is a cyclic group of order n, then there is a one - one
correspondence between the subgroups of G and positive divisors of n.
Proof. Let G =<a> be a finite cyclic group of order » .
. O(a) =n, a+ve integer. If d (a +ve integer) is a divisor of n,3 a +ve integer m
such that n = dm .
Now O (@)=n=d" =e=a =e=(a") =e= 0 (a")<d
Let O(a™)=s where s<d.
Then (a)® = e = a™ =e where ms <md 1i.e. ms <n.
Since O (a) = n, when ms < n, a™ = e is absurd.
sos¢d ie. s=d.
~.a™ e G where O(a™)=d. Thus <a™ > is a cyclic subgroup of order d .
Now we show that <¢” > is a unique cyclic subgroup of G of order 4 .
We know that every subgroup of a cyclic group is cyclic. If possible suppose that there
is another subgroup <a* > of G of order 4 where n = dm.
We shall have to show that <a* > = <a™ >.
By division algorithm 3 integers ¢ and r such that
k=mqg+r where 0<r<m (D
kd = mqd + rd where O < rd < md
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Now g = gmad+rd = gmad grd _ (qmdya qrd — (gmyd grd = 4 grd = o g
= ak =4 ...(2)
Since <a* > is of order d, O(a*)=d = (") =e=d" =¢.
= 4" = ¢ from (2) which is impossible (. rd<md=rd<m)unless r=0.
s From (1), k =mg = a¥ =a"™ = (@) = a* e <a"> = <a> C <a">
But number of elements in <a* > = number of elements in <a™ >.
n<adt> = <a">
- If G is afinite cyclic group of order n, there corresponds a unique subgroup of G
of order 4 for every divisor 4 of n i.e. there is a 1 -1 correspondence between the
subgroups of G and positive divisors of 7.
[-- a one-one onto mapping is always possible to be defined between the set of subgroups
of order 4 (any +ve divisor of n) and the set of +ve divisors of n]
Theorem 15. Every isomorphic image of a cyclic group is again cyclic.
(S.V.U.A 93)
Proof. Let G be a cyclic group generated by a so that «" € G from ne Z.
Let G' be its isomorphic image under an isomorphism f .
Now a" e G = f(@a")e G
f@)=f(a.a.a....... ,n times) when »n is a +ve integer
= £(@). f(@)......,n times = [ f(@)]"
We can prove that f(a") =[f(a)]" when n =0 or a — ve integer
Hence every element f(a")e G' can be expressed as [f(a)]"
-~ f(a) is a generator of G' implying that G' is cyclic.

Theorem. 16. Let a be a generator of a cyclic group (G,-)of order n. Then 4™

generates of a cyclic sub-group of (H,)) of (G,) and O (H)=n/d where d is the
H.C.F. of n and m.

Proof. &" generates a cyclic subgroup (H,-) of (G,-) (vide Theorem of Art. 8.1)

Let p be the smallest positive integer such that (¢™)” =e where e is the identity in H.
Let ¢" =b. Let beH;k>p.

Now there exist integers g and r such that k = pg+r,0<r<p.

LB =bPTT =bP b = (bP)I b =€l b =b" for 0<r<p.

~. Any exponent k of b, greater than or equal to p, is reducible to r for 0<r<p.

~. H contains p elements given by

H={bb,...b" " b =¢} ie. H={(@")',(@")’,....(a")" =¢}

~. H has p elements, as many elements as the smallest power of ™ which gives the

identity e. Now a”" =e¢ if and only if n divides pm since 4" =¢, (G,-) be a cyclic group of
order n.
~. pm/n must be an integer.
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Let d be the H. C. F of n and m. Now M:p.’n/d.
n nld
But n/d does not divide m/d .
. n/d dividesp. . Leastvalueofpis /4. L OM)=nld.

e.g. Let |G|=24 and G be cyclic. If a® #¢ and 4«2 e, show that G=<a >

Divisors of 24 are 1,2,3,4,6,8,12,24. If |a|=2,then ¢*> =eand a* = (@*)* =¢* =e=d".

Also if |a|=3, then ¢’ =eand a'? = (a’)* =¢* =e=0a®.

~.|a|=24 is only acceptable and hence G=<a>.

Theorem 17. A cyclic group of order n has ¢ (n) generators.
(S.V.U.A 01,0.U.003,A 02,0 02,N.U. 0 85,083, A 93, M 01)
Proof. First we prove Theorem 11.
L~ G=<a"> o (m,n) =1
- a™is a generator of G < mis a positive integer less than » and relatively prime to

= The number of generators of G = the number of positive integers that are less than
n and relatively prime to n = ¢ (n) .
Note. For n =1,0(1) =1 and for n>1 the number of generators ¢ (n) is the number

of positive integers less than n and relatively prime to .
e.g.a is a generator of a cyclic group G of order 8. Then G=<a> and O(a) =38.

2 3 4 5 6 7 8
Here G={a,a",a’,a",a’,a",a’,a"}

7

Since 3, 5, 7 are relatively prime to 8 and each is less than 8, a’,a’,d’ are the only
2 4 6 8

other generators of G. Also a“,a”,a”,a® cannot be the generators of G. Hence G has
only 4 generators and they are a,a’,a’,a.

Now <d’ >={a3,a6,a1,a4,a7,a2,a5,a8} , etc.

Ex. 12. Show that the group (G ={1,2,3,4,5,6},%,) is cyclic. Also write down all
its generators. (A.N.U. M99, A.U.M 05, K.U.S 01, 099, 0.U.0. 02,
S.K.U. M11, 0 03, S.V.U.M 03, 0. U. 91)
Sol. Clearly O (G) = 6. If there exists an element 4 € G such that O (a) = 6, then G
will be a cyclic group with generator « .
Since 3'=3,32=3%,3=2,3"=3"%x,3=6,3" =3 x,3=4,
3° =3%x, 3=35, 3° = 37 x, 3 =1, the identity element.
G = {3, 3%, 3%, 3% 3°, 3% andis cyclic with 3 as a generator.
Since 5 is relatively prime to 6, 3° i.e. 5 is also a generator of G.
Generators of G are 3, 5.
Note. If (G, .) is acyclic group of order n, then the number of generators of G =¢ (n)

= the number of numbers less than » and prime to n.
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From theory of numbers, if n = p. p5=...... py* where p; ... p, are all prime factors
1 1
of n, then 0(n) =n|1—-—|...|1-—
Dy 143

In Ex. 12, ¢ (6) :6(1—%j l—éj: 2i.e. G has 2 generators.

Further if n = p® where p is less than and prime to n, then ¢ (n) = p* [1—lj
Ex. 13. Find all the subgroups of (Zg,+g)- i
Sol. (Z,+5)1s a cyclic group with 1 as its generator.

Z,; ={0,1,2,3,.....,17} and all subgroups are cyclic.

Now all the generators of the group Z,, are less than 18 and are prime to 18.
Thus 1,3, 5,7, 11, 13 and 17 are all generators of Z,.

All the subgroups of Z,; are the subgroups generated by 1,2,3,6,9,18 (Divisors of 18).

The number that corresponds 18 is 0.
The subgroups are :

Trivial (improper) subgroups - (Z;s,+,5) = <1>,({0},+3) =< 0>.

Proper subgroups ({0,2,4,6,8,10,12,14,16},+,5) =<2 >,

({0,3,6,9,12,15},+,3) =<3>, ({0,6,12},+,5) =<6 >,({0,9},+,5) =<9 >.
Note. 1. O (<1>)=18,0(<0>)=1L0(x2>)=9,0(<x3>)=6,0(<6>)=3,0(<9>)=2.

2. Lattice diagram for (Zg,+s) -

/<3><<9>\

<l> <> —<0>
\<2>/

Ex. 14. Find the number of elements in the cyclic subgroup of (Z,,,+4,) generated
by 25 and hence write the subgroup (0. U. 2008)

Sol. (Z,,,+5,) is a cyclic group. Clearly 1 is a generator of (Z,+).

Now 25€ Zyyand 25=1 =(25) (1). Clearly (1% +,,) is a subgroup of (Zy,+5).

The g.c.d. of 30 and 25 is 5.

- 25=1% generates a cyclic subgroup of order (30/5)=6

i.e. ({0,5,10,15,20,25},+5,) is the cyclic subgroup generated by 25.

Ex. 15. Find the no. of elements in the cyclic subgroup of (Z,,,+,,) generated by
30 and hence write the subgroup.
Sol. (Z,,,+,,) is a cyclic group. Clearly 1 is a generator of (Z,,,+4,) -

Now 30€ Z,, and 30=1" = (30) (1) . Clearly (1°°,+,,) is a subgroup of (Z,,+,,) -
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The g.c.d. of 30 and 42 is 6.

- 30=1% generates a cyclic subgroup of order (42/6)=7

i.e. ({0,6,12,18,24,30,36},+,,) is the cyclic subgroup generated by 30.

Ex. 16. Find the order of the cyclic subgroup of (Zy,+¢,) generated by 30.

Sol. (Z,+4,) 1s a cyclic group and 1 is a generator of it.
Now 30€ Zg, and 30=1"=30(1) .

Clearly (1%, +4,) i.e. (30,+4)is a subgroup of (Zg;,+4) -
The g.c.d. of 60 and 30 is 30.
- 30=1% generates a cyclic subgroup of order (60/30)=2.

Ex. 17. Find the number of generators of cyclic groups of orders 5,6,8,12,15,60.

Sol. O(G) =5, the number of generators of G = ¢(5) = 5(1 - %) =4

O (G) = 6, the number of generators of G =¢ (6)

=6 1_% 1‘% =2 (-+ 2,3 are prime factors of 6)
O (G) = 8, the number of generators of G

=¢ (8)=8 1—% =4 (-+ 2 isthe only prime factor of 8)
O (G) = 12, the number of fenerators of G

1 1
=0(12) = 12[1 - 5] 7 gj =4 (-+ 2,3 are the only prime factors of 12)

O (G) =15, the number of generators of G =¢ (15)=15 (1—%)[1—%) =8.

(. 3, 5 are the only prime factors of 15.)
0O (G) = 60, the number of generators of G =¢ (60) = 60(1—%)(1—%)(1—%): 16.

(- 60=223.5;2,3,5 are the only prime factors of 60)
Ex. 18. Show that (Z,, +,) has no proper subgroups if p is prime.
Sol. (Z,, +,) is a cyclic group and O(Z,) = p where p is prime.
Number of generators of (Z ,, +,) = p| 1 - 1

p
- All the p—1 elements of Z, except the identity element, generate the group

(Z,, +,) . But this is a trivial subgroup. So (Z,, +,) has no proper subgroups.

Ex. 19. Find all orders of subgroups of the group Z,,. (K. U. 07)
Sol. (Z,,,+;) is acyclic group and O (Z,;) =17 (17 is prime)
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1
. The no. of generators of (Z;,+7) = 17(1_ﬁ) =16

The 16 elements of Z,; except identity element O (which corresponds to 17), generate
the group (Z,;,+,;) which is of course a trivial subgroup.

Hence (Z,;,+,;) has no proper subgroups.

Also {0} is a trivial subgroup. Now O (Z,,)=17,0 ({0})=1.

Ex. 20. (i) If p, q be prime numbers, find the number of generators of the cyclic
group (Zp,.+,,).

Sol. The number of generatros of (Z,,,+,,)

1 1
=¢(Pq)=l7f1(1—;)(1—;} (" p.q are prime)

(it) If p be a prime number, find the number of generators of the cyclic group

(Z .+ ) where r is an integer >1.
Sol. The number of generators=¢ (p") = p’(l—lJ: P Hp-1.
P

Ex. 21. G is a group. If a is the only element in G such that |<a>|=2, then show
that for every xe G,ax=xa.

Sol. a is the only element in group G such that |<a>|=2.

Let e be the identity in G. Lat=e.

Also whenever be G = b”> = e, we have p=g4.

Now for xe G, xax 'eG.

~InG, xaxY =(xaxHxaxH=xaGx'ax'=xaeax

=xaax'=xda’ x'=xex'=xx"=¢.
“xax'z=a=xax'x=ax=xae=ax=xa=ax.
Ex. 22. Find all cosets of the subgroup < 4 > of Z,,. (K. U.M08)
Sol. (Z,, ={0,1,2,.....,11} ,+,) is a cyclic group.
Let the subgroup <4 > of Z;,be H.
Since <4>={...,-12,-8,-4,0,4,8,12,...} , (H={0,4,8},+,) is the subgroup of

(Z,,,+,,) for which all left cosets have to be found out.

. +,]| 0]4]8
Composition Table : totats
0+, H={0,4,8},1+,, H={1,5,9} 2 Talslo

818|0|4
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24, H={2,6,10},3+, H={3,7,11}
4+, H={4,8,0},5+, H={59,1}
6+, H=1{6,10,2},7+, H={(7,11,3}

11+, H={11,3,7}

“ 0+, H=4+,H=...={0,48);
1+, H=5+, H=...={15,9};
24, H=6+,H=...={2,6,10};
34, H=7+,H=...={3,7,11}.

Since (Z,,,+,) is abelian, left cosets of H are also right cosets of H.

In Z,cosets of H are 0+,H,1+,H,..,11+,H or H+,0,H+,1.. . H+,11.

Also 0+, H=H,1+, H,2+, H,3+, H are disjoint.

Ex. 23. Find all cosets of the subgroup <18> of Zs; (K. U.07)
Sol. (Z,, ={0,1,2,3,......,35},+3) is a finite cyclic abelian group.

The subgroup <18 > of Z,, is cyclic and let it be denoted by H. - H={0,18} .
Here + means +;.

-~ Left cosets of H in Z,, are

0+H={0,18} 18+ H = {18,0}
1+H={119} 19+ H = {19,1}

2+H ={2,20} 20+ H ={20,2}
17+H ={17,35) 35+H ={35,17)

. Distinct left cosets of H in Z,, are 0+H,1+H,....,17+H and their number is 18.

Since G = (Z;4,+5¢) is abelian,

left coset of H in G = right coset of Hin G .

Cosets of <18> of Z,sare 0+H,1+H,....17+H or H+0,H+1,... . H+17.

Ex. 24. S is the set of all permutations on 5 symbols is a group. Find the index
of the cyclic subgroup generated by the permutation (1 2 4) in S

(12345
Sol. Let f=(124). --f—2 43 15

_f2_1234512345_12345
STl 43 1s)l2 43 157|413 2 5)and
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1 23 45)1 2345 (12345
3 _ p2 — = =
f_ff(41325]£24315](12345]
~]<f>|=3 and |S5|=5!=120.
|Ss| _@_
|<

. Index of the cyclic subgroup fin S5 = 40

Ex. 25. [ 1 2 3 4 1 2 3 4 J d
. . c=
X [f 5 13 4f 5 3 4 are two permutations defined on

A ={1,2,3,4}, find the cyclic groups generated by O, T.

Sol. If n is a least positive integer such that f" =¢ where fis a permutation on A,

then < f>={Lf, £ f"}

N0W02:1234 1 2 3 4 1234:I:><0>={IG}
2 13 4ll2 13 4/ 7|1 2 3.4 T
, (1 2 3 4)(1 2 3 4 2 3 4
Also t° = ,
234 12 34 1] (341 2
s_o (123 4)(1 23 4) (1234
T =11T= s
34 1212 34 1) 1412 3
o _ao (123 4)(1 2 34y (12 4
T =T1T= =1
4 12 3|2 3 4 1/ 11 4

=S<t>={L1,1. 7).

Ex. 26. If f:G — G’ is isomorphic then the order of an element in G is equal to
the order of its image in G’.

Sol. Since f'is one - one onto mapping, corresponding to any element a’e G’ there
exists an element ¢ e G such that f(a)=da’. If e s the identity in G and ¢’ is the identity in
G’ we have f(e)=¢".

Let n be the order of a€ G so that " =e where n is the least positive integer.

We have to show that the order of the image f(a)of a is also n.

Now a" =e= f(a")=f(e)=¢

= f(a.a.a...ntimes)=¢ = f(a). f(a). f(a).....to n times = ¢’

=[f(a)]" =¢ =the order of f(a)<n.

Let us suppose that m is the order of f(a) where m<n

so that [ f(a)]" =€’ = f(e)
ie. f(a).f(a).f(a)...mtimes= f(e)



SuccessClap: Best Coaching for UPSC Mathematics : For Info- 9346856874
Checkout ->22 Weeks Study Plan, Videos, Question Bank Solutions, Test Series

ie. f(a.a.a..mtimes)=f(e) ie. f(a")=f(e)=>a" =e
Since m is less than n, ¢™ =e¢ is a contradiction.

Hence there cannot be any other integer m less than n such that a" =e.
. m=n= Order of f(a)= Order of a
= Order of the image of an element = order of that element.
Theorem 18. If G is an infinite cyclic group, then G has exactly two
generators which are inverses of each other. (A.N.U.M12, S 02, S 91, S 00, A91,
0.U.0 03, S.K.U. M 09, M 07, M 03, O 01, S.V.U.A.99)
Proof. Let G be an infinite cyclic group generated by a .

s G={d"IneZ}. Let a™ be a generator of G.

Since @ € G,3 an integer p such that g = (a™)”.

ie. a™ =a ie. aal'=a.a7! ie. ™=

If mp—-1>0 then 3¢ = mp —1 such that ¢¢ = ¢ implying that G is finite.
But G is infinite. s omp—1=0

ie. mp=1lie m==1p=%Il - a',a”' are generators of G.

i.e. G has exactly two generators and one is the inverse of the other in G.
Note. (Z, +) is an infinite cyclic group and it has only two generators 1 and —1.
Theorem 19. Any infinite cyclic group is isomorphic to the additive group of
integers (Z, +). (S.K. U. MI11,A.U.M.74, N.U.0.90, A92, S.V.U.0.99)
Proof : Let G be an infinite cyclic group generated by an elemnt a(e G)

Thus 0(a) = 0 or « and & = e (identity in G)

G = {d"/ne Z} and all the elements of G are distinct.
Define a mapping f: G — Z such that f(4")=n,Va" € G
Let a',a’ € G . Let (Z, +) be the additive group of integers.

Now f(ai)=f(aj)ﬁi=j$ai=aj
sofis1 -1,

Letke Z. . d5eG and f(d)=k . fis onto.

Further ¢/ o/ e G and f(a'a’)= f(@*? =i+ j=f(@)+ f(a))
. fis a homomorphism and hence fis an isomorphism from G to Z.

. G=171.
Theorem 20 : Every finite cyclic group G of order n is isomorphic to the group
of integers addition modulo n. i.e. (Z. + ). (A.N.U.A.92)

Proof : Let G be a finite cyclic group of order n generated by an elemnt a(e G).
Let e be the identitiy in G.

wG= {aO =e,a,a>,a,..... ,a"‘1}={am/m is an integer and 0<m < n}

Z ={0,1,2,...(n- 1)} is the group of integers w.r.t. + .
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Define a mapping f: G— Z_such that f(a™)=mVa" € G .

Since 4° =e¢, f(e) = f(a®) =0 where O s the identity in (Z, +).

Let d,a’eG. Now f(d')=fa/)=i=j=d =d’
oo fis1-1. Letke Z . .dfeq and )=k
- fis onto.

Let a',a’ €G . Then ¢'.a’ e G and f(a'a’)= f(a'*/). By division algorithm, there
exist integers g and r.
Suchthati+j=qgn+1r 0<r<n.

adt =g = (@) a" =eld" =d ¢ ad" =d =e)

wfdal)y= @)= f@)=r

. f(d)+, f(a’)=r by the definition of f.

= fis a homomorphism and hence f'is an isomorphism from G to Z .
- G = Zn.

| Theorem 21 : Every cyclic group is isomorphic to either Z or Z, for some n.

Proof : The proof follows from Theorem 19 and Theorem 20.
| EXERCISE 8|
1. (a) Find the generators of the group {a, a’, a°, a* = e}.
(b) Find all the generators of a cyclic group of order 10.
2.  (a) For each of the following cyclic groups, find all the subgroups and give Lattice
diagram for each of the subgroups.
(1) Zg (1) Zy, (iil) Zsq

() Howmany subgroups does Z,,have ? List a generator for each of the subgroups.

Let G =<a>and |a|=20. How many subgroups does G have ? Write a generator for

each of these subgroups.

3.  Prove that every homomorphic image of a cyclic group is cyclic.

4. Let (Z, +) be a cyclic group and (G = {1,-1, i,—i}, .) be a group where i* = —1.
Show that under the mapping f from Z to G defined by f(n) =i"Vne Z is the
homomorphic image of (Z, +).

5. Prove that order of a finite cyclic group is the same as that of any generator of the
group.

6. Show that the group of automorphisms of a cyclic group of order (degree) 4 is of
order 2.

7. Zis the centre of a group G. If ae Z , prove that the cyclic subgroup <a>of G
generated by a is a normal subgroup of G.
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10.

11.

12.

13.

14.

Let G be a group having no proper subgroups. Show that G must be a finite group of
order n where n is either 1 or a prime number.
Prove that all cyclic groups of the same order are isomorphic to each other.

List all subgroups of a cyclic group (i) (G,-) of order 24 and whose generator is a
(i1) (Zsp.+30) -

Prove that the subgroups of the additive group of integers (Z,+) are precisely the
groups (nZ,+) for any integer n.

G={a,a®,d’,....,a"> = ¢} is acyclic group of order 15 and H is its subgroup generated

by . Then find in G /H (i) the inverse of Ha and (ii) solutions of (Ha’)x=Ha’ .
(7) Find all left cosets of the subgroup <9 > of Z,.

(i7) Find all right cosets of the subgroup <3 > of Z,,

S, is the set of all permutations on 5 symbols is a group. Find the index of the cyclic

subgroup generated by the permutation (2,3,5) in S5 .

ANSWERS
1. (a) a,a’ b) a,d’d,d
2.(a) (i) <1>={0,1,2,3,4,5,6,7}.<2>={0,2,4,6},<4>={0,4},<8>={0}
<i>
<2|>
<4|l>
<8>=<0>

(i) <1>=2Z,,,<2>={0,2,4,6,8,10},<3>={0,3,6,9},
<4>={0,4,8},<6>={0,6},<12>=<0>={0}
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() <1>
e
<2> <3>
<4>/ \<6>/ \<9>
NSNS
<12 <18>

/N

~

<36>=<0>
2. (b) <1><2><4><5><10>,<20>; six subgroups; subgroups are those sub-

groups generated by " where m =1,2,4,5,10,20 and they are six in number.
10. (i) ({d®,a*,d%,.....a*% a* =¢},),({a,d%,d°,.....a"" ,a** =e),"),
({a*.d,a,d'%,a®,a* = ¢}, ), ({a®,a"%,a'® ™ = e},
(1d*,d'S,a® = e}, ({a".a* = ).
(iM) <1>={0,1,2,....,29},< 2> ={0,2,4.......,28},< 3> ={0,3,6,....,27},
<5>={0,5,10,15,20,25},< 6 >={0,6,12,18,24},< 10 > ={0,10, 20},

<15>={0,15},<30>={0}
13. (i) r+<9>r=0,12,......8 (i) <3><3>+1,<3>+2
14. 40



SuccessClap: Best Coaching for UPSC Mathematics : For Info- 9346856874
Checkout ->22 Weeks Study Plan, Videos, Question Bank Solutions, Test Series

Problems For Practicals

1 2 3 4 1 2 3 4
1. Define a permutation on n» symbols. If f = and g =
2 3 4 1 3 4 1 2
is fg equalto g f .

2. Define cyclic permutation. If § consists of elements 1,2,3,...,9
then find (123) (56418).

3. Define transposition. Give an example of transposition on S ={1,2,3,4,5} and obtain

its inverse f=(23)and f7'=r.

1 2 3 4 5 6 7 8 9
4. Find the orbit and cycle of
2

34 5 1 6 7 9 8

1 2 3 4 5 6

5. Write [ J as product of disjoint cycles.

6 5 4 3 1 2
6. Express (1,2,3) (4,5) (1,6,7,8) (1,5) as product of disjoint cycles.
7. Express (254)(143)(21) as product of disjoint cycles and find its inverse.

1 2 3 4 5 6

8. Express f =[ ] as product of transpositions. If f an odd or even

31 2 4 6 5
permutation.

9. If f=(12345879),g=(41567 3 2 8)are cyclic permutations prove that

(fo =gl
10. Compute a"'ba where a=(5179),b=( 2 3)
11. Write the inverse cycle of (12 4)(3 2 6)€ S¢

2 3 4

1
12. Define orbit of a permutation. If f =[2 L3 s

5 6
]E S¢ find the orbit of 5.
6 4

13. Write the elements of the permutation group S; where S ={1,2,3} Which of them are
even?

1 2 3
14. Define order of a cyclic permutation. Find the order of f =[2 3 JE S3



SuccessClap: Best Coaching for UPSC Mathematics : For Info- 9346856874
Checkout ->22 Weeks Study Plan, Videos, Question Bank Solutions, Test Series

15. By means of an example prove that a cycle of even length can be expressed as product
of odd number of transpositions.

16. Supporting that a cycle of length (n—1) can be expressed as product of feS,
transpositions; prove that f €S, is either even permutation or odd permutation.

17. By means of an example justify the statement
(i) "Product of two odd permutations is even"
(i) "Product of two even permutations is even"

18. By means of an example justify the statement "Inverse of odd permutation is odd
permutation”

19. Prove that (1,2,34,.....n) ' = (n,n—1,....4,3,2,])

20. Given x=(1 2)(3 4)and y=(5 6)(1 3) find permutation 'a' so that 4 'x a=y.
21. How do you find the order of a given permuatation. Find the order of
=023 45€S;4

22. Examine whether the following permutations are even or odd.

1 2 3 4 5 6 7
(@)

3 0 4 5 6 7 1J(ii)(12345)(123)(4 5)

23. Define alternating group of degree » . Write the alternating group Aswhere S={1,2,3}.
24. Write the regular permutation group isomorphic to the multiplicative group G = {1, w, w?}.

25. Find the order of n—cycle in the permutation group S,,.

1 2 3 4 5 1 2 3 4 5
26. If A= and B = € Sswrite AB,BAandA™!,
2 3 1 5 4 1 3 4 5 2

27. State Cayley's theorem. Define regular permutation group.
28. Define a cyclic group and its generator. Write the generators of multiplicative group
G ={1,-1,i,~i)

1 0 0 1 -1 0
29. Prove that G={A,B,C,D} where A= B = , C= ,
0 1

0 -1
D= (0 1 ] is a cyclic group w.r.t matrix multiplication.

30. Prove that (zs,+) where z5,={0,1,2,3,4} the set of congruence classes modulo 5 is a

cyclic group.
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31.
32.

33.

34.

35.
36.

37.

38.

39.

40.
41.
42.

43.
44.

45.

Is every cyclic group abelian ? Prove that the converse is not true by an example.
What is the number of generators of cyclic group of order » ? Find the number of

generators of multiplicative group G = {1,m, w”}. Write the generators.

Show that G ={1,2,3,4,5,6} under multiplication modulo 7 is a cyclic group. Find the
number of generators.

What is the number of generators of an infinite cyclic group ? If 'a’ is one generator
then write other generators.

If @™ is also generator of an nth order cyclic group G =< a >prove that (m,n) =1.

Find the generators of cyclic group G ={0,1,2,3,4} w.r.t addition modulo 5 Prove order
of a generator is equal to the order of the group.

Is a subgroup of cyclic group cyclic ? If 'a' is a generator of cyclic group G then what
is the generator of its subgroup H.

If G is a finite cyclic group of order n with generator 'a' then prove that order of

subgroup is (n/m)when . is its generator.

If G{w,w?,w>,w*,w>,wb = e} is acyclic group under multiplication, write the subgroups
of G. Verify that order of subgroup divides order of the group.

When do you say that a cyclic group is finite and infinite ?

Prove that a group of prime order is cyclic. Give an example.

Verify the statement "every group of composite order possesses proper subgroups" by
giving examples.

Give an example of infinite cyclic group. Establish it by means of its generators.
Write the isomorphic images of (i) infinite cyclic group and (ii) finite cyclic group.

If G ={0,x1,12,.....} is an infinite cyclic group w.r.t. addition find its generators. Write a
cyclic subgroup H of G. Find index of H in G.

46. G={0,1,2,3,4,5,6,7,89} is a cyclic group w.r.t. addition modulo 10. Prove H ={0,5}is a
cyclic subgroup of G. Find i(H) .
ANSWERS
1 2 3 4 5 6 7 8 9
L forof 2 38 1 6 4 7 5 9 > fEIS=S
4. Orbitof 1={1,2,34,5}, Orbitof 2={234,5]1}

Orbit of 3=1{3,4,5,2}, Orbit of 4 ={4,5,12,3}
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Orbit of 5={51,2,3,4}, Orbit of 6=1{6)},
Orbit of 7={7} Orbit of 8={8,9} Orbit of 9={9,8}
Cycle of the permutation = (12 3 4 5)(8 9)
5. (1625034 6. 23456789 7.(1543)2):;(3451)(2)
8. (121356 10. (12 3) 11. 623)421)
12. {564} 14. 3 21. 5 22. (i) odd (if)odd

[[1 2 3](1 2 3][1 2 3]

23. Ajz= ) )

1 2 3/13 2 1/|13 1 2
1 w w2 1 w w2

24, G=1e, , 25. »n
w w2 1 w2 1 w

1 2 3 4 5\(1 2 3 4 5/(1 2 3 4 5
26. [3 4 1 2 5]’ [2 15 4 3} [3 1 2 s 4]
28. i-i 31.  Yes, Klein's groupof 4 32. ¢ (n); 0,0’
33. 2 3. 2,47 36. 1234

37. Yes,a” e H where d is the least positive integer 43. (Z,H= <1> = <-1>

i2n

44, <Z+>|z7=e" X 45. 3 46. s
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Rings, Integral Domains & Fields

9.1. Ring is the second algebraic system of the subject of Modern Algebra. The
abstract concept of rings has its origin from the set of integers. Eventhough integers, real
numbers, integers modulo - n and Matrices are endowed with two binary operations, when
dealt them in Groups we have considered only one binary operation ignoring the other. The
concept of Ring will take into account both addition and multiplication. The algebra of rings
will follow the pattern already laid out for groups.

Definition. (Ring.) Let R be a non-empty set and +,+ be two binary operations in
R. (R,+,+) is said to be a ring if, for a,b,ce R; (0.U.03,07,S.V.U. 98)

R . a+b=b+a R,. (a+b)+c=a+(b+c)

R . there exists (e Rsuch that a+0=a for aeR.

Ry . there exists —qe R such that a+(-a)=0 for ae R.

Rs. (a.b)y.c=a.(b.c) and

Rg. a.(b+c)=a.b+a.cand (b+c).a=b.a+c.a.

Note 1. The operation ‘+’ is called the addition and the operation '«' is called the

multiplication in the ring (R,+,+) .
2. The ring (R,+,+) is also called the ring R. 3. We write a.b as ab.
4. The properties R|,R,,R;,R, merely state that (R,+) is a commutative group.
Thus (R,+) is called the additive group of the ring R.
5. The identity element ‘0’ in (R,+) is called the zero of the ring R. The zero of a ring
should not be confused with the zero of the numbers.
6. By R;,0+0=0 for 0eR.

7. The properties Rs,Rs may be respectively called the Associative and Distributive
laws.

In view of Note (4) and Note (7) a ring may also be defined as follows:

Definition. (Ring.) Let.R be a non-empty set and +,+ be two binary operations
in R. (R,+,+)is said to be a ring, if (i) (R,+) is a commutative group, (ii) (R,+) is a
semigroup and (iii) Distributive laws hold. (0. U.07)
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Definition. (Unity Element.) In a ring (R,+,+)if there exists 1€ R such that

a.l=1.a=afor every ac R then we say that R is a ring with unity element or identity

element.

Note 1. If R is aring with identity element, by R,, we have —1€ R so that 1+(-1)=0.
2. A ring with unity element contains at least two elements 0 and 1 if R = {0}.

Definition. In a ring (R,+,+) if a.b=b.a for a,be R then we say that R is a
commutative ring. (S.V.U. 04, A. U. 04)

Imp. A ring R (i) need not be commutative under multiplication and (ii) need not have
an identity (unity) element under multiplication, unless or otherwise stated.

e.g. 1. Let R={0}and +,+ be the operations defined by 0+0=0and 0-0=0. Then
(R,+,+) is clearly a ring called the Null ring or Zero ring.

e.g. 2. The set Z of integers w.r.t. usual addition and multiplication is a commutative
ring with unity element. (S.V.U.99,N. U. 00)

For (i) (Z,+) is a commutative group (if) Multiplication is associative in Z and

(7ii) Multiplication is distributive over addition.
e.g. 3. The set N of natural numbers is not a ring w.r.t. usual addition and multiplication,

because, (N,+) is not a group.
e.g. 4. The sets O, R,C are rings under the usual addition and multiplication of numbers.

e.g. 5. The set of integers mod m under the addition and multiplication mod m is a ring.

e.g. 6. The set of irrational numbers under addition and multiplication is not a ring as
there is no zero element.

9.2. Let (R,+,+) be a commutative ring with unity element. Then (R,+) is a

commutative group and (R,«)is a semi - group with identity element 1. So we have the
following results which are obvious from the theory of groups.
1. The zero element of R is unique and ¢+0=¢ for every element 'a' in R.

For 4e R the additive inverse —qe R is unique and a+ (—a)=0.

The identity element 1< R is unique and a.l=1.a=a for every ae R.

For ae R,—(-a)=a. 5.For 0e¢ R,—0=0. 6. For a,bec R,—(a+b)=-a-b.
. For a,b,ce R,a+b=a+c=b=c and b+ta=cta=b=c

. For g,b,xe R, the equations 4+ x=p and x+4 =p have unique solutions.

© % N R w N

. For 1€ R, the identity element, — (-1) =1.
10. For a,b,b,,......b, € R, from Ry, we have a (b +by +.....+b,) =ab +ab, +...+ ab,

and (b +by +....+b,))a=ba+bya+...+b,a .
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Notation. 1. If R is a ring and a,b€ Rthen a+(-b)e R. a+(-b)is written as a—b.

2. If Risaring and a€ R then a+ae R and a+ais written as 2a.
3.IfRisaring and a€ R then a.ac R and a.a is written as 4>.
[ 9.3. SOME BASIC PROPERTIES OF RINGS |
Theorem 1. If R is a ring and 0,a,be R, then (i) 0a =a0=0, (A. U. 12)
@#K) a (-b)=(-a)b=—-(ab) (0. U. 07) @#@ii) (-a)(-b)=ab (A.U.12)

@) ab-c)=ab-ac.  (0.U.07,A.U.03,08; N.U. 03)

Proof. (i) 0a=(0+0)a=0+0a=0a+0a (By R3,Rg)

. 0=0a (By right cancellation law of (R,+))

Similarly we can prove that 40 =0. Hence 0a=a0=0

(if) To prove that a (-b) = —(ab) we have to show that « (-b)+(ab) =0.
a(=b)+ab=a{(-b)+b}=a0=0 (By Rg,R4) = a (=b) =— (ab)

Similarly we can prove that (—a) b=—(ab). Hence a (-b)=(-a)b=—(ab).
(i) (=a) (=b) =—{(=a) b} = —{—(ab)} =ab (by (ii)) [~ (R,+)is a group]

(@) a-c)=alb+(-c)l=ab+a(—c)=ab=ac (By Rg) [By theorem (i), (if)]

Similarly we can prove that (b—c) a =ba—ca.

Theorem. 2. If (R,+,+)is a ring with unity then this unity 1 is the only

multiplicative identity.

Proof. Suppose that there exist 1,1’ R such that 1.x=x.1=x and
I''x=x.'=xVxeR

Regarding 1 as identity, 1.1'=1". Regarding 1’ as identity, 1.1'=1
Thus 1"'=1.1"=1. -~ 1 is the only multiplicative identity.

Theorem. 3. If R is a ring with unity element 1 and a€ R

then (i) (-1)a=—a @) D)(-1)=1
Proof. (i) (<)) a+a=(-Da+la={(-)+1}a=0a=0 (:a=la, Rg, Ry)
S (-DHa=-a
(ii) For qe R we have (-)a=-a. Taking a=-1,(-1) (-D)=-(-1)=1
[ 9.4. BOOLEAN RING | (N.U.07,S.V.U.M07)

Definition. In a ring R if 4> =aV ae R then R is called a Boolean ring.

Theorem 1. If R is a Boolean ring then (i) a+a=0VacR (ii) a+b=0=a=>b
and (iii) R is commutative under multiplication. Or, Every Boolean ring is abelian.
S.V.U. 07, S.K.D. 04, N. U.07 )
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Proof. (i) ac R=a+acR.
Since a2=aVae R, we have (a+a)2=a+a=>(a+a) (a+a)=a+a

=a(a+a)+a(a+a)=a+a :>(a2+a2)+(a2+a2)=a+a (By Rg)

= (a+a)+(a+a)=a+a (- R is Boolean)

= (a+a)+(a+a)=(a+a)+0 By R)
=a+a=0 [By left cancellation law of group (R,+) ]

(ii) For a,pe R,a+b=0=a+b=a+a=b=a [By ()]

(iii) a,pe R= a+be R= (a+b)> =a+b (" R is Boolean)

= ((a+b)(a+b)=a+b=a(a+b)+b(a+b)=a+b By Rg)

= (a* +ab)+(ba+b*)=a+b By Rq)

= (a+ab)+(ba+b)=a+b (" R is Boolean)

= (a+b)+(ab+ba)=a+b [© (R,+) is a group]

= (a+b)+(ab+ba)=(a+b)+0= ab+ba=0= ab=ba By (i)
| SOLVED PROBLEMS |
Ex. 1. If R is a ring with identity element I and 1 = 0 then R={0}.

Sol. xeER=x=lx=x=0x=>x=0 [By Theorem l(l)]
-~ R={0}

Thus a ring R with unity has atleast two elements if R # {0} .

Ex. 2. Prove that the set of even integers is a ring, commutative without unity
under usual addition and multiplication of integers.

Sol. Let R = the set of even integers. Then R={2x|xe Z}.
a,b,ce R=a=2m,b=2n,c=2p where mn,pe Z .

(R,+) is a commutative group. (see ex. in groups)

a.b=02m)(2n) =2l where | =2mne Z

~. Multiplication () of integers is a binary operation in R.
(a.b)y.c=2m.2n).2p=8mnp and a.(b.c)=2m.(2n.2p) =8mnp
s (a.b).c=a.(b.c) = Multiplication () is associative in R.
a.(b+c)=2m2n+2p)=2m.2n+2m.2p=a.b+a.c

Similarly, (b+c¢).a=b.a+c.a

. Distributive laws hold in R. Hence (R,+,+)1is a ring.

Since '1' is not an even integer; 1¢ R and hence R has no unity element.
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Ex. 3. (R,+) is an abelian group.
Show that (R,+,+)is a ring if multiplication (+) is defined as a.b=0Y a,be R.

Sol. To prove that (R,+,+) is a ring we have to show that (R,«)is semigroup and
distributive laws hold.

YV a,be R,a.b=0where e R is the zero element in the group.

. multiplication '« "' is a binary operation in R.

Let a,b,ce R. Then (a.b).c=0.¢=0;a.(b.c)=a.0=0 (By Def.)

s (a.b)y.c=a.(b.c)¥Ya,b,ceR - (R,+) is a semi group.

Let a,b,ceR. aeR,b+ceR=a.(b+c)=0

aeER,beR=ab=0ae R,ce R=>ac=0 =agb+ac=0+0=0.

Hence a.(b+c)=a.b+a.c

Similarly we can prove that (b+c¢).a=b.a+c.a . Distributive laws hold.

Ex. 4. Prove that Z,, ={0,1,2,....,m—1} is a ring with respect to addition and
multiplication modulo m. (N.U.01,0.U. 03)

Sol. We denote addition modulo m by +,, and multiplication modulo m by x,, . We also
know that a+,, b=a+b (modm) =r where r is the remainder when 4+p is divided by m.
ax,, b=ab (modm)=s where s is the remainder when ab is divided by m.

Let a,b,ce Z,,. a+,b=a+b(modm)e Z, = +,, is a binary operation in Z,,, .

a+,b=a+b(modm)=b+a(modm)=b+,a =+, iscommutativein Z,,.

(a+,,b)+,,c=(a+b)+c(modm) =a+(b+c)(modm)=a+,, (b+, c)

-+, 1s associative in Z,,, .

There exists 0€ Z,, such that 0+,, a =0+ a (modm) =a (modm) =a.

= 0 is the zero element.

For 0e Z,,, we have 0+,, 0 =0 (mod m) = additive inverse of 0=0.

For a#0€ Z,, we have 0<a<m =0<m-a<m=m-a€Z,

a+,, (m—a)=a+(m-a) (modm)=m (modm) =0 (mod m)

-, inverse of a#20€ Z,,is m—ac Z,,. Hence (Z,,,+) is an abelian group.
Let a,b,ce Z,,. aX, b=ab(modm)e Z, = X, is a binary operation in Z,,
(aX,, b)X,, c =(ab) c (modm) = a (bc) (modm) = ax,, (bx,, c)

. X, 1s associative in Z,, .
ax,, (b+,,c)=ab+c)(modm)=ab+ac (modm) = (ax,, b)+,, (ax,, c)
and (b+,, ¢)X,, a =(bx,, a)+,, (cx,, a) so that distributive laws hold.

s (Z,,, 4, %) 1S ating.

Note. Put ; = 61in the above proof to prove that Zis a ring.
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Ex. 5. Prove that the set R ={a,b}with addition (+) and multiplication (s) defined

as follows is a ring.

+ |la|b e |la | b
a | a and alala
b |b|a b|lalb

Sol. From the above tables, clearly +,« are binary operation in R.

1. (a+a)+b=a+b=b; a+(a+b)=a+b=b= (a+a)+b=a+(a+Db)
(atb)+ta=b+ta=b;a+(b+a)=a+b=b= (a+b)+a=a+(b+a), etc,

. Associativity is true.

a€ R is the zero element because a+a=a,b+a=b

a+b=b=b+q= commutativity is true.

a+a=a= additive inverse of ¢ =a and p +p = ¢ = additive inverse of p =p.

ook wn

a.(a.by=a.a=a; (a.a).b=a.b=a=a.(a.b)=(a.a).b,etc

. Associativity is true.

6. a.b+a)=a.b=a,a.b+a.a=a+a=a=a.(b+a)=a.b+a.a
(b+a).a=b.a=a; b.ata.a=a+a=a =(b+a).a=b.a+a.a, etc.
. Distributive laws are true. =~ Hence (R,+, ) is a ring.

Ex. 6. If R is a ring and a,b,c,dc R then prove that

(i) (a+b)(c+d)=ac+ad+bc+bd, and (S. V. U. 99) (ii) a+b=c+d = a—-c=d-b

Sol. (i) (a+b)(c+d)=a(c+d)+b(c+d) = ac+ad +bc+bd (By Rg)

(i) a+b=c+d o (a+b)+(=b)=(c+d)+(-b)

S at(b+(=b)=(c+d)+(-b)

< a+0=(c+d)+(-b) By Ry)
Sat(—c)=(c)+{(c+d)+(-b)}
Sa—-c=((-c)+c)+{d+(-b)} By Ry)
Sa-c=0+d-b)e=a—-c=d-b

EXERCISE 9 ( a)

1. IfRisaring and a,b,ce R prove that (a—b)—c=(a—c)-b
2. IfRisaring and a,be R then prove that the equation a+x =5 has
unique solution in R.
3. Inaring Rif'a’ commutes with 'b' prove that 'a' commutes with '—p'where a,be R.
4. If Risaring with unity element '1' and R # {0} prove that 1= (0 where O€ R is the zero
element.

5. Ris aBoolean ring and for a€ R, 2a=0= a =0 then prove that R ={0}.
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If R is a commutative ring prove that (a+b)? =a> +2ab+b*> VY a,be R .
If Ris aring and a,b,c,d € Revaluate (a—b) (c-d) .

If R= {a\/E |ae Q} is (R,+,+) under ordinary addition and multiplication, aring ?

e *® 22

Is the set of all pure imaginary numbers = {iy | ye R} a ring with respect to addition and
multiplication of complex numbers ?

10. If Z = the set of all integers and 'n' is a fixed integer prove that the set nZ = {nx| xe Z}
is aring under ordinary addition and multiplication of integers.

2. b—a 7. ac+bd—-ad—bc 8. Notaring 9. Not aring

9.5. ZERO DIVISORS OF A RING |

Though rings are generalisation of number system some algebraic properties of number
system need not hold in general rings.

The product of two numbers can only be zero if atleast one of them is zero, whereas in
any ring it may not be true. For example, in the ring (Z4,+,+)of modulo - 6, we have

2.3=0 with neither 2 =0 nor 3=0.

Definition. (Zero Divisors). Two non zero elements a,b of a ring R are said to
be zero divesors (divisors of zero) if ab=0, where 0€ R is the zero element.
(0.U. 12, S.K.D. 04)
In particular '@’ is left zero divisor and '’ is right zero divisor.
Definition. (Zero Divisor). 4 = 0ec R is a zero divisor if there exists 5= 0e R such
that ab=0.

Note. 1. In a commutative ring there is no distinction between left and right zero
divisors.

2. Aring R has no zero divisors <> a,be Rand ab=0=a=00r b=0
e.g.1. The ring of integers Z has no zero divisors.

e.g. 2. In the ring (Z;,,+,+), the elements 2,3,4,6,8,9,10 are zero divisors.
For 2.6=0,3.4=0,3.8=0,4.6=0,4.9=0,6.10=0

Observe that the G. C. D of any of {2,3,4,6,8,9,10} and 12 #1.

e.g.3. The ring (M,,+,+) of 2x2 matrices whose elements are in Z, has zero divisors.

0

1
For, we have A =
0 0

0 0 . .
} #20,B= L 0} # O ,where O is zero matrix , are such that AB=0.

e.g. 4. The ring (Z5,+, +) of modulo - 3 has no zero divisors.
e.g. 5. The ring ZxZ ={(a,b)|a,be Z} has zero divisors.
For, (0,1),(1,0)e ZxZ = (0,1)-(1,0) = (0,0) =zero element in ZxZ.
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Imp. In the ring of integers Z, all the solutions of x* —4x+3 =0 are obtained by factoring

as x> —4x+3=(x—1) (x-3) and equating each factor to zero. While doing so, we are using

the fact that Z is an Integral Domain, so that it has no zero divisors.
But if we want to find all solutions of an equation in a ring R which has zero divisors,

we can do so, by trying every element in the Ring by substitution in the product (x—1) (x - 3) for
Zero.

e.g. 6. In the ring Z of integers, the equation x> +2x+4=0 i.e. (x+1)>+3=0 has no
solution as (x+1)> +3>3V xe Z. (0.U.12)
But, in the ring Z, ={0,1,2,3,4,5},(x+ 1)? +3 takes respectively the values 4,1,0,1,4,3 for
x=0,1,2,3,4,5€ Z, .
. x> +2x+4=0 has 2€ Z, as solution.

9.6. CANCELLATION LAWS IN A RINGl

If (R,+,+)is aring, then (R,+) is an abelian group. So, cancellation laws with respect
to addition are true in R. Now, we are concerned about the cancellation laws in R, namely
ab=ac=b=c,ba=ca=b=cfor a,b,ce R with respect to multiplication.

Definition. (Cancellation laws). In a ring R, for a,b,ce R if a#0,ab=ac=b=c

and a#0,ba=ca = b=c then we say that cancellation laws hold in R .

Theorem. A ring R has no zero divisors if and only if the cancellation laws
holdin R . (S. K. D. 04, K. U. 03, 08, S. V. U. 08)

Proof. Let the ring have no zero divisors. We prove that cancellation laws hold in R.

a,b,ce R and a#0,ab=ac=ab—ac=0
=2ab-c)=0=b—c=0 (raz0)=b=c
Similarly we can prove a #0,ba=ca=b=c

Conversely, let the cancellation laws hold in R. We prove that R has no zero divisors.
If possible, suppose that there exist a,be R such that a#0,b#0and ab=0.

ab=0=ab=a0=b=0 (By cancellation law)

This is a contradiction. . a#0,b#0 and ab =0 is not true in R.

~. R has no zero divisors.

Note. The importance of having no zero divisors in aring R, is, that an equation ax =5
where a #0,be R can have atmost one solution in R.

For x,xy€ R if ax; =band ax, =b then ax| = ax, = x; = x, (By cancellation law)

If 4 # 0e R has multiplicative inverse, say, a~' e R then the solution is a 'be R.
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SOLVED PROBLEMS

Ex. 1. Find the zero divisors of Z,,, the ring of residue classes modulo - 12.

Sol. 7, ={0,1,......... 11} (0. U. 04)
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s 2,3,4,6,8,9,10 are zero divisors.

Ex. 2. Solve the equation x* -5x+6=0 in the ring Z,,. (0.U.12)
Sol. In the ring of integers Z, which has no zero divisors,

x? =5x+6=0=(x—2) (x—3)=0 has two solutions 2,3¢ Z .

Butin Z,; for x=6,(x-2) (x-3)=(4) 3)=12=0

and for x=11,(x—2) (x-3)=(9) (8)=72=0.

-, the given equation has 4 solutions, namely, 2,3,6 and 11 in the ring Z,, .

Ex. 3. In the ring Z,, show that the zero divisors are precisely those elements

n»
that are not relatively prime to n. (or) show that every non-zero element of Z, is a unit or
zero divisor.

Sol. Let me Z,, ={0,1,2,....n—1}and 0. Letm be not relatively prime to n.

Then G. C.D of mn=(m,n)#1. Let (mn)=d.

We have (m,n)=d = d :1:>ﬂ,£ezn and 220, 220
d d d d d d

g m(ﬁj{ﬂ)n:omdm. Thus m¢0,£¢02>m(£)=0
d d d d

= m 1s a zero divisor.

-~ Bvery me Z, which is not relatively prime to 7 is a zero divisor.

Let me Z, be relatively prime to n.

Then (m,n)=1. Let mr=0 for some re Z,.

We have mr =0 (modn) = n|mr =nl|r (.(mn)=1) =r=0 (0<r<n-1

~ If me Z, is relatively prime to n then m is not a zero divisor.

Note. If p is a prime, then Z, ring has no zero divisors.

9. 7. SOME SPECIAL TYPES OF RINGSl

Definition. (Integral Domain) A commutative ring D with unity containing no
zero divisors is an Integral Domain. (0.U0.07,8.V.U.03)

Note. 1. Some authors define integral domain without unity element.
2. For "Integral Domain" we simply use the word "Domain" and
denote by the symbol D.
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Imp. D is an integral domain < (1) D is a ring, (2) D is commutative,
(3) D has unity element and (4) D has no zero divisors.
e.g. 1. The ring of integers Z is naturally an integral domain. (N.U.00,S.V.U.99)

1€ Z is the unity element and V a,be Z we have ab =ba (commutativity)

and ab=0 = ¢ =0 or b =0 (no zero divisors).

e.g.2. (Zg,+,) where Zg ={0,1,2,3,4,5}, the set of integers under modulo - 6 system,
isaring . le Zgis the unity element and V a,be Zg we have

ab (mod 6) = ba (mod 6) (commutative)

But, for 2#0,3 # 0 (mod6), 2.3 =6 (mod 6) =0 and hence Zg has zero divisors.

Therefore, Zg is not an integral domain.

e.g. 3. If Q= the set of all rational numbers and R = the set of all real numbers then
(Q,+,») and (R,+,) are integral domains.

eg. 4. Z; ={0,1,2,3,4,5,6}, the set of all integers under modulo - 7 is an integral
domain with respect to addition and multiplication modulo - 7.

e.g. 5. Thering (M,,+,+) of 2x2 matrices is not an integral domain because it is not
commutative and has zero divisors.

e.g.6. ZxZ ={(a,b)|a,be Z} is not Integral Domain under addition and multiplication
of components.

| Theorem. 1. In an integral domain, cancellation laws hold. (A. U. 07, 0. U. 07) |
(Write the proof of (1) part of theorem in Art. 9.6)

Theorem. 2. A commutative ring with unity is an integral domain if and only
if the cancellation laws hold.

(Write the proof of theorem in Art. 9.6)
Definition. (Multiplicative Inverse). Let R be a ring with unity element 'I'. A
non-zero element a€ R is said to be invertible under multiplication, if there exists

be R such that ab=ba=1. be R is called multiplicative inverse of ac R .

From the theory of groups, multiplicative inverse of a # 0€ R, if exists, is unique. Itis

denoted by a™'. Also aa ' =ala=1.

Definition. (Unit of a Ring). Let R be a ring with unity. An element ue R is said
to be a unit of R if it has multiplicative inverse in R.
Note. 1. Zero element of a ring is not an unit.

2. Unity element of a ring and unit of a ring R are different. Unity element is the
multiplicative identity while unit of a ring is an element of the ring having multiplicative
inverse in the ring. Ofcourse unity element is a unit.
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Theorem. 3. In a ring R with unity, if a (#0)e R has multiplicative inverse,
then it is unique.
Proof. Suppose that there exist b,5"e R such that ab=ba =1 and ab"=b'a=1.
Then ab=ab"=1.
By definition of cancellation law, » =5".

e.g. 1. Zis aring with unity element=1. We have 1.1=1and (-1) (-1)=1 for -1,1e Z .

If a#+le Z then there exists no pe zsuch that ab=ba=1. Therefore, —1,1 are the
only units in the ring Z. Observe that unity element is also unit.

e.g.2. Consider the ring Z; ={0,1,2,3,4,5,6} under addition and

multiplication modulo - 7. It has unity element = 1 which is also a unit.

Further 2.4=4.2=1(mod7),3.5=5.3=1(mod7)and 6.6=1(mod7).

Thus every non-zero element is a unit.

e.g.3. Consider the ring ZxZ ={(m,n);m,ne Z}.

The unity element = (1,1) which is also unit.

Also, (1,-) (L,-)=1.1,(-D) (-1))=(L1); (-LI)(-1,)=(1,1D)and (-1,-1) (-1,-1)=(1,1)

Thus (1,1),d,-1),(-1,1) and (=1,—1) are units in zZx 7 .

Definition. (Division Ring or Skew Field) Ler R be a ring with unity element.

If every non-zero element of R is a unit then R is a Division Ring. (S. V. U. 00, 03, 05)

(R,+,+) is a Division ring < (1) R is aring, (2) R has unity element and

(3) every non - zero element in R is invertible under multiplication.

e.g.l. (Z,+,+) is not a division ring, for, 2 # 0e Z has no multiplicative inverse in Z.

e.g. 2. (Q,+,+) and (R,+,+) are division rings.

e.g. 3. The ring (M,,+, +) of non-singular 2x2 matrices is a division ring.

Definition. (Field) Let R be a commutative ring with unity element. If every non-
zero element of R is invertible under multiplication then R is a field.

S. V.U 03,0.U.M12, 03,08, S.K. U. 01)

Another Definition. A commutative ring with unity is called a field if every non-
zero element is a unit.

(R,+,+) isafield < (1) Ris aring, (2) R is commutative (3) R has unity element and
(4) every non - zero element of R is a unit.

Usually a field is denoted by the symbol F.

Note. 1. A division ring which is also commutative is a field.

2. In a field, the zero element and the unity element are different. Therefore, a field
has atleast two elements.

e.g. 1. We know that (Q,+) where Q= the set of all rational numbers is an additive

group and (Q —{0},+) is a multiplicative group. Further distributive laws hold.



SuccessClap: Best Coaching for UPSC Mathematics : For Info- 9346856874
Checkout ->22 Weeks Study Plan, Videos, Question Bank Solutions, Test Series

Therefore (Q,+,+) is a field.
e.g. 2. (Z,+,+)where Z = the set of all integers is not a field, because all non-zero
elements of Z are not units.

e.g. 3. (Z;,+ +)where Z; =the set of integers under modulo - 7 is a field.
Theorem. 4. A field has no zero - divisors. (A. U. 07,12, 0. U. 03, S. V. U. 00, K. U. 121

Proof. Let (F,+,+) be a field. Let a,be Fand a#0.

a#0€ F,Fis a field = there exists ¢ ' e F such that aa ' =ala=1.
ab=0=a " (ab)=a'0= (a'a)b=0=1b=0=b=0

Thus a,be R,a#0and ab=0=5b=0.

Similarly, we can prove that, a,be R,b#0 and ab=0=a=0.

~. F has no zero divisors.
Note. A division ring has no zero divisors. (Write the proof of the theorem (3))

Theorem. 5. Every field is an integral domain. |
N.U.12,01,0.U0.03,S.K. U.07,S. V. U. 08)
Proof. Let (F,+,+)be a field. Then the ring F is a commutative ring with unity and

having every non - zero element as unit.
But an integral domain is a commutative ring with unity and having no zero divisors.
So, we have to prove that F has no zero divisors.

(Write the proof of the above Theorem (3))
Note. The converse of the above theorem need not be true. But an integral domain
with finite number of elements can become a field.
|  Theorem 6. Every finite integral domain is a field. |
(N.U.08,0.U.12,07,08, A. U.07, 08,S.K.D. 08, K. U. 03, S. V. U. 99)

Proof. Let 0,1,41,a5,......,a, be all the elements of the integral domain D.

Then D has n+2 elements which is finite.

Integral domain D is a commutative ring with unity and having no zero divisors.

So, we have to prove that every non-zero element of D has multiplicative inverse in D.
Let ge pand 40

Now consider the n+1products al,aq;,aaqs,....,aq,, .
If possible, suppose that aq; =aa; for i# j.

Since q #0, by cancellation law we have ¢; =a; .

This is a contradiction since i # j.

Therefore al,aq;,aa,,....... ,aa, are (n+1) distinct elements in D.

Since D has no zero divisors, none of these (n+1) elements is zero element.
Hence, by counting ;

al,aay,aaq,,.......,aa, are the (n+1)elements 1,a;,a,,.....,a, in some order.
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. al=lor g=1o0r ag; =1for some ;.

For a#0e D there exists b=a; € Dsuch that gp =1
= a # 0e D has multiplicative inverse in D. - Dis afield.

Theorem 7. If p is a prime then Z,, the ring of integers modulo p, is a field.
(N.U. 07, S. K. U. 05)

Proof. In Ex. 4 on page 5, we proved that (Z,,+,+) is a ring.
Since Z, ={0,1,2,......, p—1} has p distinct elements, Z,, is a finite ring.
We prove now that Z,, is an integral domain.
Clearly, 1€ Z, is the unity element.
For a,be Z,,,ab (mod p) =ba (mod p) = ab = ba and hence Z, is commutative.
For a,be Z, and ab=0= ab=0(mod p) = p|ab= pla or p|b (" p is prime)
= a=0(mod p)or b=0 (mod p) =a=00r hp=0.
. Z, has no zero divisors. Thus (Z,.+,+) is a finite integral domain .
" Z, is afield.

Theorem. 8. If (Z,.+,) is a field then n is a prime number. . U. 07)|
Proof. If possible let m be a divisor of n.

. there exists g€ Z such that n =mgq . Clearly 1<m,g<n.
mq=n= mq=0(modn). Since Z,is a field, Z, has no zero divisors.
. mg=0(modn)= m=0(modn)or g =0 (modn)

Sm=nor g=n —mm=n or m=10.-mg=n). -~ n is a prime number.

Theorem. 9. Z, =1{0,1,2,....,p—1}is a field if and only if p is a prime number.

Proof. Write the proofs of Theorem 6 and Theorem 7.

Note. In the field Z, ={0,1,2,.....,p—1} where p is a prime, 1 and p-1 are the only

elements that are their own multiplicative inverses.
[SOLVED PROBLEMS|

Ex. 4. Find all solutions of x*-x+2=0 over Z [i].

Sol. We have Z; ={0,1,2} under modulo - 3 system. Z, [i]={a+ib|a,be Z; and i* = -1}
={0,1,2,i,14+i,2+1,2i,1+2i,2+2i}, containing 9 elements.

Let P(x)=x2—x+2. Then P(0) =0, P(1) #0, P(2) #0,P(i) =—1-i+2 %0,

P(+i)=(1-1420)-1-i+2#0, PQ2+i)=4-1+4)—(2+i)+2#0, P(2)=—4%0

P(1+2i)=(1-4+4))—(1+2))+2#0,P (2+2i) =(4—4+8i)—(2+2i)+2 #0

. x> —x+2=0 has no solution over Z, [i] .
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Ex. 5. Show that 1, p—1 are the only elements of the field Z,, p is prime, that are

their own multiplicative inverses.

Sol. Observe that, in Z, field, x> —1=0 has only two solutions.
x> -1=0=> x> =1= x.x=1= Multiplicate inverse of x=x.

So, we have to prove that 1, p—1 are solutions of x*—-1=0 in z,.
leZ, =1 -1=1-1=0
p-1eZ,=(p-1)>-1=p>-2p+1-1=p*-2p

=p(p=-2)=0.(p-2)=0 (" p=0(mod p))
Ex. 6. In a ring R with unity if ac R has multiplicative inverse then a€ R is not
a zero divisor.
Sol. @€ R has multiplicative inverse

= There exists a '€ R, such that aa ' =a"'a =1, where 1€ R is the unity element.
To prove that ae R is not a zero divisor we have to prove that
for be R sothat ab=0 or ba=0= b=0only.

ab=0=aY(ab)=a '0=1b=0=b=0: ba=0=(ba)a ' =0a' =bl=0=b=0
. a€ R is not a zero divisor.

Ex. 7. Construct a field of two elements.

Sol. Let F ={0,1} and addition (+), multiplication (+) in F' be defined as follows :

+1 0] 1 « 0|1
o 0] 1 0]0|O
0 110

Clearly, + and . are binary operations in F.
We have 0+1=1+0 and 0.1=1.0and hence +,+ are commutative.
The two operations are associative.

0€e F is the zero element and 1€ F is the unity element.
Clearly, distributivity is also true.

Additive inverse of 0 =(, additive inverse of 1=1.
Multiplicative inverse of 1#0e F is 1. Hence ({0,1}, +, +) is a field.

Ex. 8. Show that the set R of all real - valued continuous functions defined on
[0,1] is a commutative ring with unity, with respect to addition (+) and multiplication

(+) of functions defined as

(f+8) () =f(0)+g (x) and (f.g)(x)=f(x).g(x)Vx€[0,1] and f,g€R.
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Sol. f,g are real - valued continuous functions on [0,1]= (i) f+ g and f. g are real
- valued continuous functions on [0,1]and (if) f(x), g (x) are real numbers for xe[0,1].

~. Addition and multiplication of functions are binary operations in R.

Let f,g.he R Vxe[0,1L((f+g)+h) (x)=(f+g) (D) +h(x) =(f()+g (x)+h(x)

=f)+E ) +h(x)=f)+(g+h) (x) =(f+(g+M) (x)

S (f+rg)+h=f+(g+h)V f,g,he R

If O (x)=0V x€[0,1] then Qis areal valued continuous function. Therefore there exists
OecR so that (f+0) (x)= f(x)+0 (x)= f(x) Vxe[0,]]and feR.

If f is a real - valued continuous function on [0,1] then '- f'is also a real - valued

continuous function so that (—f) (x) =—f(x) V x€ [0,1].
Therefore for fe R there exists —f € R
so that (f+(=f) (0)=f(x)-f(x0)=0=0(x) Vxe[0,1]
That is, additive inverse exists V fe R. = (R,+) is a commutative group.
Vxe[0,11:((f8) 1) (x) = (f8) () h (x) = (f (x) g (x)) h (x)
= f(x) (g (x) k(X)) = f(x) (gh) (x) =(f(gh) (x)
~(f)h=f(gV [.g.he R
Vxe[0,11;(f(g+h) (x) = f(x) (g +h) (x) = f(x) (g (x)+h (X))
= f(x) g )+ f(x) h(x)=(fe) () +(fh) (x) = (fg + fh) (x)
o f(g+h)=fg+fhY f.g.he R
Similarly (g+h)f =gf +hf V f,g,he R. Hence (R,+,)1is a ring.
Vxe[01],(fg) (0) = f(x) g (x) =g (x)f(x)=(gf) (x)
S fe=gfVf,geR. ~. R is a commutative ring.
The constant function e (x) =1V xe[0,1] is real valued and continuous.
Also ee R is such that (ef) (x) =e (x) f(x) = f(x) V x€ [0,1]
. e€ R defined as above is the unity element.

Ex. 9. Prove that the set Z[i]={a+bi|a,be Z,i* =-1} of Gaussian integers is an

integral domain with respect to addition and multiplication of numbers. Is it a field ?
(S. V. U.01,0.U. 01, N.U. 04)

Sol. Let Z (i)={a+bi|a,be Z}.
Let x,ye Z (i) sothat x=a+bi,y=c+di where a,b,c,de Z
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x+y=(a+c)+(d+d)i=a +bi where ay=a+c,by=b+deZ
x.y=(ac—bd)+(ad +bc)i=ay +byi where a, =ac—bd by =ad+bceZ
. +,+ are binary operations in Z (i) .
Since the elements of Z (i) are complex numbers we have that
(i) addition and multiplication are commutative in Z (i) ,
(if) addition and multiplication are associative in Z (i) and
(iif) multiplication is distributive over additionin Z (i) .
Clearly zero element =0+ 0; = 0 and unity element =1+0i =1.
Further, for every x=a+ibe Z (i) we have —x=(-a)+i (-b)e Z (i)
so that x+(—x)={a+(-a)}+i{b+(-b)}=0+i0=0
= Additive inverse exists. .. Z (i) is a commutative ring with unity element.
For x,ye Z (i), x.y=0=x=0 or y=0since x,y are complex numbers.

Hence Z (i) is an integral domain with unity element.

3 .4
For a=3+4i#0e Z (i) we have B=—-—i=-so0 that

25 25
9 16 .[-12 12 . 3 4
a.fp=| —+— |+i| —+— |=1+i0=1 j o T
B (25 25) l( 25 25) l . But Bg Z (i) as o5 25@32.
So, every non - zero element of Z (i) is not invertible. .. Z (i) is not a field.

Ex. 10. Prove that Q[J2]={a+bJ2 |a,be Q} is a field with respect to ordinary
addition and multiplication of numbers. (A.N.U. 12,S.V.U. 00, K. U. 05)

Sol. Let x,y,ze Q[+/2]so0 that

x=a+bN2, y=ay +byN2, 2= a3 +b3\/2 where ay,bj,a,by,a3,b3€ Q
X+y=(a +ay)+ b +by)N2 =a+bJ2 where a;+a, =a, b +by =be Q
x.y=(aay +2bby) +(aphy +ayby) 2 = c+d[2 where ¢ =aa, +2bby € Q
and d =aby +ab € O

- Addition (+) and multiplication (+) of numbers are binary operations in Q[v/2].
Xty =(a +ay)+b +by) V2 = (ay +a) + by +b) 2

=(ay +b, J2)+ (¢ +b1\/§) = y+x= Addition is commutative.
(x+y)tz=(q+tay+taz)+ (b +b, +b3)\/§

and x+(y+2)=(q +ay+az)+ (b +by +b3) J2

= (x+y)+z=x+(y+z)= Addition is associative.

For 0e Q we have 0+0+/2 =0e Q[+/2] so that
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x+0=x for xe Q[v/2]= 0e Q[/2] is the zero element.

For x=q +b1\/§e 0 [\/E] we have

—x=(—a))+ ()N 2e€ Q[V2] so that x+(-x) =0=> Additive inverse exists.
- (Q[/2],+) is a commutative group.

x.y=(a +bN2) (ay + b\ 2) = (yay +2byby) + (ayhy +azby) V2

= (ayay +2byby) + (ayb; + byay) \[2 = y . x = Multiplication is commutative.

(x.Y). 2= (ajay +2byby +ayby +asbyN2) . (a3 + b33 2)
= (qyayas +2bybyas + 2aybyby +2a30b3) + (qyazby +2bybybs + ajazhy +azazhy) V2

and x.(y.z)=(a; +bN2) (ayaz + 2bybs +ayby +azby~2)
= (ayazaz + 2aibybs +2a,byby +2a3biby) +(ayayhs + ajashy + asazby + 2bbybs) N2
* (x.y).z=x.(y.z)= Multiplication is associative.
x.(y+z)=(qg +b2\/5) (m+m\/§)
= (ajay +ayaz + 2byby + 2byby) + (@b + ayby +asby +azb) N2

and x.y+x.z=(aay +2bby +aby +asbN2) + (ajas + 2byby + ajby + azbN2)
= (aay + 2byby +ayay + 2byby ) + (ayhs + ashy + aby + azby) N 2
“ x.(y+2)=x.y+x.z= Distributivity is true. Hence ( Q[+/2], +,+) is aring.
1=1+0v2€e Q[/2] so that x.1=(a; +b+2) 1+0J2) =xV xe Q[V/2].
+. Q[+/2] is a commutative ring with unity element.
To show that Q[+/2] is a field we have to prove further every non-zero element in
0 [/2]1has multiplicative inverse.

Let a+by2¢€ Q[\/E]and a#0 or b0

)

Th = =
M2 2w |\ 2—w? ) |2 —o?

since a?—-2b%#0 for a#0o0rb#0. a,be Q=

_b e
a® -2 a% —2p?

Q

For a+by/2 #0e Q[+/2] there exists ( a j+( b ]JE € Q[v/2] such that

a>-20% ) | a® - 2p?

(a+bx/§)[[ a j+[ b }/5}:1:“0\/5

a*-20% ) \ a® -2

-. Every non-zero element of Q[v/2] is invertible. Hence Q[v/2] is a field.
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Ex. 11. If Z = the set of integers then prove that the set zxz ={(m,n)|m,ne z} with
respect to addition (+) and multiplication (s) defined as

(my,my) +(my,ny) = (my +my,ny +ny) and (my,ny).(my,ny) = (mymy, nyny)

Y (my,ny),(my,my) € zX z is aring and not an integral domain.

Sol. Let x=(my,n),y=(my,ny),z=(my,n3)€ zxz so that my,n;,my,ny,my,n3€ Z

(1) x+y=(m,m)+(my+ny)=(m +my,n +ny)€ X2

x.y=(my,n).(my,ny) =(mymy,mny) € 2Xz aS my +my,ny +ny,mmy , MmNy € 2

+and .are binary operations in zxz
2) x+y=(m +my,n+ny)=(my +my,ny +m)=y+x
and x.y=(mm,y,mny)=(mym,nyn)=yx = +and . are commutative.

3) (x+y)+z=(m+my,n +ny)+(m3,n3)

=(my +my +my,n +ny+nz)=(m+my +mz,m+ny +ny) =x+(y+2)
(x.y).z2=(mmy,mny) . (mz,n3) = ((mymy) ms,(ny,ny) ny)
= (my(mymy ), 0y (nym3)) = x.(y . 2) =+and . are associative.
4) x.(y+2)=0m,n).(my +mz,ny +13)
= (my(my + my),n (ny + n3)) = (mymy + mymyz, mny +myng)
= (mymy ,mny )+ (mymz ,mnz) =x. y+x.z
Since multiplication is commutative, (y+z).x=y.x+z.x
. Distributivity is true.
(5) For 0e z we have (0,0)€ zxz and (m,n)+(0,0) = (m+0,n+0) = (m,n)
. (0,0)e zxz is the zero element.
(6) For 1€ z we have (I,1)e zxzand (m,n).(1,1)=(m.1,n.1)=(m,n)
= (L)€ zxz is the unity element. Hence zxz is a commutative ring with unity.
But we have, (0,1),(1,0)e zxz and (0,1) # (0,0), (1,0) # (0,0)
such that (0,1).(1,0)=(0.1,1.0) = (0,0)

= (0,1), (1,0) are zero divisors in zxz. Hence zxz is not an integral domain.
| EXERCISE 9 (b) |

1. Listall zerodivisors in the ring Z,,. Also find the unitsin Z,,. Is there any relationship
between zero divisors and units.

2. Solve the equation 3x=2 in (a) Z, (b) Zy

3. (a)Find all solutions of x* —=2x* -3x=0 in Z, . (0. U. 0812
(b) Find all solutions of x> + x —6 = 0 in Z,, . (K. U. 1I)

4. Describe all units in (@) Z, (b) Zs



SuccessClap: Best Coaching for UPSC Mathematics : For Info- 9346856874
Checkout ->22 Weeks Study Plan, Videos, Question Bank Solutions, Test Series

5. Prove that Z,xZ, ={(0,0),(0,1),(1,0),(1L1)} under componentwise addition and
multiplication is a Boolean ring.

6. Find all solutions of a* +b* =0 in Z,.

7.  Write the multiplication table for Z, [i]1={0,1, 2, i, 1+, 2+, 2i,1+2i,2+2i} .
R is a set of real numbers. Show that R xR forms a field under addition and multiplication
defined by (a,b)+(c,d)=(a+c,b+d)and (a,b)-(c,d) = (ac—bd, ad +bc) is a field.
(Hint. RxR =C={a+ib|a,beR,i* =-1}) (S. V. U.07)

9. If Z is the set of all integers and addition @ , multiplication (x) are defined in Z as

a®b=a+b-1and axb=a+b—abV a,be Z then prove that (Z,®, X) is acommutative
ring.

10. Let (R,+) be an abelian group. If multiplication () in Ris defined asa.b=0,'0" is the
zero element in R, V a,be R then prove that (R, +, «) is a ring.

11. If R={0,12,3,4} prove that (R, +5,%s) under addition and multiplication modulo - 5

is a field. (S.V.U.99)
12. Give examples of (1) a commutative ring with unity (2) an integral domain and (3)
Division ring. (N.U. 97)

13. If R =the set of all even integers and (+) is ordinary addition and multiplication (%) is

. ab . . .
defined as a>xb= > V a,be R then prove that (R, +, %) is a commutative ring.

14. S is a non-empty set containing n elements. Prove that P(S) forms finite Boolean ring
w.r.t '+ and '+ 'defined as A+B=(ANB)-(AuUB) and A-B=ANBYA,BeP(S).
Find addition and multiplication tables when S ={a,b} .

15. If R|,R,,....,R, are rings, then prove that R, xR, X....XR, ={(i,F,..c..., ) | € R;}
forms a ring under componentwise addition and multiplication, that is,
(ay,ayyeeeeer @)+ (by by b,)) = (@) + by, a5 + by,....ya, +b,) and

(aj,ay,.cccc;a,)- (b, by,....... b)) = (a1b, a3, ....,a,b,)

9.8. INTEGRAL MULTIPLES AND INTEGRAL POWERS OF AN ELEMENT

Integral multiples : Let (R,+,-) be a ring and ae R.

We define 0a=0 where ‘0’ is the integer and O is the zero element of the ring.
If ne N we define na=a+a+...+a,(nterms ).

If n is negative integer, n a = (-a)+(—a)+ ... +(—a), (—nterms ).
(-n)a=(-a)+(-a)+...+(-a),nterms =n (—a)=—(na) where ne N .

The set {na|ne Z,ac R} is called the set of integral multiples of an element ‘a’.

It may be noted that for ne Z,ae R we have nae R.
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Theorem. If mneZ and a,b€ R, a ring, then (i) (m+n)a=ma+na,
@) m(na)=(mn)a, (iii) m(a+b)=ma+mb and (iv) m (ab)=(ma)b.
( Proof is left as an exercise )

Note 1. If the ring R has unity element then for n€Z and a€ R we have
na=nla)=mla.

2. If m,neZ and a,be R, aring then we have

(ma) (nb)=m{a (nb) } =m{ (na) b} =m{ n(ab) } = (mn) (ab) .

Integral powers : Let (R,+,-) be aring and a €R.

For ne N we write ¢" =a.q...a (ntimes ).

It may be noted that ¢" =4""! . 4.

Theorem. If m,n e N and a,b € R, a ring then
(l) a™.a" =am+n and (ll) (am)n =qmn,
( Proof is left as an exercise )

9.9. IDEMPOTENT ELEMENT AND NILPOTENT ELEMENT OF A RING

Definition. In a ring R, if a’=a for a € R then ‘a’ is called idempotent element

of R with respect to multiplication. S. V.U oI
Theorem. 1. If q # 0 is an idempotent element of an integral domain with unity
then a = 1.

Proof. Let (R, +,-) be an integral domain.

a#0eR is an idempotent element = @t =a =da?=al (val=a)

=a’-al=0=a(a=1)=0 (‘0’ is the zero element)

= a-1=0 since R has no zero divisors = a=1.

Note. 1. An integral domain with unity contains only two idempotent elements
‘0’ and ‘1°.

2. A division ring contains exactly two idempotent elements.

3. Product of two idempotent elements in a commutative ring R is idempotent.

For, (ab)* = (ab) (ab) = a (ba) b = a (ab) b = (aa) (bb)
=a*b* =ab for a,be R which are idempotent.

Definition. Let R be a ring and a+#0€ R. If there exists n€ N such that a" =0
then ‘a’ is called nilpotent element of R.
Theorem. 2. An integral domain has no nilpotent element other than zero.

(A. U. 08)

Proof. Let R be an integral domain and a #0e R.

1

we have @' =a#0, a®> =a.a#0 since R has no zero divisors.
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Let a" #0 for ne N.
Then "' = 4" .4 =0, since R has no zero divisors.

. By induction, a" #0 for every ne N .
Hence a #0€ R is not a nilpotent element.

e.g. 1. Inthering (Zg, +,-), 3 and 2 and idempotent elements, for 32 =3 and 4_12 =4.

e.g. 2. In the ring (Zg, +,-), there are no idempotent elements.

e.g. 3. In the ring (Zg, +,-), 2 and 4 are nilpotent elements, for 2’ =0 and 2° =0.
e.g. 4. In the ring (Zg, +,-) there are no nilpotent elements.

Ex. 1. If @, b are nilpotent elements in a commutative ring R then prove that a+b,a . b
are also nilpotent elements.

Sol. a,be R are nilpotent elements
= there exists m,ne N such that 4™ =0,»" =0. We have
(a+b)"™™" =d™" 4 (m+n) C; ™" b+ +(m+n)C, " D+ A DT
=a"™ {(d"+(m+n) C; a" b+ (m+n)Cy.a" 2 b7 .+ (m+n)C, . b"}
+{(m+n) Cpyy.d™ b+ (m+n) Cpon d™ 2 B2+ 4"y =0 (cd"=0=b")
Also, (ab)™ =a™ . p™ =(@™)"B")" =0 (-~ R is commutative )

. a+b and a.b are nilpotent elements.
[ 9.10. CHARACTERISTIC OF A RINEl
Definition. The characteristic of a ring R is defined as the least positive integer

p such that pa=0 for all ac R. In case such a positive integer p does not exist
then we say that the characteristic of R is zero or infinite. (S. V. U. 00)
Note 1. If Risaringand Z={ne N|na=0V a€ R }# ¢ then the least element in Z
is the characteristic of R.

2. If the ring R has characteristic zero then mq =0 where ¢=(0 can hold only if
m=0.

3. If the characteristic of a ring R is not zero then we say that the characteristic of R
is finite.

4. Asthe integral domain, division ring and field are also rings characteristic has meaning
for these structures.

Imp. If for some a€ R, pa#0 then characteristic of R# p.

Characteristic of aring R=p= pa=0VaeR.

eg. 1. R=1{0,1,2,3,4,5,6 } =Z,is a ring under addition and multiplication
modulo 7. Zero element of R = 0.

VaeR wehave 7g=0(mod7) =7a=0VacR.
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Further for 1e R, p(1)=p#0 where p#0 and O0< p<7

-, 7 is the least positive integer so that 7a=0V a€ R = Characteristic of R = 7.
e.g. 2. The characteristic of the ring ( Z, +,-) is zero. For, there is no positive integer
n so that g =0 for all aeZ.

e.g. 3. If R#{0} and characteristic of R is not zero then characteristic of R > 1.
Characteristic of R=1=1a=0VaeR =a=0VacR =R =1{0}.

e.g. 4. For any element x€ Z, [i] ring, we have 3x=0V xe Z, [i]= characteristic of
Z,li]=3.

e.g. 5. In thering R ={0,3,6,9} c Z,,,4x=0V x€ R and '4' is the least positive integer.
. Characteristic of R ={0,3,6,9} =0

Theorem 1. If R is a ring with unity element, then R has characteristic p >0 if

and only if p is the least positive integer such that pl=0.

Proof. Let characteristic of R=p (>0)

By definition, pa=0V a€ R . In particular pl1=0.

Conversely, let p be the least positive integer such that p1=0.

S g<p and ge N=¢q1#0. Then for any a€ R we have
p.a=a+a+..+a(pterms )= a(l+1+.+)=a(pl)=a0=0.

- p is the least positive integer so that p.a=0V aeR. - Characteristicof R=p.

Theorem 2. The characteristic of a ring with unity element is the order of the
unity element regarded as a member of the additive group. (K. U. 12)

Proof. Let (R, +,-) be aring so that (R, +) is its additive group.

Case 1. Let O (1)=0 when the unity element 1 is regarded as an element of ( R, +).

By the definition of order of an element in a group, there exists no positive integer n so
thatn 1 =0.
. Characteristic of R = 0.

Case 2. Let O(1)=p (#0).

By the definition of order of element in a group, p is the least positive integer,

sothat p1=0. Forany a€ R,pa=p (la)=(pl)a=0a=0

. Characteristic of R=p.

e.g. For the commutative ring ZxZ, the zero element =(0,0) and the unity
element = (1,1) . By the definition of order of an element in the additive group ZxZ,
there exists no positiveinteger m such that m (1,1) = (m,m) = (0,0).

Therefore characterestic of ZxZ is zero.
Theorem 3. The characteristic of an integral domain is either a prime or zero.
(A.U.12,A.N. U. 12, 0. U. 04, S. V. U. 00, 0I)
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Proof. Let (R, +,-) be an integral domain. Let the characteristic of R = p (#0).

If possible, suppose that p is not a prime. Then p=mn where 1<m,n<p.

a#20cR=a.a=a’ecR and 42 x( (- Risintegral domain )

pa’ =0 = (mn)a®>=0 = (ma) (na)=0

=>ma=0 0or ng=0 (- R is integral domain )

Let ma=0. Forany xe R, (ma) x=0=a (mx)=0 =mx=0 (va#0)
This is absurd, as 1<m < p and characteristic of R = p.

wma#0. Similarly, we can prove that ng =0 .
This is a contradiction and hence p is a prime.

Theorem 4. The characteristic of a field is either a prime or zero. (S. V. U. 00) |

Proof. Since every field is an integral domain, by the above theorem the characteristic
of a field is either a prime or zero.
Note. 1. The characteristic of a division ring is either a prime or zero.

2. The characteristic of Z,, where p is a prime, is p.

[SOLVED PROBLEMS |

Ex. 2. The characteristic of an integral domain (R, +,-) is zero or a positive integer

according as the order of any non-zero element of R regarded as a member of the group
(R, +). (0.U.97)

Sol. Let aeR and ¢ #0.

Case (1).Let O (a)=0when ‘a’ is regarded as a member of (R, + ).

By the definition of order, there exists no positive integer n so that ng=0.
Characteristic of R = 0.

Case (2). Let O(a)=p.

By the definition of order, p is the least positive integer, so that pa=0.
Forany xeR, pa=0=(pa)x=0x =a(px)=0 = px=0 since ¢=0.
-, p is the least positive integer so that px=0V xeR .

Hence characteristic of R = p.

Ex. 3. If R is a non-zero ring so that a®* =aV ac R prove that characteristic of
2 or prove that the characteristic of a Boolean ring is 2. (S.K.U.0LS.V.U00)

Sol. Since ¢’ =aVaeR, wehave (a+a)> =a+a

= (a+a)(at+a)=a+a =a(a+a)+a(a+a)=a+a

=>(a2+a2)+(a2+a2)=a+a =(@a+a)+(a+a)=(a+a)+0 =a+a=0 = 2a=0.
- for every ae R, we have 24=0. Further for ¢ 20, la=a#0.

~. 2 1s the least positive integer so that 2a =0V aeR .
Hence characteristic of R = 2.
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Ex. 4. Find the characteristic of the ring Zy;xZ,.

Sol. We have Z, ={0,1,2},Z, ={0,1,2,3}

ZyxZ, =1{(0,0),(0,1),(0,2),(0,3),(1,0),(1,1),(1,2) , (1,3),(2,0),(2,1),(2,2),(2,3)}

contains 12 ordered pairs as elements. Zero element (0,0) and unity element = (1,1)

We have, 1(1,1) =(1,1) #(0,0); 2 (1,1) = (2,2) # (0,0);

3(1,1)=(3,3)=(0,3) #(0,0); 4 (1,1) =(4,4) =(1,0) # (0,0);

5L =(5,9=02,D)#(0,0);6 (1,1)=(6,6)=(0,2) # (0,0);

7A,D=(7,7)=(1,3)#(0,0); 8 (1,1) =(8,8) =(2,0) # (0,0);

9(1,1)=(9,9) =(0,1) # (0,0); 10 (1,1) = (10,10) = (1, 2) # (0,0);

11D =11,11)=(2,3)#(0,0); 12 (1,1) = (12,12) = (0,0);

-- Least positive integer = 12. Hence characteristic of Z;xZ, =12.

Also, G. C. D of 3,4=(3,4) =1= the additive group Z; xZ, is isomorphic with Z,,

. Characteristic of Z;xZ, = Characteristic of Z;, =12.

Ex. 5. If the characteristic of a ring is 2 and the elements a, b of the ring commute
prove that (a+b)? =a® +b* = (a-b)>.

Sol. Since characteristic of the ringR =2 = 2x=0 V xeR.

a,b e R commute = ab=ba.

(a+b)? =(a+b) (a+b) =a(a+b)+b(a+h) =a’+ab+ba+b* =a’ +2ab+b>

a,b eR=ab €R and 2(ab)=0. (- characteristic of R=2)

(a+b)? =d®>+0+b> =a* +b°.

Similarly we can prove that (q-5)? = a® +b>.

Ex. 6. If R is a commutative ring with unity of characteristic = 3 then prove that
(a+b’ =’ +b*> Va,beR

Sol. R is a ring with characteristic =3 = 3x =0, zero element of R V xeR.

Since R is a commutative ring, by Binomial Theorem, (a+b)* = a® +3a%b +3ab* +b°

a,be R = a’b,ab’ € R = 3a’h =0,3ab> =0 . s(a+b’ =d>+b°.
EXERCISE 9 ( ¢)|

1. Prove that the characteristic of the ring Z, ={0,1,2,..,n—1} under addition and

multiplication modulo 7, is n.

Prove that the characteristic of a field is either prime or zero.

Prove that the characteristic of a finite integral domain is finite.

4. Prove that any two non-zero elements of an integral domain regarded as the members
of its additive group are of the same order.

5. Give examples of a field with zero characteristic and a field with characteristic 5.

Find the characteristics of the rings (i) 2Z (ii) ZxZ (0.U.08)

7. If Ris a commutative ring with unity of characteristic = 4 then

W N

o

simplify (a+b)*forall a,pbeR . (K.U.07)
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8. If Ris a commutative ring with unity of characteristic = 3
compute and simplify (i) (x+y)® (i) (x+y)’ Vx,yeR
5. nZ ring, Zs ring 6.() 0 (i) 0. 7. a* +a’b+ab’ +b*
8. (i) xX*+2x°y3+y8 i) x*+y°

| 9.11.DIVISIBILITY, UNITS, ASSOCIATES AND PRIMES IN A RING.

Definition. (Divisor or Factor) Let R be a commutative ring and a+#0,beR. If

there exists q€ R such that b=aq then ‘a’ is said to divide ‘b’.

Notation. ‘a’ divides ‘b’ is denoted by a | b and ‘a’ does not divide ‘b’ is denoted by

alb.

Note. 1. If ‘a’ divides ‘b’ then we say that ‘a’ is a divisor or factor of ‘b’.

2. For a#0,0e R we have a.0=0 and hence every non-zero element of a ring R is

a divisor of ‘0’ = Zero element of R.

3. a#0,beR and a|b < b=aq for some g€ R.

e.g. 1. In the ring Z of integers ; 3|15 and 3] 7.

e.g. 2. In the ring Q of rational numbers; 3|7 because there exists (7/3)e Q

such that 7=3.(7/3).

e.g. 3. In a field F, two non-zero elements are divisors to each other.

e.g. 4. In the ring Z;,4|2; In the ring Zg,3|7 and in the ring Z;5,9[12.

e.g. 5. Unit of a ring R divides every element of the ring. If ae R is a unit then
-1

aa'=a'a=1 where ¢ 'cR.

For any be R we have b=1b=(aa " Yb=a(a"'b)=a|b.

Theorem. 1. If R is a commutative ring with unity and a,b,c € R then
(i) ala (ii) a|b and blc=a|c (iii) alb=albxV xeR

(iv) a|b and alc=a|lbx+cyVx,y €R.

Proof. (i) If 1 € R is the unity element in R then a =a .1 which implies that a|a.
(i) a|b=b=aq forsome ¢ eR; b|lc=c=bg, for some g, €R.

Now c=bgy=(aq) qy=a(q.q3)=aq where g=q, g€ R =alc.

(iii) a|b=b=aq for some ge R.

Now bx=(aq) x=a(gx)=aq" where g' =gxe R = a|bx.

(iv) alb=a|bxVxeR; a|lc=alcyVyeR

a|bx= bx=aq forsome ¢qeR; alcy=cy=agq, for some g, eR.
sobx+cey=aq+agy =a(q +qy)=aq where g=q;+qg;€R =al|(bx+cy).

Note. a|b and a|c=al|bztc.
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Definition. (Greatest Common Divisor G.C.D) Let R be a commutative ring and
a,be R. deR is said to be greatest common divisor of ‘a’ and ‘b’ if

(i) d|a and d|b and (ii) whenever c|a and c|b where ce R then c|d.
Notation. If ‘d’ is a greatest common divisor (G. C. D) of ‘a’ and ‘b’

then we write d =(a, b).

Definition. (Unit) Letr R be a commutative ring with unity. An element a€ R is
said to be a unit in R if there exists an element be R such that qgp =1 in R. However,

the unity element ‘1’ is also a unit because 1 . 1 =1.
2. In a ring, unity element is unique, while, units may be more than one.

3.1If aqp=1 then 4,1 _p. So, aunitin a ring R is an element of the ring so that its

multiplicative inverse is also in the ring. That is a€ R is a unit of R means that the

element ‘a’ is invertible.
4. Units of a ring are infact the two divisors of unity element in the ring..

5. ‘@’ isaunitin R=ab=1 for some b€ R = ‘b’ is also a unit of R.

e.g. In a field F, every non-zero element has multiplicative inverse. So, every non-zero
element in a field is a unit.

Theorem 2. Let D be an integral domain. For a,be D, if both a|b and b|a

are true then g=ub where u is a unit in D.

Proof. a|b=b=aq for some g, e D; b|a= a=bg, for some g,€D.

b=aq =(bgy) q =b (g5 q) = 1= q, g ,by using cancellation property in integral domain.
S gy q=1= ¢, is aunitin D. Hence a =bg, where ¢, is a unit in D.
Definition. (Associates) Let R be a commutative ring with unity. Two elements

‘a’ and ‘b’ in R are said to be associates if b=uya for some unit u in R.
Note. The relation of being associates in a ring R is an equivalence relation in R.

e.g. 1. If ‘1’ is the unity element in the ring R then ‘1’ isaunitin R. For a (#0)e R we
have a=1.a and q, a are associates in R.
e.g. 2. In the ring Z of integers, the units are 1 and —1only. For a#0€ Z, we have
a=a.l and a=(-a)(-1) only. Therefore, a€Z has only two associates, namely,
a,—a.
e.g. 3. In the ring Z¢ ={0,1,2,3,4,5} of integers modulo - 6, the units are 1, 5 only.
For 2e Z¢; 2=2.1 (mod 6) and 2=4.5 (mod 6)

2 has two associates 2, 4.

Theorem. 3. In an integral domain D, two non-zero elements a,be D are

associates iff a|b and bla.

Proof. From Theorem (2) we see that a|b and b|a

= there exists unit u€ D such that 4 =y» = a,b are associates.
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a, b are associates in D = there exists unit ©# in D such that a=ub=b|a.
1 is unitin D = there exists unit ve D such that 4y =1.

Now a=ub=va=vub)=>va=0u)b =>va=1)b=b=va=alb.

Hence «|b and b|a.

Definition. (Trivial Divisors and Proper Divisors)

Let a+#0 be an element in the integral domain D. The units in D and the associates
of ‘a’ are divisors of ‘a’. These divisors of ‘a’ are called Trivial divisors of ‘a’.
The remaining divisors of ‘a’ are called the proper divisors of ‘a’.

e.g. Consider the integral domain ( Z, +,-). The units in Z are 1 and —1 only.

For a #0€ Z , the trivial divisors are 1, -1, a, —a only. The remaining divisors of ‘a’ are
proper divisors.

3€ Z has only trivial divisors £1,+3 and no proper divisors.

6€ Z has trivial divisors *1,+6 and also proper divisors 2, %3

Definition. (Prime and Composite elements)

Let ‘a’ be non-zero and non-unit element in an integral domain D. If ‘a’ has no
proper divisors in D then ‘a’ is called a prime element in D. If ‘a’ has proper
divisors in D then ‘a’ is called Composite element in D.

Note. ae€ D is a prime element and 4= pc then one of b or ¢ is a unit in D.
e.g.1. In the integral domain ( Z, +,-);
5€ Z is prime element and 6€ Z is composite element.

e.g. 2. In the integral domain ( Q, +,-); 6€ Q is prime element since all its divisors are
units.

SOLVED PROBLEMS
Ex.1. Find all the units of Z,, the ring of residue classes modulo 12. (0. U. 04)

Clearly, the unity element = ] is a unit.

a€ Z,, is a unit if there exists be Z;, such that ab=1.

For a = even there is no » so that ¢p=1 (mod 12), as a5 is even. So we have to

verify for a = odd.

For 5¢ 7;, wehave 5x5=1; 7€ Z;, wehave 7x7=1 and 11 Z;, wehave 11x11=1.

- 1,5,7 and 17 are the units in Z;, .

Ex.2. Prove that *1, i are the only four units in the domain of Gaussian integers.
A. U 12)

Sol. Z[il={a+ib|a,beZ, i’ =-1 } is the integral domain of Gaussian integers.

1+ 0i =1 is the unity element.
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Let x+iye Z[i] be a unit. By the definition, there exists u+ive Z[i] such that
(x+iy) +iv)=1 =] (x+iy) @+iv) =1 = (% +y%) @ +v?) =1

=x2=1y>=00r y2_qgor y>=1 =x=%1,y=0or x=0,y==l.

©~ £1+0i,0%1i ie., 1, %iare the possible units.

Ex.3. Find all the associates of (2—i) in the ring of Gaussian integers. (N. U. 97)
Sol. We have 2—i=(2-i).1; 2—i=(-2+i).(-1); (2—-i)=(-2i-1).i

and 2—i=(2i+1).(-i).

. 2—i,—-2+i,—-2i—1 and 2j4+1 are the associates.

Ex. 4. In the domain of Gaussian integers, prove that the associates of q+ib are
a+ib,—a—ib, ia—b,—ia+b.

Sol. Since +1 and +; are the four units of Z[i],a+ib=(a+ib).1;
a+ib=(—a—-ib).(-1); a+ib=(ia-b).(-i) and a+ib=(—-ia+D).i

. a+ib,—a—ib,ia—b and —jq+p are the associates of 4+p .

Ex. 5. If D is an integral domain and U is a collection of units in D, Prove that
U, is a group.

Sol. (Left to the reader)

Ex. 6. Find all units of Z,,. (0.U. 2011)

Sol. Z,={0,1,2,3,4,5,6,7,8,9,10,11,12,13,14}

Unity element =1 is a unit. Since 14 is even, even number in Z,, cannot be unit.
For 3e Z,, we have 3.5=15=1= 3,5 are units.

For 9€ Z,, we have 9.11=99=1=09,11 are units.

For 13€ Z,, we have 13.13=169 =1= 13 is a unit.

Ex. 7. Find all the units in the matrix ring M,(Z,) (K.U. 2010)
Sol. We have Z, ={0,1} so that 0+0=0,0+1=1+0=1 and 1+1=0.

M, (Z,) =(a b} where a,b,c,d € {0,1)
c d
Number of elements in M, (Z,) =2* =16
1 0). . .
Clearly 1, = (0 J is the unity element and hence an unit.

AeM,(Z,) is a unit in M, if there exists a Be M, such that AB =1, the unity

element. AB =1, happens when A is non-singular and B = A

Hence the units of M, (Z,) are all the non-singular matrices.
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Matrices having only one '0' and three '1's are :

0 I)(1 O)(1 1)(1 1
Ll 1Mo 11 o which are non-singular

Hence the above 4 matrices are units.
Matrices having two '0's and two 'l's are

1 1)(0 0)(1 O0)(O0 1)(1 0)(0 1
0 of(1 1)\t o)lo 1](0 1)1 O

. . 1 0)(0 1 _
Among the above six matrices of Mz;( J( J are only non-singular.

0 1/{1 O

Hence these two matrices are units.

Matrices having three '0's and one '1" are : [1 O}(O 1),[0 OJ,[O OJ which are
0 0]|0 O)JlL O]l0 1

all singular.

00 11
The zero matrix =0 = 0 and the matrix having all '1's L1 are both singular.

1) (1 1 1) (1 1)(1 0 1
Hence the units of M, (Z,) are 0 , 2 , , , 0 and
1 1)L 1/{0 1/{1 0J{0 1 10

which are six in number.
| 9.12. SOME NONCOMMUTATIVE EXAMPLES.|
There are many rings which are not Commutative under multiplication. We study three

non-commutative rings, namely, the ring of square matrices over a field, the ring of
endomorphisms of an abelian group and the Quaternions.

{ SOLVED PROBLEMS |

Ex. 1. Prove that the set of all 2x2 matrices over the field of Complex numbers is
a ring with unity under addition and multiplication of matrices.
(0.U.04,5.V.U. 00)

b
Sol. Let R= ﬂa d}:a, b,c,de C} be the set of 2x2 matrices over C.
C

P ey S R LS T R B

a ayp by €21 2
be three elements in R.

(1) A+B =[aij]2>(2 +[bij]2>(2 =[a,-j +bij]2>(2 and

A+B=|:b,-j+a,-j]2x2=B+A (vagb;eC)

ij
-, Addition is a binary operation and also Commutative.
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) (A+B)+c=[a,-j+b,-j]2X2+[c,-j]2Xz [(aU+b )+cU]2X2
=[al-j+(bl-j+c,-j)]2xz=A+(B+C) (ray,by,c;€C)
-, Addition is associative.

0 0
(3) We haVe O= |:O 0i| = [0]2><2 eR SU.Ch that A+O= |:al-j + 0]2)(2 = |:al-j ]2><2 =

00
~ 0= {O 0} is the Zero element.
(4) For A=[a,-j:|2 ,» % €C=—-aq;€C so that &; +(-a;)=0€C.

. there exists —A=| - ]2 € R such that A+(-A)=[a; +(- dlj)] ) =[0hx =0.
-. (R, +) is an abelian group.

(5) Let A= I:alj :|Q><2 B = I:bjk ]2><2 C= [Ckl ]2><2 €R.

From the definition of multiplication ; AB = [alj ] [b ik ] it by

where Zal] jk =y by +ajp by €C

Multlphcatlon is a binary operation..

2 2 2
©6) (AB)C=[2aijbjkw (< 30 {2(2 i kackl]
J=1 2x2

k=1{ j=1

2 2
= [Zaii (ijkck, ﬂ =4 (BO)
=l k=l

. Multiplication is associative.

(7) A(B+C)=[q ]2><2 [Djic + < :|2><2

2 2 2 2
:[Zaij (b]k +cjk)]=[2(al~j bjk +al~j Cjk)] :lzaij bjk]+[2al] Cjk]:AB‘FAC.

j=1 j=1 j=1 j=1
Similarly, we can prove that (B+C)A=BA+CA. . Distributive laws hold.

Hence (R, +,-) is aring.

1 0
Since 1€ C, I={ :|ER. For A={a11 a12}
0 1 D1 A o

+0 0+
L T I i SESETR RS
a21+0 0+a22 %2 az; dx
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1 0
I= {0 1} is the unity element in R.

1 2 2 0 2+0 0+2 2 2
Let A= and B= . Then AB= =

3 4 0 1 240 0+2| |6 4
2+0 4+0}_{2 4

BA=
and [0+4 0+4| |4 4

} so that AB # BA.

Hence (R, +,-) is not a commutative ring.
Notation. The ring of all 22 matrices over the field of complex numbers C is denoted
by M, (C). If Fis afield the ring of all nxn matrices over F is denoted by M,,(F). The

zero element in M, (F) is denoted by O,,,, and the unity element by I,, .

: 0 0
Zero divisors in M,(C): A=[g 0}’&0 and B:[o 1}&0'

01 00
Then AB= #0 and BA= =0.
0 0 00

We observe that AB# BA and A#0,B#0= BA=0.
Therefore there exist Zero divisors in M, (F) where F is a field.

Nilpotent element in M, (C):

0 2 2 2
For A=[ }Wehave AP = & 0 = 00 =0
00 0 0|0 O 00

Therefore A is a nilpotent matrix in M, (C) .

1
B= [_1 _J is also a nilpotent matrix element in M, (C) .

X
Ex.2. The set of 2x2 matrices of the form L? y} where x, y are complex numbers

and x,y denote the complex conjugates of x y; is a skew field for compositions
of matrix addition and multiplication. (S. V. U. 00, 03, 05, N. U. 00)

x y .
Sol. Let M = {[ _ _}:x:aﬂ'b, y=c+id;a,b,c,d€ R} be the set of 2x2 matrices.
-y x

XN Xy W X
Let A= — — S B= — — . C = _3 313 eM
_yl X1 _y2 X2 _y3 X3
) yﬁVz}_{xﬁ'xz Nty

I A+B=| - Z
Y11= X1+ x2 —y1+y2 )c1+)c2

}e M, since
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Z£Z,=21+Z> for Z|,Z2€C.

A B_{xl )’1:| {xz h}_ XXy =YYy XYyt yx2
Vi X [Ty 2 VX2 T XYy Y Y2 T X1IX2
If u= X1X2 - yl;z and V= X1y2 + yle then 17 = 2122 - y1y2 and \7 = )_cliz + yl)CZ

A.B:{ " K}e M
-V u

Hence addition (+) and multiplication (-) are binary operations.

(2) Clearly A+ B=B+A for any A, BEM.

(3) Clearly (A+B)+C=A+(B+C) and (A.B).C=A.(B.C) for any A, B,CeM
because addition and multiplication of matrices are associative.

0+i0 0+i0
{—(H_io 0+i0

) 0 0
(4) There exists O = { } =

0 0 :|€M so that A+O=A for any Ae M.

. X =y 00
there exists —A=| _ “ | sothat A+(-A)= =0
J—— 00

=<

X
(5) For A={ -
-y
(Zero matrix)
(6) For any A, B,Ce M, distributive laws, namely, A.(B+C)=A.B+A.C and

(B+C).A=B.A+C.A are clearly true. Hence (M, +,-) is a ring.

1+i0  0+i0
—0+i0 1+:.0

10
(7) We have I=[O J={

}eMsothat A.I=1.A=A forany Ae M.

. the ring M has unity element I.

a+ib c+id

Xy
(8) Let A#0€eM so that A={ _ J:{ _ _
-y X —c+id a-ib

} where

a, b, ¢, d are not all zero.
Det A= (a+ib) (a—ib)—(c+id) (~c+id)=a> +b> +c> +d*> #0.

Since det A#0, A=0Q isinvertible. Hence (M, +,-)1s a skew field.

Xy a+ib c+id
Note. The matrix 5 is also given as —etid a—ib in the problem.
RING OF QUATERNIONS |
Ex. 3. Prove that the set of Quaternions is a skew field. (0. U. 05, 04)

Sol. Let Q=RxRxRXR ={og+0ai+0,j+03k|ag, oy, a,,03€ R} where i, j, k
are quaternion units satisfying the relations :

i2

=2 =k’=ijk=-lij=—ji=k, jk=—kj=iki=—ik=j.
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Let X, Y,Z € Q sothat X =0 +oyi+0,j+03k,Y =By +Pji+PB,j+Psk
and Z=vyq +vi+7v,Jj+v3k where o,,pB,,y, for t=0,1,2,3 are real numbers.
We define X=Y & o, =f, for r=0,1,2,3.
We define addition (+) as X+Y = (o +Bgy)+ (o +P;) i+ (g +8,) j+ (a3 +P3) k
and multiplication (-) as
XY = (0gBg —oyBy — 0By —i3B3) + (oo +04By + 0Bz —0i3;) i
+ (0P + By + 3By —ouyP3) j+ (B3 + 03By +0yPy 0By &
(1) VX, YEQ; X+Y =(0g+Bg)+ (0 +P i+ (0 +B5) j+ (a3+P3)k
As o, +B; for 1=0,1,2,3e R, X+Y € Q. ~. addition (+) is a binary operation.
(2) VX, YEQ; X+Y =(0g+Bg)+ (0 +P i+ (0 +B5) j+ (a3+P3) k
=Bo+op)+Gi+o)i+By+ay) j+Bs+az)k=Y+X
. addition is commutative. (o, 4B, =B, +a, for 1=0,1,2,3).
B) VX, Y,ZeQ;
X+Y)+Z={(0g+By)+ (0o +By) i +(0ty +B5)j+ (o3 +B3) k} + (Yo +Y1i + Yo J +7Y3k)
=[(og +Bo) +vo ]+ [(ay + B +y1 Ji + [(oy +Bo) +7v2 ] j+[(a +B3) +v3] &
= [0t +Bo +vo) ]+ [0y + By +yD]i+ o + By +v)]j+ [0z + (B3 +v3)] k
=X+X+2). (. (o, +B)+y, =a, +(B, +v,) for 1=0,1,2,3).
-, addition is associative.
(4) For 0=0+0i+0,;+0k € Q and X =0 +ayi+0,j+azk we have
O+X=(0+0) +(O0+0)i+(0+0y)j+(0+03)k =0 +oyi+o,j+ozk=X=X+0
s O0=0+0i+0,+0k isadditive identity.
(5) For X = ag +0i + 01y j + 03k there exists —X = (—0iy) + (=0t )i +(—0ty) j+ (—03)k € Q
such that X +(=X) = [0 + (=0tg) |+ [0t + (=) Ji + [0ty + (=01y) ] j +[0t3 + (—013) |k
=0+0i+0j+0k = O, the additive identity.
-, every element has additive inverse.
Hence, from (1), (2), (3), (4) and (5) : (Q, + ) is abelian group.
(6) X.Y =by+bi+byj+bsk where by = 0By —0yB; — 0P, — 035
by = 0oy + 04 + B3 — 035, by = Py + 0By + 3By — 03
and by = aP5 + 03B + oy, — Py are real numbers.
. multiplication (-) is a binary operation.
(7) X.Y).Z=(bg+bi+byj+b3k).(yg+Yii+Y2j+V3k)
= (BoYo —brY1 =baYa =D3Y¥3) + (oY1 +ByYo +boY3 —b3Ya) i + (boYa + oY +b3Y1 —byY3)J
+(boY3 +b3Yo +bY2 —Dyyy) K
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Y. Z=cq+cjitcyj+esk where g =PBgYo —Brv1 —B2v2 —B3vss
1 =Bov1 +B1Yo +B2v3 — B3y, ¢ =Bov2 +B2vo +B3v1 —Biv3,
3 =Bo¥3 +B3vo +Biv2 —Baov1 -
X . (Y.Z)=(0g+04i+0yj+0osk).(co+cpitcyj+ezk)
= (Ol — 0l — Olpcy —Olzez) + (Clgey + 0l + 0lycy — 03y ) i
+ (Olgey +0lycg + 03 —Oyc3) j + (Clges + 0lzc +0ycy —0hep) k
Since the corresponding terms of (X.Y).Z and X.(Y.Z) are equal we have
X.Y).Z=X.(Y.2) -, multiplication is associative.
(8) Both the distributive laws, namely, X .(Y+Z)=X.Y+X.Z and
Y +2).X=Y.X+Z.X can be proved to be true.
From the truth of the above 8 properties we establish that (Q,+,+) is a ring.
(9) There exists 1=1+0i+0;+0ke€ Q such that
VvV XeQ we have 1.X=(1+0i+0,+0k). (0 +0i + 0y j + Ci3k)
=l.0p—-0.04-0.09-0.03)+1.0; +0ty.0+0.03 =0.0)i
+1.0y+0.0p5+0.04-04.0)j+A.03+0.05+0.0,—0.04)k
=0g+ai+0,j+oazk=X. Also X.1=X.
- 1=140i+0j+0k € Q is the unity element.
(10) Let X#0O, the zero element. Then not all o, oy, 0y, 0t are zero € R.

" oz%+oc12+oc%+oc§:A¢0€R.

oy —0 —0Oy —Og .
For the real numbers —.,——,—=,—— there exists
A A A A

2 2 2 2

1_ % Op. Oy . O3 1_| % 04 07 03
x'=20_ 1, 22, reqQ, X.x=| 0Ly 2453
A A N Q Further (A At At

—0p0l OOy OlpOly  Ol30ly |, —0gOly  Olp0y O30  OyO3 |,
+ 0% , Po% %293 | B3%2 o 0%2  ©2% _ ¥3% | %193
A A A A A A A A

+ ( —oczoc3 + O(3AO(O - OCIA% + %Aal )k =1+0i+0j+0k =1, the unity element.
Similarly we can prove that X! . X =1.

-, every non-zero element of Q has multiplicative inverse.
We have X.Y = (0gBg —0yB; — 0Py —a3B3) + (0fg +04Bg + a3 —03B,) i
+ (03 +atxBg + 03By — oyP3)j + (B3 + 3By + 0By — By k

:bo +b1i+b2j+b3k and
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Y. X = (Boog —Bror —Br0ty —B30t3) + (Booty +Prog +Br0tz —P30p)i

+ (Boatp + P20t + B30 —B103) j+ Boots + B30 + B0ty —Boot )k =ag +aji+ayj+azk .

we observe that by =ay, b #a;, by #ay, b3 #az.

. multiplication is not commutative.

Hence (Q,+ ) is a Division ring or Skew field.

Note.1. We cantake 1 =(1,0,0,0),i=(0,1,0,0),7=(0,0, 1,0 ) and
k=(0,0,0,1).

2. The set G={*1,ti,+ j,+k} form a non abelian group of order 8 under

multiplication () defined as follows :
i2=j’=k’=ijk=—-1;ij=—ji=k; jk=—kj=iand ki=-ik=j.
RING OF ENDOMORPHISMS OF AN ABELIAN |

Let G be an abelian group. A homomorphism of G into itself is an endomorphism of G.
The set of all endomorphisms of G is denoted by Hom (G,G) or Hom (G).

For f,ge Hom (G,G) if we define addition (+) and multiplication (s) of two
endomorphisms as (f+g)(x)=f(x)+g(x)and (f.g)(x)=f(g(x))VxeG then
Hom (G,G) is aring. A.U. 12, 11)
(Proof of Hom (G, G) is a ring is left to the student as an exercise)

Note. Hom (G, G) is not commutative as the composition of functions is not
commutative.
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Subrings, Ideals,Quotient Rings &
Euclidean Rings

[10.1. SUB RINGS |

In analogy with the concept of a subgroup of a group we now introduce the concept of

asubring. If (R, +,+) is aring then a non-empty subset of R with the induced operations +, ¢

as in R can be a ring. Such a ring is called a subring of the ring R.

Definition. (Subring). Ler (R,+,+) be a ring and S be a non-empty subset of R. If
(S,+,+) is also a ring with respect to the two operations +,< in R then (S,+,+) is a
subring of R. (0.U.03,N.U. 95)

The binary operations in S thus defined are the induced operations in S from R.

Definition. Letr (F,+,+) be a field and (S, +.+) be a subring of F. If (S,+,+) isa
field then we say that S is a subfield of F. If (S,+,+) is an integral domain then we say
that S is a subdomain of F.

Note. 1. If (S,+,+) is a subring of the ring (R, +,+) then (S,+) is a subgroup of
(R, +) group.Hence zero element in R is also zero element in S.

2.If (S, +,+) is asubfield of the field (F,+,+) then (i) (S,+) isasubgroup of (F,+)
group and (ii) (S -{0}, ) is subgroup of (F-{0},+) group.

e.g. 1. The set of even integers is a subring of (Z, +,+) ring or integral domain.

eg. 2. (Z,+,+), (O, +,+) are subrings of the field of real numbers (R, +,).

e.g. 3. Let (Q,+,+) be the ring of rational numbers. Then S ={a/2|a€ Z} is a non-
empty subset of Q and (S, +) is a subgroup of the group (Q,+).

But for 1/2e S we have (1/2).(1/2)=(1/4)¢ S and hence ‘v is not a binary operation
in S. Thus (S, +,+) is not a subring of (Q, +,+)

e.g. 4. Let (R, +,+) be aring and O€ R be the zero element of R. Then §={0}is a
non - empty subset of R so that (S, +,«)is itself a ring. Therefore (S, +,+) is a subring of R.

({0}, +, +) is called trivial subring and (R, +, «) is called improper subring of R.

e.g. 5. For each positive integer n, the set nz ={0,% n,* 2n,% 3n,....... } is a subring of Z.

e.g. 6. The set of Gaussian integers Z[i]={a+bi|a,be Z,i*=-1} is a subring of
complex number field C.
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Theorem 1. (Subring Test). Let S be a non-empty subset of a ring R. Then S
is a subring of R if and only if a—be S and abe S for all a,be S. (S.K.U.01)
Proof. Let S be a subring of R.
We now prove that a—be § and abe SV a,be S .

Since S is a subring of R, S is a ring with respect to the addition and multiplication
operations in R.

“abeS=a-beS=a+(-b)=a-beS and a,b €eS=ab eSS

Let a—b eSS and ab e SVa,b €S.

We now prove that S is a ring.

Since S is a non empty subset of the commutative group (R, +) with the condition
a-b €S Ya,b €S ;by group theory (S,+) is a commutative subgroup of (R, +).

Since ab € S V a,b € S, multiplication () is a binary operation in S.

Also, a,b,c € S = a,b,c € R= a (bc)=(ab) c

Further a,b,c € S= a,b,c e R = a(b+c)=ab+ac and (b+c)a=ba+ca

= (S,+,+) is aring and hence (S, +,+) is a subring of R.

Note. Every subring contains atleast zero element of the ring.

Theorem 2. (Subfield Test). Let K be a non-empty subset of a field F. Then K

is a subfield of F ifand only if a,pc K = a-be K and ac K.,b#0c K =ab e K .

(Proof is left as an exercise)

e.g. 1. nz is a subdomain of Z.

We know that (Z, +, ) where Z = the set of all integers is an integral domain.
For a fixed n € Z we have nZ ={nx|x € Z}

Oe Z is zero element and n0=0= 0€ nZ . s~ nZ#oand nZcZ

Let x,y € Z. Then nx,ny e nZ .

nx—ny=n(x—-y) €enz (v x—-yeZz)

Also (nx) (ny)=n(xny) € nZ ('~ xnyeZ) .. nZ isasubdomain of Z.

e.g. 2. Z is not a subfield of Q. For 2,3 €Z and 320=3"'=(1/3)e Q.

But 2.37'=(2/3)¢ Z.

e.g. 3. Unity element of a ring need not be same as the unity element of subring.

For the subring S:{(_),E,Z}; wehave 0.4=4.0=0; 2.4=4.2=2; 4.4=4.4=4

4
= 4 is the unity element of S. Hence unity of Z, # unity of S.
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Theorem 3. The intersection of two subrings of a ring R is a subring of R.
(S.K.D08S.V.U. 08 N. U. 00)

Proof. Let S, S, be two subrings of R. Let 0 € R be zero element.
Since every subring contains atleast zero element of the ring, 0 € §; and 0 € S,.
. 0eS NS, and hence S;NS, #¢ and S;NS, CR.
Let a,b € SnS,. Then a,b € S; and a,b € S,.
a,b €8) and S| isasubringof R = a-b €S, and ab € §; e (1)
a,b €S, and S, isasubringof R =a-b €S, and a,b €5, v (2)
From (1) and (2) we have a,b € NS, =a-b € S\NS, and ab € S| NS,
- §;NS, is a subring of R.

[SOLVED PROBLEMS |

respect to addition and multiplication of residue classes.

Sol. Since (Zg, +, ) is aring, from the property R, of the ring we have

-0=0,—2=4,-3=3,-4=2. o8 ={0,3) is a non-empty subset of Zg
+ -0 -3 el 0|3
0|l 0 |3 0(0]0
313 |0 3103

From the above tables a,b € Sy =a-b € §; and a.b € S,
. By the theorem (1), S is a subring of Zg.

S, = {(_), 2, Z} is a non-empty subset of Zg

+

&
i
N
.

ol
NS}
|

i
ol
&1
&
=1
<l
<l
i

S]]
|
l
ol
S]]
l
E|
S]]

&1
&l
\S]]
ol
&1
<l
\S]]
&1

From the above tables ; a,b € S, =a-b €S, and a.b € S,

-~ S, is a subring of Zg.

We can see that S, S, ={ 0} is the trivial subring. But §;US, ={0,2,3,4} is not a
subring of Z4, because 2,3 € S, US, =2+3=5 ¢ S;US,.
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a b
Ex. 2. Show that the set of matrices (0 Cj is a subring of the ring of 2x2

matrices whose elements are integers. (0.U. 03)

Sol. Let R:{(; ij
)

a b a by
Let A,B €S sothat A= 0 , B= 0 where 0, a1, b, c1,a5,by,c0€Z.
C

a,b,c,d € Z} be the ring of 2x2 matrices and

0,a,b,c EZ}. Then S#¢ and ScCR.

Cl o)

- -b
o A_p=|BT®R bh and A B[ A% abthe
0 =G 0 (415

Since a;—ay, by —by, ¢ —cq, q1ay, atby +bjcy, cicr €Z

we have A BeS=A-B €S and AB€S. Hence S is a subring of R.

Note : If R is a commutative ring then S is an ideal of R.

Ex. 3. Let R be a ring and a € R be a fixed element. Then prove that
S={x € R|ax=0} is a subring of R.

Sol. If 0 € R is the zero element of R and a € R, we have q0=0=>0¢€S

S~ S#0 and ScR.

Let x,y €S.Then x,y € R and ax=0,ay=0.

Now a(x—y)=ax—ay=0-0=0=>x-yeS.

Also a (xy)=(ax)y=0y=0= xye S. Hence S is a subring of R.

Notation. Let R be a ring and a € R be a fixed element. The intersection of the
family of subrings containing 'a' is a subring of R. This subring is denoted by R, and is
called the subring of R generated by 'a'.

Ex. 4. If R is a ring and C (R)={x € R|xa=axV a € R} then prove that C (R) is a
subring of R.

Sol. For 0 € R, the zero element of the ring, we have 0a =a0V a € R.

By the definition of C (R),0 € C (R). s C(R#¢ and C(R)CR

Let x,y e C(R)

Then x,y € R and xa=ax, ya=ayVa € R e (1)

VaeR a(x—y)=ax—ay =xa—ya=(x—Yy)a (By R¢ and (1))

Also, Va € R, a (xy) =(ax)y =(xa)y = x (ay) =x (ya) =(xy) a [ By Rs, (1)]
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“x,yECR)=x—y,xy €eC(R). Hence C (R) is a subring of R.
Note. The subring C (R) is called the centre of the ring R.
Ex. 5. If D is an integral domain with unity element '1' prove that {n.1|n € Z} is
a subdomain of D.
Sol. Let D' ={n.1|n € Z}= the set of all integral multiples of unity element '1" in D.
For 0 € Z,0.1=0 € D is the zero element in D. - D! #¢0 and D'cD.
Let a.b € D' sothat a=1.1,b=m.1 where I,m € Z .
a-b=l.1-m.1=(-m).1=p.1where p=l-m € Z.
Also ab=(1.1)(m.1)=(m).1=q.1 where g=Ilm € Z .
Hence D' is a subring of D.
For a.b € D' we have ab=(.1)(m.1)=0Um).1=(ml).1=(m.1)(.1) = ba
- D' is commutative.
For 1 € Z we have 1.1=1 e D' and hence D' contains unity element.
For a,be D';ab=0= (1.1) m.1)=0 = (Im).1=0=Im=0(-1%0)
=[=00r m=0 (- limeZ) =ll1=00r ml=0=a=00r =0
. D! has no zero divisors.
Note. Since every subdomain of D contains unity element, and D' ={n.1|n € Z},
D! is contained in every subdomain.

EXERCISE 10 ( a)

modulo - 6.

2. Is the set of integers a subring of set of rational numbers w.r.t. usual addition and
multiplication. (S.V.U99)

3. If Ris the ring of integers then prove that the set S = {mx|x € R, mis a fixed integer }
is a subring of R.

4. Let R the ring of 2x2 matrices whose elements are real numbers. Prove that the set

<[

5. Show that the set of all integers is a subring of R={a+ib|a,b € Z and ;2 = _1}

a, b are real numbers} is a subring of R.

If R is a division ring show that C (R)={x € R|xa=axV a € R} is afield.

Show that a subring of a field is an integral domain without unity.
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+b
8(a).M,(Z) be the ring of all 2x2 matrices over Z and let R = {( f_b ¢ ]| a,be Z} .
a a

a-b

a

Is R a subring of M,(Z). (b) Is R = {( “ J|a,be Z} a subring of M, (Z).
a—

9. Show that the characteristic of a subdomain of an integral domain D is equal to the
characteristic of D.

10. 2. IDEALS

The concept of an ideal of a ring is analogous to that of a normal subgroup of a group.
Some of the subrings which we call ideals play a very important role as the normal subgroups
in group theory.

Definition. (Ideal). Let (R,+,+) be a ring. A non-empty subset U of R is called
a two sided ideal or ideal if (1) abeU=a-belU and (2) aeclU and
reR=ar,raecl. (0.U.07,S.V.U.99,N. U. 00, A. U. 03)

Definition. (Ideal). A subring U of a ring R is called a (two sided) ideal of R if
for every re R and every ac U both ra and ar are in U.

Note 1. A subring U of the ring R satisfying rU cU and U rcU forall r € R is an
ideal.

2. The (2) condition of ideal is stronger than the (2) condition of a subring.

3. The condition (1), namely, a,b e U = a—-b €U is called module property.

4. If U is an ideal of the ring (R,+,+) then (U,+) is a normal subgroup of the
commutative group (R,+). Hence zero element in R is zero element in U.

Definition. A non-empty subset U of a ring R is called a right ideal if.

(1) a,b eU=a-beU and Q)a eU,r eR=ar €U .

A non-empty subset U of a ring R is called a left ideal if

(1) ab eU=a-beU and a €eU,r eR=ra €elU.

Note. 1. An ideal is both a left and a right ideal.

2. For commutative rings left ideals coincide with right ideals.

egl.If Ris aring and O € R is the zero element then 7 ={o} is an ideal of R.
For, (1) 0,0 eU=0-0=0€U and(2) 0 €U,V reR=0r=r0=0¢€U .

U ={0} is called Null ideal or zero ideal or trivial ideal.

e.g. 2. If Ris aring then R itself is an ideal of R. R is called unit ideal or improper ideal
of R.

e.g.3. Let R = the ring of all integers and U = the set of all even integers.
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we know that U is a subring of R.
For a eU and r € R we have

a.r = (even integer) (integer) = even integer € U and

r.a (integer) (even integer) = even integer € U .

Thus, U = the set of even integers ={...—6,-4,-2,0,2,4,6...} is an ideal of

R = the set of integers ={....—3,-2,-1,0,1,2,3...}
e.g. 4. For any positive integer 'n', the set n Z={0,£ n,* 2n,......} is an ideal of Z.
Remark. Every subring of a ring is not an ideal. (Z, +,+) is a subring of the ring of

real numbers (R, +,+).Since 1/2 e R,1 € Z=1/2.1=1/2€ Z ;Z is not an ideal of R.

Thus every ideal of ring R is a subring of R but not every subring of a ring R is an ideal
of R. (N. U. 95)

Note. If R is a ring then the null ideal ;7 = {0} is called trivial ideal and the unit ideal R
is called improper ideal of R. Any other ideal of R is called proper non trivial ideal of R.
U is proper non trivial ideal of R = U # R and y = {0}.

Theorem 1. If U is an ideal of a ring R with unity element and 1 €U then U =R .

Proof. By definition of ideal, U c R
Also x eR=x.1€eR =x.1eU for x eR,1 €U (Def. of ideal) =>x €U .

.. RcU and hence U =R

Theorem 2. A field has no proper non-trivial ideals. (or)
The ideals of a field F are only {0} and F itself. (S.V.U. 08, S.K. U.07,N.U. 00)

Proof. Let U be an ideal of F so that 7 £ {0} - We now prove that / = F
By the definition of ideal, U c F .. (1)

Let a €U and 4=0.

For a (#0) € F there exists ¢! € F so that 4,1 _1.

aeU,a'eF andUisanideal = a0 '=1€cU.

xeF=x.1eF=x.1€U for xe F,1 €U

= xeU L FcU .. (2)

From (1) and (2) : U = F. Hence ideals of F are either {o} or F.

Theorem 3. If R is a commutative ring and a € R then Ra={ra|r e R} is an
ideal of R. (S.K.U.07,8.V.U. 05, K. U.04)
Proof. For 0e R,0a=0 € Ra. .. Ra#¢ and RacR.

Let x,y €Ra. Then x=rna, y=nrna where n,»n €R
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x—y=na-na=(q-n)a=ra where r=r-rn €eR. .. X,y ERa=x-yeRa.. (1)
Let x € Ra and r €R.
x.r=(a)r (- x=na where 5 € R) =rn(ar)=rn (ra)

(By Rsand R is commutative )
=(rya=r'a where r'=nr eR.
Since R is commutative, x.r=r.x.

. X€ERa,r e R=>xr=rx € Ra .. 2)

Hence from (1) and (2) : Rq is an ideal of R.
Note. 1. If R is a commutative ring and a€ R then aR={ar|r € R} is an ideal of R.

2. If Risaring and a€ R then Rq is a left ideal and 4R is a right ideal.

Theorem 4. A commutative ring R with unity element is a field if R have no
proper ideals. (K. U.08,0.U.07,A. U. 04, S. V. U. 04)

Proof. Since the ring R has no proper non tirvial ideals, the ideals of R are {0} and R
only.
To prove that R is a field we have to show that every a (# 0) € R has a multiplicative

inverse. We know that aR={ar|r € R} is an ideal of R.
Since a #0,aR #{0} and hence 4R = R. (By hypothesis)
leR=1€aR=1=ab forsome b#0 € R. Since R is commutative, | = gb = ba -

. a#0 € R has a multiplicative inverse » € R. Hence R is a field.

Note. If R is a ring with unity element and R has no proper non trivial ideals then R is
adivisionring.
Theorem. 5. The intersection of two ideals of a ring R is an ideal of R.
(N.U.07,A.U.03,S.V.U. 99, 0. U. 07)

Proof. Let U}, U, be two ideals of the ring R.

If 0€ R is the zero element, then 0€ U; and 0€ U, .

~. 0eU;NU, and hence Uy nU, # ¢

Let a,b eU;NU, and r € R. Then a,b €U, and a,b €U, .

a,b eUy,r eR and U| is anideal = a-b €U, and ar,ra €U, e (1)
a,b €Uy, r €R and U, isanideal =>a-b €U, and ar,ra €U, e (2)
From (1) and (2) : a=b €eU;NU, and ar,ra eU; NU,

Hence U; nU, is an ideal of R.
Remark : The union of two ideals of a ring R need not be an ideal of R. (0. U. 97)
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For the ring Z of integers, A={2n|n € Z} and B={3n|n € Z} are two ideals .
But, for 2,3 € AuUB, 3-2=1¢ AUB. ..AUB isnot an ideal of Z.

Theorem 6. If U, and U, are two ideals of a ring R then U; WU, is an ideal
of R if and only if U; cU, or U, cU;. (N.U. M12, 03)

Proof. Let U; UU, be an ideal of R. We now prove that U; cU, or U, CU; .
If possible, suppose that U; ¢ U, and U, ¢ U; .

Since U; ¢ U, there exists an element ¢ € U; and a ¢ U,.

Since U, ¢ U; there exists an element b €U, and b ¢ U;.

ae€eU;and b eUy=a,b el U,

a,b e UyWU, and U; VU, isanideal = a—-b € Uy LU,

=a-beU, ora-bel,

But a-b eUy=a-(a-b)=>b €U, . (D)
a-beUy,=b+(a-b)=a €U, .. (2)

Both (1) and (2) contradict a ¢ U,,b ¢ U,

. Our supposition is wrong. Hence U; cU, or U, CUj.

Conversely, let U, cU, or U, cU,

Then U, wU, =U, or Uy and hence U; UU, is an ideal.

Note. If S,,S, are two subrings of a ring prove that S, US, is also a subring iff either

S,cS,or S, cS,. (N.U. 1I)
[SOLVED PROBLEMS |
Ex. 1. Give an example of a subring which is not an ideal.

Sol. The set of rational numbers (Q,+, « ) is a subring of the ring of real numbers (R,+, ).

For (2/3)e 0 and /3¢ p we have (2/13).\3¢0.
~. The subring Q is not an ideal of R.

Ex. 2. If U;,U,are two ideals of a ring R then Uj+U, ={x+y|xeU,yeU,} is
also an ideal of R . (S.K.D. 08, S.V.U. 08, A. U. 04, K.U. 03, 05)

Sol. Let 0e R be the zero element.

Then 0e U,,0€ U, implies that 0+0=0€ U; +U,. .. Uj+U, #¢ and a subset of R.
Let a,beU;+U, and reR.

Then a=x +y,,b=x,+y, where x,x,€Uy; y|,y, €U,
a-b=(q+y)—(xy+y,)=x+y where x=x;—-x €U, y=y—y,€U,

ar=(x +y)r=xir+yr =x'+y where xX'=xreU,,y = yreU,
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ra=r(x+y)=mq+ry =x"+y" where x"=reU,,y" =ryeU,.
“abelU+U, and ye R = a-beU;+U, and ar,rac U; +U,
Hence U, +U, is an ideal of R.

Note. Since U; cU;+U, and U, cU;+U,,U; +U, is an ideal of R containing both
Uyand U, .
[ 10. 3. PRINCIPAL IDEAL |

If R is a commutative ring with unity from Theorem (3) Art. 2.2 we observed that for a
given ge Rthe set {ra|re R}is an ideal in R that contains the element 'a’.

Definition. Let R be a commutative ring with unity and ae R. The ideal {ra|re R}
of all multiples of 'a’ is called the principal ideal generated by 'a' and is denoted by

(a)or {a). (K. U.04)
An ideal U of the ring R is a principal ideal = U =(a) ={ra|r€ R} for some qe R .

e.g.1. The null ideal or trivial ideal {0} of a ring R is the principal ideal generated by the
zero element of R. That is null ideal =(0).

e.g. 2. The unit ideal or improper ideal R of a ring R is the principal ideal generated by
the unity element 'l' of the ring R. That is R =(1).

e.g. 3. Z is a commutative ring with unity element.

The principal ideal generated by 2€ Z =(2)={2n|ne Z} = the set of all even integers.

e.g. 4. A field F has only null ideal =(0)and unit ideal = F = (1) which are principal
ideals.

Definition. (Principal ideal ring). A commutative ring R with unity is a principal
ideal ring if every ideal in R is a principal ideal . (K.U.04)

D is a principal ideal domain = every ideal U in D is in the form U =(a) for some
aeD.

Theorem. 1. A field is a principal ideal ring. (K. U. 04, N. U. 95) |

Proof. A field F has only two ideals, namely, U =(0)and U = F =(1).

But U =(0) and U =(1) are principal ideals. .. the field F is a principal ideal ring.

Theorem. 2. The ring of integers Z is a principal ideal ring. (or) Every ideal
of Z is a principal ideal. (A. U.07,N. U.M12, 04, S. V. U. 08)

Proof. Let U be ideal of Z and U ={0}. Then U is generated by the zero element.

. U =(0) is a principal ideal . Let U be an ideal of Z and U # (0) .
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-, there exists gqe U so that 4 #0. aeU,Uisanideal = —qec U .
Since U c z, one of a,—a must be a positive integer.

. the set of positive integers U* in y is non - empty.

-. by well - ordering principle U* has a least member, say, b.
We now prove that U = (b) =the principal ideal generated by 'b'.
Let xeU . Since x,b are integers and p = ( there exist g, re Z
such that x=bg+r; 0<r<b (Division algorithm).

beU,ge Zand U is an ideal = bge U . xeU,bgeU = x-bg=relU.
Now reU,0<r<b and b is the least member in U™ = r=0.
“x=bg=r=x-bg=0=>x=bq .

Hence xeU = x=bgfor ge Z=U ={bq|qe Z}=(b).

-, every ideal U of Z is a principal ideal. Hence Z is a principal ideal ring.

Note. 1. Principal ideal rings that are also integral domains, such as ring of integers Z
are called principal ideal domains (P.I. Ds)

2. If Z is the ring of integers then the principal ideal generated by ae Z is
{ag|qe Z}=<a>.
| 10.4. QUOTIENT RINGS OR FACTOR RINGSJ

The concept of quotient ring is analogous to that of quotient groups. If U is an ideal of

a ring (R,+,+)then (U,+)is a normal subgroup of the commutative group (R,+). From
group theory we know that the set R/U ={x+U =U +x|x€ R} of all cosets of U in R is a
group with respect to addition of two cosets defined by (a+U)+®+U)=(a+b)+U for
a+U,b+Ue (R/U). We know further that these cosets are disjoint.

As addition operation is commutative left coset o+ U is equal to right coset U +a -
In order to impose ring structure in R/U we can define multiplication of two cosets as
(a+U)(b+U)=ab+U for a+U,b+UecR/U .

Theorem. 1. If U is an ideal of a ring R then the set R/U={x+U|x€ R}is a
ring with respect to the induced operations of addition (+) and multiplication (+) of
cosets defined follows : (@+U)+(b+U)=(a+b)+U and (@+U).(b+U)=ab+U for
a+U,b+U€e R/U . (N. U. 12, 95)

Proof. Since (R,+)is commutative group, the quotient group (R/U,+)is also

commutative.
In order to show that (R/U,+,+) is a ring we must show that
(1) multiplication of cosets is well defined,
(2) multiplication is associative and (3) distributive laws hold.
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(1) Let a+U =a;+U and b+U =b +U .
Then a=a +ujand b=b +u, for uj,u, eU .
ab = (a; +uy) (by +uy) = a1by + aquy +uyby +ujuy
Since U is an ideal, aju,,uby,uju, € U

. ab—abeU and hence ab+U =ajpy +U = (a+U).(b+U)=(aq+U). (b +U)
Therefore multiplication of cosets is well defined.
Let a+U,b+U,c+U€R/U

(2) [(@+U).(b+U)].(c+U)=(ab+U).(c+U) = (ab) c+U
=a (bc)+U (s a,b,ceR)
=(a+U).(bc+U)=(a+U).[(b+U).(c+U)]
3) (a+U).[+U)+(c+U)=(a+U).[(b+c)+Ul=a (b+c)+U
=(ab+ac)+U (. a,b,ce R)
=(ab+U) (ac+U)=(a+U).(b+U)+(a+U) . (c+U)
Similarly we can prove that [(b+U)+(c+U)].(a+U)=(b+U).(a+U)+(c+U).(a+U)
Hence (R/U,+,+)is a ring.
Definition. Let R be a ring and U be an ideal of R. Then the set R/U ={x+U | x€ R}
with respect to induced operations of addition and multiplication of cosets defined by
(a+U)+B+U)=(a+b)+U;(a+U).(b+U)=ab+U for a+U,b+U e R/U is a ring. This

ring (R/U,+,«)is called the quotient ring or factor ring or residue class ring of R
modulo U.

Note. 1. It is convenient, sometimes, to denote coset a+U in R/U by the symbol a or
[a]l. Then we write sum and product of two cosets as [a]+[b]=[a+b]and [a].[b]=[ab].

2. 0+U =U is the zero element in the ring R/U .

3. Every ring R has two improper ideals, namely, the trivial ideal {0} and the ideal R.
The quotient ring of the ideal {0} is R/{0} or R/{(0)={x+(0)|x€ R}
The quotient ring of the ideal Ris R/R or R/{1)={x+(1)|x€ R}

4. (a+U)+b+U)=(a+b)+U;(a+U)(b+U)=ab+U

5. (@+U)* =(a+U) (a+U)=a* +U

6. a+U=b+U & (a-b)eU . 7. a+U=U @aclU

Theorem. 2. If R/U is the quotient ring prove that
(@) R/U is commutative if R is commutative and

(@) R/U has unity element if R has unity element (0.U.01)

Proof. (i) R is commutative = ab=ba ¥V a,b€ R.
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Let a+U,b+U€R/U . (a+U)(b+U)=ab+U =ba+U =b+U).(a+U)
~. R/U is commutative.
(if) R has unity element = there exists 1€ R so that al=la=aVaeR.

Let a+U€R/U . For 1e R we have 1+Ue€ R/U
We now prove that 1+U is the unity element.

(a+U)(1+U)=al+U =a+U and A+U)(a+U)=1la+U =a+U Y a+U€eRIU

. 14U is the unity elementin R/U .

Note. In the quotient ring R/U , the unity element =1+U .

e.g.1. Consider Z¢ ={0,1,2,3,4,5}, the ring of integers modulo 6. (A. U. 07)
U ={0,3}is an ideal of Z5. The cosets of U in R are as follows :

0+U ={0+0,0+3}={0,3};1+U ={1+0,1+3} = {14}

2+U ={2+0,2+3} ={2,5};3+U ={3+0,3+3} ={3,0} =0+ U

44U ={4+0,4+43}={4,1)=1+U and 5+U ={5+0,5+3}={5,2}=2+U

" (Zg/U)={0+U,1+U,2+U} is the quotient ring.
Note. We observe that two cosets are identical or disjoint and union of all cosets = Z .

e.g. 2. For the ring Z of all integers we know that nZ ={nx|xe€ Z} for any ne Z is an
additive subgroup of Z.

Let menz and e z. Then m=na where qe Z .
mr =(na) r=n (ar)and rm=r (na) =n (ar)
so that mr =rm=n(ar)=nbe nZ where p=qre z. Thus nZz is anideal of Z

The set of all cosets of nZ in Z , namely, (Z/nZ)={x+nZ|xe Z} forms a ring under
the induced operations of addition and multiplication.
| SOLVED PROBLEMS |

Ex. 3. If U is an ideal of the ring R and a,be R then prove that

a+U =b+U S a-belU.
Sol. Let ¢+U =b+U - 0eU=a=a+0€a+U
a+U =b+U = ac b+U = there exists xeU suchthat a=b+x=a-b=xeU .

Let a-beU. If a—b=ceUthen a=b+c
xe a+U = there exists Jey such that y=g+4 .

=>x=0b+c)+d=b+(c+d)eb+U (s c+del) soa+UcCh+U

Similarly, we can prove that p+U ca+U - Hence 4+U =p+U .
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| 10. 5. EUCLIDEAN RINGS |

Definition. An integral domain R is said to be Euclidean ring or Euclidean domain
if for every a(#0)e R there is defined a non-negative integer d(a) such that

(1) for all a,be R,a+0,b+0;d (a)<d (ab) and

(2) for any a,be R,b#0 there exist q,r€ R such that a =bq+r where either r =0 or
d(ry<d®). (0.U.07,S.K.D. 07)

Note 1. For any a (#0)€ R,d (a)=>0.

2. For the zero element O of R,d (0)is not defined. However some authors defined
d(0)=0, integer.

3. The property (2) in the above definition is called division algorithm.

4. From the above definition we note that d : R—{0} — Z is a mapping such that

(i) d(@)=z0Vae R-{0}.

(if) d(a)<d (a,b)¥V a,be R—{0} and

(iii) there exist g,r€ R so that a=bg+r where either r=0 or d (r)<d (b) for any

a,beR and p%0.

[ SOLVED PROBLEMS
Ex. 4. The ring of integers is an Euclidean ring. (A.U.08)

Sol. We know that the ring (Z,+, -) of integers is an integral domain.

Define the mapping d :Z—-{0} — Z by by d(a)=|a|Vae Z-{0}

Since |a|>0 we have d(a)=20V ae Z-{0}

For a#0,b#0€ Z;ab (#0)e Z and d (ab)=|ab|=|a||b|=|a|=d(a)since |b|=1.

For g,be Z,b #0; by division algorithm in integers, we have g,r€ Z so that a =bg+r

where 0<r<|b]|.
i.e. a=bg+r where r=0 or 0<r<|b]|
i.e. a=bg+r where =0 or d (r)<d (b) (r>0)=d(r)=rand |b|=d(b)
-~ (Z,+,") is a Euclidean ring.

Ex. 5. Prove that the ring of Gaussian integers is an Eucidean ring.
(S. K. D 2007, S. V. U. 2001)

Sol. We know that Z[i]={a+ib|a,be Z,i* =-1} of Gaussian integers is an integral
domain under addition and multiplication of numbers.

Define the mapping d:Z [i1-{0} = Z by d (x+iy) =x* +y> V x+iy€ Z [i]-{0}

For z=x+iy#0€ Z[i] we have x#0 or y#0 and hence x*+y* >1.
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o d(z)=d (x+iy) =0V z€ Z [i]-{0}
Let u,ve Z[i]-{0}.
Then u=a+ib,v=c+id where a,b,c,deZ and a#0 or b#0; ¢c#0 or d 0.
uv =(ac—bd)+i (ad +bc) .
Now d (uwv) = (ac—bd)* +(ad +bc)* = (a* +b°) (> +d*)
>a’ +b> =d (u) since ¢*+d*=1.
Let u,ve Z[i] and y=0.
Then u=a+ib,v=c+id where a,b,c,de Zand c#0or d #0.

Consider wv™! = a+ib ac+bd ibc—ad
ctid F+d*>  A+d?

ac+bd bc—ad
where p=— =

5,4 =—— are rational numbers.
¢ +d ¢ +d

For p,qe O we have p=[pl+a,q=[q]+P where [pl.[g]are integer parts of p,qand

o, are fractional parts of p,q so that 0<a,p<1.

1
It OSa,Bs%take m=[pln=lq] andif Z<@B<1 take m=[pl+Ln=[gl+1.

1
Then Y=|p—m|£5and 8=|q—n|£% sothat p=m+y and g=n+9.

Now a+ib=(c+id) (p+ig) = (c+id){(m+Y)+i (n+9d)}
=(c+id) {(m+in)+(y+id)} =(c+id) (m+in)+(c+id) (y+id)
=(c+id) s+r where s=m+in and r=(c+id) (y+id). . We have y=vs+r

mneZ=s=m+ineZ[i]l. uv,se€Zlil=r=u-vse Z][i].
If r#0 then d(r)=(02+d2)(y2+82)S(c2+d2)(i+ijS(c2+d2)%<c2+d2 —d ).

Hence, for u,ve Z[i] and v # 0 there exist s=m+in,r=(c+id) (y+id)€ Z [i]
so that y =vs+r Where r=0 or d (r)<d (v). -~ Z[i] is an Euclidean ring.

Theorem 1. Every field is a Euclidean ring. (0.U.07,N.U. 08)

Proof. Let F be a field and F* be the set of all non-zero elements of F.
Since F is a field, F'is an integral domain.

Define the mapping d: F* — Z by d(a)=0 (zero integer) vge F*

s d@=20VaeF"

Let a,be F". Then a,b and ab are non zero elements of F.
.. d(@)=0 and d (ab)=0 = d (a) <d (ab)



SuccessClap: Best Coaching for UPSC Mathematics : For Info- 9346856874
Checkout ->22 Weeks Study Plan, Videos, Question Bank Solutions, Test Series

Let a€ F and be F". Now a=al where 1 is the unity element of F.
=a(b'b)y=(ab™Hb b b=1)
= (ab') b+0 where '0' is the zero element of the field F.
a=qgb+r where g=ab',r=0
Hence, for a€ F,be F" there exist q,r€ F so that a=gb+r where r=0.

- F is an Euclidean ring.

Note. We can prove the above theorem by defining

d:F"—Z by d(a)=1(integer) Vaec F".

Theorem 2. Every Euclidean ring is principal ideal ring. (OR)
Every ideal of an Euclidean ring is a principal ideal. (N. U. 2000)
Proof. Let R be an Euclidean ring. Let U be an ideal of R.

Let U ={0} where '0' is the zero element of R.
Then U ={0} is the ideal generated by 0e R.
. U is a principal ideal of R. Let U #{0}.

. there exists xe U and x = 0 so that the set {d (x)|x# 0}1is a non-empty set of non-
negative integers.

By well ordering principle there exists p «(0e U so that d (b) <d (x) where x#0e U .
We now prove that U = (b) . Let 'a' be any element of U.

By division algorithm, there exist g,r € R sothat a =bg+r where r =0 or d (r)<d (b).
beU,ge Rand U is an ideal = bge U .

aceU,bgeU=a-bg=reU

If 20 then d (r)<d (b) so that we have a contradiction as d (b)<d (x) Vx#0e€ U
. r=0 and hence a=bq .

~. U ={bg|qe R}=(b)is the principal ideal generated by » (= 0)e U .

Hence every ideal U of R is a principal ideal.

~. Ris aprincipal ideal ring.

Note 1. If U is an ideal of an Euclidean ring R then U is a principal ideal of R so that
U=(b)={bq|qe R}

1+«/ﬁ

2

For, the ring R= {a +b ( J ra,be Z } of complex numbers is a principal ideal ring

but not Euclidean.
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Ex. 6. Prove that every Euclidean ring possesses unity element. (S.V.U.2000)
Sol. Let R be an Euclidean ring. ~. Ris an principal ideal of R.

~. Ris anideal generated by some element c of the ring R so that R =(c¢) ={cq| g€ R}
~.ce R=c=ce for some eeR.

We now prove that ec R is the unity.

Let xe R. Then x=cd for some deR.

Now xe=(cd)e=(dc)e=d(ce)=dc=cd=x. s xe=xV xeR

Hence ¢e Ris the unity element.

| EXERCISE 10 (b) |

1. Prove that the subset N ={0,3} of Z4 ={0,1,2,3,4,5} is an ideal of (Zg,+, + ) ring.
0
2. Prove that the subset U = {(g b]' a,be Z } is a subring but not ideal of the ring of
2x2 matrices whose elements are integers.
0
3. (a) Show that the subset U = {(z Ojl a,be Z} is a left ideal but not right ideal of the
ring of 2x2 matrices over integers.
a b . L .
(b) Show that te subset U = {[O OJ / a,be Z} is a right ideal but not a left idal of the
ring (M, +,°) (S. V. U. 2010)
4. s the set of rational numbers an ideal of the ring of real numbers (R,+,+). (S. V. U. 99)
5. Ifmis afixed integer prove that the set U = {mx|x€ Z} is an ideal of ring of integers Z.
6. Prove that a division ring has no proper ideals.
7. IfRisaring and ge R show that the set U ={xe R|ax =0} is a right ideal of R.
8.  Write the principal ideal generated by 4 in the ring of integers (Z,+,).
9. Prove that N ={(0,n)|ne Z}is an ideal of ZxZ ={(m,n)|m,ne Z}under addition and
multiplication.
10. Prove that z/nz={x+nz|x€ z} forms a ring . (Hint : See e.g. (2) in Art. 10.6)
11. IfUisaleftideal of aring Rand o (U)={xe R|xu=0VY ue U} prove that o (U)is atwo
sided ideal of R. S.V.U.03)
12. If p is prime element of Euclidean ring R and a,b€ R show that p|ab= p|a or p|b

A.U.08)
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Homomorphism of Rings,
Maximal and Prime Ideals

11.1. In groups, we have learnt that one way of knowing more information about a
group, is to examine its interaction with other groups by using homomorphism. The concept
of homomorphism in rings is analogous to that of homomorphism in groups. The
homomorphism in rings is a mapping which preserve the relations g +p =¢ and gh =4, the
addition and multiplication operations.

Definition. (Homomorphism). Let R,R' be two rings. A mapping f:R—>R' is
said to be a homomorphism if (a) f(a+b)= f(a)+ f(b) and (b) f(ab)= f(a) f(b) for
all a,b €R. (K. U.08,0.U.01)

Note. 1. The operations +, « on the left hand side of the properties (a), (b) are that of
the ring R, while the operations +, » on the right hand side of the properties (a), (b) are that
of the ring R'.

2. Since R, R' are commutative groups under addition clearly property (a) shows that
a ring homomorphism is a group homomorphism from (R, +) to (R',+) .

Definition. If f:R— R' is a homomorphism of a ring R into R’ then the image
set f(R)=R={f(x)|x €R} is called the f - homomorphic image of R.

Definition. Let R, R" be two rings. A homomorphism f:R—R' is called an
epimorphism or onto homomorphism if f is onto mapping.

A homomorphism f:R— R' is called a monomorphism if f is one-one mapping.

A homomorphism f:R—R' is called an isomorphism if f is both one-one and
onto mapping.

A homomorphism f:R — R of a ring R into itself is called an endomorphism.

A homomorphism f:R— R which is both one-one and onto is called an
automorphism. (0.U. 01
Notation. If f:R— R' is an onto homomorphism or epimorphism then g' is the

homomorphic image of R and we write R=R".

If f:R— R' is an isomorphism then we say that R is isomorphic to g' or R,R' are

isomorphic and we write R=R'.
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Note 1. If f:R— R' is an onto homomorphism then f(R)=R'.

2. If U is an ideal of the ring R, then R/U ={x+U|x € R} is also a ring w.r.t.
addition and multiplication of cosets. Then the mapping f:R — R/U definedby f(x)=x+U

for all x € R is called the natural homomorphism from R onto R/y . (N.U.97)

3. A homomorphism is used to simplify a ring while retaining certain of its features.
An isomorphism is used to show that two rings are algebraically identical.

e.g. 1. Let R,R'betworingsand f:R— R' be defined by f(x)=0'V x € R, where

0' e R' is the zero element.
Let a,b € R. Then f(a)=0' f(b)=0"and hence f(a+b)=0', f(ab)=0".
Then a+b,ab e R.
fa+b)=0'=0+0"= f(a)+ f(b) and f(ab)=0'=0"'.0"'= f(a). F(b).
- f is a homomorphism from R into R'. This is called Zero homomorphism.
e.g. 2. Let Rbe aring and f:R— R be defined by f(x)=x V x €R.
Let a,b € R sothat a+b,ab € R.
By definition, f(a+b)=a+b= f(a)+ f(b) and f(ab)=ab= f(a) f(b).
Also for each y € R (codomain) there exists y € R (domain) so that f(y)=y
= f is onto mapping.
Further for a,b € R, f(a)=f(b)=a=b = f is one-one mapping.
Hence f is an automorphism. This is called Identity homomorphism.

e.g. 3. Let Zbe the ring of integers and f:Z — 2Z be definedby f(n)=2n V n € Z.

(K. U.12,0.U.07)
Let mn € Z. Then m+n,mn € Z. Then f(m+n)=2(m+n)=2m+2n= f(m)+ f(n).

But f(mn) =2 (mn) = (2m) 2n)= f(m) f(n). .. f is notaring homomorphism.
Although, the group (Z,+) is isomorphic to the group (2Z,+) , the ring (Z, +,-) is not

isomorphic to the ring (2Z, +,-) .

Theorem 1. Let f:R—R' be a homomorphism of a ring R into the ring R' and
0€ R,0'e R’ be the zero elements. Then (I) f(0)=0'" ((2) f(-a)=—f(@)VaeR
and (3) fa—-b)=f(a)—f®) for all a,be R.

Proof. (1) For 0 € R we have 0 + 0 = 0.
s f(0+0)= f(0)= f(0)+ f(0)= f(0)+0' (. f ishomomorphism )

- f(0)=0"' ( by left cancellation law in R')
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(2) For a € R there exists —a € R so that a+(—a)=0.
s flat(-a)=f(0) = f(@)+f(-a)=f(0)=0". (- fishomomorphism)
s fla)==f(a). ( f(a), f(-a) € R',1ing)
(3) For a,b € R; f(a=b)= f(a+(-D)) = f(a)+ f(-D)
= f(a)-f(b) (f(=b)=-f()By (2))

Note 1. A homomorphism maps the zero element of R into the zero element of g'.

2. A homomorphism maps the negative '—4' of each element a € R into the negative
in R' of the corresponding element a’.

Remark. If the rings R, R' have unity elements 1, 1' respectively then it does not

necessarily follow that f(1)=1'is true.

However if R’ is an integral domain then f(1)=1' is true.

Theorem 2. The homomorphic image of a ring is a ring. (S. V.U 04)

Proof. Let R, R' be two rings and f:R— R' be a homomorphism.

By definition, homomorphic image of R = R= f(R)={ f(x) € R'|x € R}.
To prove that f(R) is a ring, we show that f(R)=R is a subring of R'.
For 0 e R, f(0)=0"€R'. .. f(0)=0'€ R and hence g g'-

Let a'b' e R.

.. There exist a,b € R so that f(a)=a', f(b)=b".

Since a,b € R we have a—b,ab € R and hence f(a-b), f(ab) € R .
Now a'-b'= f(a)- f(b)= f(a-b) e R (Theorem (1))
a'b'=f(a)f(b)=f(ab) €R. (Homomorphism property (2))

Thus ¢',b' e R=a'-b,a'b' €R.

. R is asubring of g' and hence % is a ring.

Corollary.The homomorphic image of a commutative ring is a commutative ring.

Proof. Let R be a commutative ring and R = f(R) be its homomorphic image.
a,b' € R=>a'b'= f(a)f(b) wWhere a,b € R
= f(ab)= f(ba) = f(b) f(a)=b'a'. (- Ris commutative )

S f(R) = R is commutative.
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Theorem 3. If f:R—R' be an isomorphism from the ring R to the ring R' then
@ f0)=0" where 0,0' are the zero elements of R R'. (0.U0.97)
(#@D) for each ac R, f(—a)=—f(a).

@#ii) R' is a commutative ring if R is a commutative ring,

(iv) R' is an integral domain if R is an integral domain. and

(v) R’ is a field if R is a field.

Proof. For (i), (if) and (iii) see the proof of Theorem (1) of Art 3.1 and its corollary.

@iv) Since f(0)=0' and f is one-one we have that O € R is the only element whose
imageis 0' e R'. Let a',b' e R' and a'#20',b'20".

Then there exist a,b € R and a#0,b#0 so that f(a)=a', f(b)=b".

a,b € R,a#0,b#0 and R has no zero divisors = gp 0. (Ris 1.D.)

= f(ab) # f(0) (- f is one-one )

= f(a) fB)#0'=a'b'#0'. .. R'is without zero divisors.

Let 1 € R be the unity element. Then f(1) € R' and say f(1)=1"'.

For a' € R' there exist unique a € R sothat f(a)=a".

For each a' € R, a'l'= f(a)f ()= f(al) = f(a)=a’.

~a'l'=1a'=a'" = f(1)=1"1s the unity element of g'.

Hence R' is an integral domain.

(v) If R is a field then (@) Ris commutative, (b) R has unity element and

(c) every non-zero element of R has multiplicative inverse.

By (iii) and (iv) R' is commutative and has unity element 1'= f(1) for 1 e R.
Let a' € R' and 4'#0'. There exists a € R so that f(a)=a'.

a=0= f(a)=f(0)=a'=0" and hence ¢ =0 .

1 -1

Since R is a field, there exists ¢! € R sothat aa ' =1=a 'a.

w flaah= )= f@ f@H=1'=fa™) f@ -
Hence f(a™')= f(a)™' is the multiplicative inverse of f(a)=a'.
. R'is afield.
Theorem 4. Let R, R' be two rings and f:R—R' be a homomorphism. For

every ideal U' in the ring R', f~\(U") is an ideal in R.

Proof. Let U= ' UY={x eR|f(x) eU"}.
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f(0)=0'eU'=0e f ' UY=U. ~U#¢and UcR.
Let a,b eU. By thedef. of U= f'w; fla), fb) €eU".
U'isanideal, f(a), f(b) eU'= f(a)— f(b) €U’
= fa-b) eU'=a-be f'UY=U LabeU=a-belU ..(1)
Let a eU,r €eR. Then f(a) eU' and f(r) €R'.
Since p' isanideal in R'; f(a)f(r), f(r)f(a) €U’
= f(ar), f(rayeU'= ar,ra €U . naeU,reR=ar,raclU ..(2)
Hence U = r~!(u") is an ideal in R.
Note. If S’ is a subring of R' then £~!(s") is a subring of R.

Theorem. 5. Let R, R' be two rings and f:R—R' be a homomorphism. For
every ideal U in R, f(U) is an ideal in R=f(R).

Proof. f(U)={f(x)|x €U }.

0eU=f(0)=0"€ fU)= fU)#¢ and f(U)C f(R).

Let a',b' € f(U). There exist a,b € U such that f(a)=a', f(b)=b".
wa'-b'=f(a)-fb)=f(a-b) e f(U) (. a,beU and U isanideal) .. (1)
Let a' € f(U) and ' € f(R)=R.

There exist a €U, r € R such that f(a)=d’, f(r)=r

a €eU,r €R and U is anideal = ar,rac U = f(ar), f(ra)€ f(U)

= f(a). f(r), f(r). f(a) € f(U) (- fis homomorphism )

= a'r,r'a € f(U) .. (2)
From (1) and (2) : f(U)is anidealin f(R)=R.

Note.1. If f:R— R' is onto homomorphism then for every ideal U in R, f(U)is
anideal in R'.

2. The above theorem is true for a subring.
| 11. 2. KERNEL OF A HOMOMORPHISM

Definition. (Kernel). Let R, R' be two rings and f:R — R' be a homomorphism.

The set {x € R| f(x)=0'} where 0' € R' is the zero element, is defined as the Kernel
of the homomorphism f . (S.V.U.00,N. U. 95,0.U. 08)
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The kernel of the homomorphism f:R— R' is denoted by Ker f or I (f).

Note.l. If f:R—R' is a homomorphism then Ker 7= r"'{0}cR.

2. For 0 € R we have f(0)=0'. Therefore 0 € Ker f and hence Ker f #¢.

e.g. 1. Consider the Zero homomorphism f:R— R' defined by f(x)=0'V x € R.
Ker f={xeR|f(x)=0"}={x€eR|V xeR}=R.

e.g. 2. Consider the identity homomorphism f:R— R defined by f(x)=xV x € R.

Ker f={xeR|f(x)=0}={x eR|x=0only } (- f(0)=0) ={0}.

Theorem 1. If f is a homomorphism of a ring R into a ring R' then Ker f is
an ideal of R. (S.V.U.00,N. U. 07,0.U. 03)

Proof. If 0 € R is the zero element of R then f(0)=0', the zero element of .

. 0 € Ker f and hence Ker f #¢ , Ker f CR.

Let a,b € Ker f and r € R. Then f(a)=0', f(b)=0".

fla=b)=f(a)- f(b)=0'-0'=0"=a-b € Ker f

flar)=f(a) f(r)=0" f(r)=0"and f(ra) = f(r) f(a)= f(r)0'=0"=ar,ra € Ker f .
“a,be Ker f,re R=>a-b € Kerf and ar,ra € Ker f .

Hence Ker f is an ideal of R .

Theorem 2. If f is a homomorphism of a ring R into the ring R' then f is an
into isomorphism if and only if Ker f =1{0}. (A.U.12,08,S.K.D.08,S.V.U. 00, K. U. 05)

Proof. Let f be an into isomorphism. That is, f is one-one homomorphism.
We prove that Ker f ={0}.
a €R, f(a)=0'= f(a)=f(0)=a=0 (- f is one-one )
~. 0 € R is the only element in R so that f(0)=0".
. By definition, Ker f ={0}.

Conversely, let Ker f={0}. We now prove that f is one-one.
ab €R and f(a)= f(b) = f(a)— f(B)=0'= f(a—b)=0'
=a-be Ker f={0} =2a-b=0 =a=bp. . f is one-one.

Note. Ker f={0} < f is one-one..

Theorem 3. If U is an ideal of a ring R then the quotient ring R/U is a
homomorphic image of R. (S. V. U. 05, 0. U. 05)

Or
Every quotient ring of a ring is a homomorphic image of the ring.
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Proof. We know that R/U ={x+U |xe R }is a ring with respect to addition and
multiplication of cosets defined as (¢+U)+®»+U)=(a+b)+U
and (a+U).(b+U)=ab+U where a+U,b+U € R/U .
Let f:R— R/U be a mapping defined by f(a)=a+U forall ae R.
For a,b e R,a=b=a+U =b+U = f(a)= f(b).
-, the mapping f is well defined.
For a,b e R;f(a+b)=(a+b)+U =(a+U)+(b+U)= f(a)+ f(b)
and f(ab)=ab+U =(a+U).(b+U)= f(a).f(b)
-~ f is a homomorphism.
Let x+Ue€ R/U . Then xe R and for this xe R we have f(x)=x+U.
.. foreach x+U € R/U there exists xe€ R so that f(x)=x+U .
~. f is onto mapping.
Hence f:R— R/U is an onto homomorphism.
Note. Ker f={xeR|f(x)=04U} ={xeR|x+U =0+U}
={xeR|xeU}=U.
In view of this result, the above theorem can also be stated as follows :
"Every ideal in a ring R is the Kernel of some homomorphism defined on R".
f:R— R/U is called Canonical homomorphism.
e.g. Zc ={0,1,2,3,4,5} under addition and multiplication modulo - 6 is a ring.
U={0,3} is an ideal of Z, and Z;/U={0+U,1+U,2+ U} =set of 3 elements.
Take 7, ={0,1,2}.
By the correspondence f(0)=0+U,f(1)=1+U and f(2)=2+U; Z;and Z,/U are
isomorphic.

Theorem 4. (Fundamental theorem of homomorphism)
Let R, R' be two rings and f :R—R' be homomorphism with Kernel U. Then
R is isomorphic to R/U . (N.U.97,0.U0.07,8.V.U.99, K. U. 12, 05, 08, S. K. U. 05)

Proof. ¢ e Ker f =U = f(a)=0"' where 0' is the zero element of R'.

Since U is an ideal of R,R/U ={x+U|x € R} is the quotient ring of cosets under
addition and multiplication of cosets.

Since f:R— R' is homomorphism, £(R)=R isaring.
That is, for each f(x) € R we have x € R.

Define ¢ =R/U - R by ¢ (x+U)=f(x)V x+U € RIU
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a+U,b+U €R/U and a+U =b+U < a-b €U

& fla-b)=0"e f(a)-f(b)=0"=f(0) & f(a)=f]) < 0(@+U)=0(0+U).
. ¢ is well defined and one-one mapping.

Let y €R.

Since f:R — R is onto, there exists x € R sothat f(x)=y. Forthis x € R we have

x+U €R/U .
. foreach y € R there exists x+U € R/U so that O(x+U)=f(x)=y.
*. ¢ is onto mapping.
Let a+U,b+U € R/U . Then a,b €R.
Ol(a+U)+(b+U)=0[(a+b)+U]= f(a+b) (Definition of ¢)
=fla)+ fD)=0(a+U)+d (b+U) (. f is homomorphism )
0[(a+U) (b+U)]=0¢la.b+U]= f(ab)
=f(a) fO)=0(a+U)d(b+U) (. f is homomorphism )
". ¢ is a homomorphism.
Hence ¢ is an isomorphism from g/ to R= f(R).

Note. 1. Every homomorphic image of a ring R is isomorphic to some quotient ring
there of.

2. If f:R— R' isonto homomorphism from a ring R to the ring R' and U is an ideal
of R then R/U is isomorphic to R'.

Then f(R)=R=R". In the above proof replace R by R'. f
AN
U

3. R=f(R) = the homomorphic image of R. R R=f(R)

Let w:R — R/U be the Canonical homomorphism.
By fundamental theorem ¢: R/U — R is isomorphism. ¥ o

For x € R we have Y(x)=x+U € R/U .

For this x+U € R/U we have ¢ (x+U)= f(x) € f(R)=R. RIU
Also, for x € R we have f(x) € f(R)=R. Therefore, ¢«¥ =f.
| SOLVED PROBLEMS |

Ex. 1. Is the ring 2Z isomorphic to ring 3Z?
Sol. 2Z={2n|neZ}and 3Z={3n|neZ}.
Define f:2Z—3Zby f(2x)=3xV2xe2Z. Let 2m,2ne2Z.



SuccessClap: Best Coaching for UPSC Mathematics : For Info- 9346856874
Checkout ->22 Weeks Study Plan, Videos, Question Bank Solutions, Test Series

fQ@m+2n)=fQ2m+n))=3(m+n)=3m+3n=f2m)+ f(2n)
fQ@2m.2n)= f(212mn)) =3 2mn) #3m .3n= f(2m) f(2n)
. The correspondence f does not preserve multiplication.
- Ring 27 is not isomorphic to ring 3Z .
Ex. 2. Let Z,,Z,,be modulo-4 and modulo - 10 rings. If f:Z, —Z,, is defined
by f(x)=5xV xe Z,then prove that f is a homomorphism.
Sol. Let a,beZ,. Let a+b=4q, +r and a.b=4q,+r,where 0<r,r, <4.
fla+b)=f(r)=5n=5(a+b-4q)
=5a+5b—-20g, =5a+5b (modulo 10) = f(a)+ f(b) in Z,,.
fla-b)= f(r) =5r, =5 (ab-4q,) = 5ab —-20q,
=5ab (mod10) = 25ab (mod10) =5a.5b = f(a). f(b)in Z,, .
. Z, is homomorphic to Z, .
Ex. 3. Prove or disprove that f:M,(Z) — Z defined by

f / = / (2) i ingh hi
av eM,(Z
2 IS a ringnomomorphnism.

a b a b

Sol. Let A, = 4 LA, = v, € M,(Z) where a;,b,c,,d,,a,,b,,¢c,,d, € Z.
a a4 G 4y

By definition of f, f(A))=¢q,, f(A))=a,.

a+a, b+b,
a+tc, d+d,

f(A1+Az)=f( ]=a1+a2=f(A1)+f(A2)

-~ f preserves addition.

F(A.A)=f iy +hiey @by +hidy +he, # A) . f(A
. = =a,a = .
1- Ay cay+dicy ey +dyd, 14y +hicy # ajay = f(A) . f(Ay)

f does not preserve multiplication. -~ f is not a homomorphism.

Ex. 4. Let Z(\N2)={m+n\/2 |m,n € Z} be a ring under addition and multiplication
of numbers. Prove that f:Z(2)— Z(J2) defined by

fm+ mN2)=m-n2 ¥ m+n2 € Z(\J2) is an automorphism. Also find Ker f.

Sol. Let a,b € Z(\2) sothat a=my +n N2, b=my+n, 2 where my, nj,my,n, € Z.

Then we have a+b = (m +my)+(n +ny) 2 and

ab = (mymy +2mny ) + (myny +myny) V2. Clearly f is well defined.
By definition of f ;
fa+b)=(my +my)=(m +n2) N2 = (my ~m~2)+ (my =ny\2) = f (@)+ £ (b) and
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f(ab) = (mymy +2mny ) — (myny + myny )\/E =(my — "1\/5)(’"2 ) \/E) = f(a)f(b)

-~ f is an endomorphism.

a,b € ZN2): f(@) = F(b) = m —m2 =my -2

= my=my and n =ny = m +m~N2=my +mN2=a=b

.. f is one-one. Let y= m+n2 € Z (\/5) , the co-domain of f.

Then x=m-n\2 € Z(2), the domain of f, exists so that
f)=fm=nl2)=m=-(-n2)=m+n2=y.

- For each y e Z(\/2) there exists x € Z(+/2) so that f(x)=y.

~. f is onto. Hence f is an automorphism.

f(m+n\/§) =m-n2 =0, zero element of Z ~2)=m=0,n=0= m+ny2 =0, zero

element. - ker f ={0}.

Ex. 5. Let Zbe the ring of intergers and Z, be the ring of residue classes modulo

n. If a mapping f:Z — Z, is defined by f(x)=r ¥ x € Z where x=r(mod n ) prove
that f is a homomorphism. Also find Ker f.
Sol. Let x,y €Z.

By the definition of f; f(x)=r, f(y)=s where x=r (mod n)and y=s(mod n).
Clearly f is well defined. We know that (i) x=r (mod n),

y=s(modn)= x+y=r+s@modn) and xy=rs(modn) and (ii) r+s=r+srs=rs.

Now f(x+y)=rts=r+s=f+f(and foy)=rs=r s= D).
-~ f is ahomomorphism. Hence Z, is a homomorphic image of Z.

This is called the natural homomorphism from Z to Z,, .

Ex. 6. Let C be the ring of Complex numbers and M,(R) be the ring of 2x2

b
matrices. If f:C — M,(R) is defined by f(a+ib) =( ab J then prove that f is an into
- a

isomorphism or monomorphism. Also find Ker f (A. U. 00)
Sol. Let 7,,7Z,eC and Z, = x, +iy,, Z, = x, +iy, where x,y,,x,,y, €R.

1N Y2 X

Then f(Zl):f(xl"'i)’l):[_x; il] and f(Zy) = f(x +iy2)=( & )’ZJ

-ty xtx

=[x1 y‘sz yzj:f(zﬁ"'f(zz)
N X V2 X

+ +
f(Zl‘*'Zz):f(()ﬁ+x2)+i(y1+y2)):( Ntxn on yz]
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—(qy, +X%0) XX =Wy,

Xy X y
=( 1 1][ ’ 2]=f<zl>‘f<zz>
o ) (T X
-~ f is a homomorphism from C to M, (R).

f(Zl):f(Zz):[xl yl]{” yz]:aq:xz,yl:yz

. XX =Ny X Y2t Xy
J(Zy-Zy) = (5% = 1 2) +i(xy, +x2y1))=( )

NN N X

Sxtiy=x+iy, =72 =2,. -~ f 1s one - one.

a b a b a b .
For € M,(Z) and # there is no complex number a+ibe C
c d c d -b a

satisfying the correspondence.

- f is not onto. Hence f'is a monomorphism or into isomorphism.

b
Note. Instead of M, (R)if we take ring of 2x2 matrices =S = {( ab )| a,be R} then
- a

f:C—S will be isomorphism onto. 1=1+0ie Cis the unity in C, and

f(l)=f(1+0i)=£_10 ?]:((1) ?j:unitmatrixin M, (R)

. a b 00 .
fla+ib)= = = zero element in M,(R)=a=0,b=0
-b a 0 0

= a+ib=0+i0=0= Zero element in C. - Ker f ={0}

Ex. 7. Let R be the ring of integers and R' be the set of even integers in which
addition is same as that of integers and multiplication (*) is defined by
a*b=ab/2 ¥ a,b € R'. Prove that R is isomorphic to R'.

Sol. We know that R'={2n|n € Z} is a commutative group under addition.

Let a,b,c € R' sothat a=2m,b=2n,c=2p where mn,p €Z.

ab € R'=a*b=(ab/2)=(2m)(2n)/2=2 (mn)=2q where q € Z .

. * is a binary operation in R'.

a,b,c € R'i(a*b)*c:a?b*c :—(ab/2)c :a_bc _4ere (be/2) :a*(z)

2 4 2 2
=ax*(b*c) - * is associative in R' .
+
a,b,c eR' = a*(b+c)=a(b C):a_2b+£:a*b+a*c.

Similarly, (b+c)*a =b*a+c*a. .. * isdistributive over addition.
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ab ba . ..
a,b € R' and a*b=7=7=b*a = * {s commutative in R'.

Hence (R, +, *) is a commutative ring.
Define f:R— R' by f(x)=2x V¥V x e R.  Obviously f is well defined.
Let x,y € R sothat x+y,xy € R. Then f(x)=2x, f(y)=2y.

Now f(x+y)=2(x+y)=2x+2y= f(x)+ f(y)and
2x) (2
Fan =20 =ELED gy = p0 w1

-~ f is ahomomorphism from R into R'.
Xy €ER, f(x)=f(y)=>2x=2y=x=y = f is one-one.
Let b € R'. Then b=2a where ae R and for ae R we have f(a)=2a=b.

-, for each be R' there exists a€ R so that b= f(a)= f is onto .

Hence f is an isomorphism from R to R'.
Ex. 8. Prove that any homomorphism defined on a field is either isomorphism or
zero homomorphism. Or, prove that a field has no proper homomorphic image.

Sol. Let F be a field and R be aring and f:F — R be a homomorphism.

Then we know that Ker f is an ideal of the field F.

Since a field has no proper ideals either Ker f = F' or Ker f = {0} where '0' is the zero
element of F.

LetKerf = F.

By definition of Ker f, we have f(x)=0"V x € F where 0’ R is the zero element.

. homomorphic image of F = f(F)={0"}.

Hence, in this case, f is a zero homomorphism.  Let Ker f={0}.

. By theorem (2) Art. 3.2, fis an into isomorphism from F to R.

Hence, in this case, homomorphic image of F = f(F) is also a field.
Ex. 9. Prove that Z/{(n)or Z/nZ is isomorphic to Z,.

Sol. Define f:Z—Z, as f(x)=r ¥V x€Z.
Then f is a homomorphism (See Ex. 2.)

V reZ, wehave r € Z and for this r €Z, f(r)=r (- r=rmodn).

s f:Z—Z, is onto homomorphism.
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aOW N =

10.

But Ker f=nzZ=(n).
By fundamental theorem ; Z/Ker f =Z, (i.e.,) Z/{n)=2Z,.
Further, if n is a prime = p then Z, is a field.

ZI{p)=Z » = that a quotient ring of an integral domain is isomorphic to the field Z),.

Hence a quotient ring of an integral domain may be a field.

Z6/U:{(_)+U,i+U,§+U} contains only 3 elements.

If we define 0:Z3 — Zg/N as ¢ (0)=0+U, ¢ )=1+U, ¢ (2)=2+U »

then ¢ is an isomorphism.

| EXERCISE 11 |
Is the ring 2Z is isomorphic to the ring 4Z ?

Show that f:Zs — Z,,defined by f(x)=5xV xe Zs does not preserve addition.
Show that f:Z, — Z,, definedby f(x)=3xY¥ xe Z, does not preserve multiplication.

If f:R— R isdefined by f(x)=2x,isf a homomorphism of rings? Give reasons.
(N. U. 1995)

If F, F, are two fields and f:F, — F, is a non-zero ring homomorphism then prove

that f(a™")=(f(a)! for a#0 € F.

Let R be aring with unity element and g' be a ring having atleast two elements. If

f R — R' is anonto homomorphism then prove that the ring g' also has unity element.

In the above example (6) if f is not onto homomorphism, does the ring g' have unity
element? Explain by giving an example.

Let R={m+in|m,n € Z} bethering of Gaussian integers and Z be the ring of integers.
Is the function f : R — Z defined by f(m+in)=mV m+in € R,ahomomorphism?

Prove that f:J[il— J[i]l defined by f(m+in)=m—in is an automorphism of the
ring of Gaussian integers. (Hint. See Ex. (4) ) (0.U.04)

0
0 0

defined by f = € R' is an isomor [)hI.S]ll
e a Vv .

a€ R } where R is the ring of real numbers. Prove that f:R'— R
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b
11. Let S={g j|a,b,ce Z}cMz(Z). Prove that f:S— Z defined by
C

a b a b . . .
f( j =a V( je S is aring homomorphism.
0 ¢ 0 ¢

2b

a

12. Let Z[2]={a+b2|a,be Z} and let M={(: ]|a,be Z}CMZ(Z) . Show that

the rings Z[+/2]and M are isomorphic.
13. R is a commutative ring so that px=0 for all x € R where p is a prime. Prove that
f:R—R defined by f(x)=x” V x € R is a homomorphism.

14. Prove that f:C—C, where C is the field of complex numbers, defined by

fla+ib)=a—ib¥ a+ibe C is aring isomorphism.

| 11. 3. MAXIMAL IDEALS |

The concept of maximal ideal of a ring is analogons to the idea of maximum normal
subgroup in Group Theory.

Definition. (Maximal Ideal). A maximal ideal M of a ring R is an ideal different
from R such that there is no proper ideal U of R properly containing M.

(or)

Let R be a ring and M be an ideal of R so that M = R. M is said to be a maximal
ideal of R if whenever U is an ideal of R such that M c U c R then either R=U or
U=M. (N.U. 97; 0.U. 00)

Note 1. M is a maximal ideal of R if any ideal U of R containing M is either R or M.

2. Anideal M of ating R is called a maximal ideal if M is not included in any other ideal
of R except R itself. That is, the only ideal that properly contains a maximal ideal is the entire
ring.

3. If M is a maximal ideal of the ring R then there exists no ideal U of R so that
McUCR.

Theorem. 1. In the ring Z of integers the ideal generated by prime integer is
a maximal ideal. (S. V. U. 05)

Proof. Let p be prime integer and M =(p)=pZ ={pn|n € Z} be the ideal generated

by p.
Let U be any ideal so that My cU cZ

Since every ideal of Z is a principal ideal, U is a principal ideal so that U =(gq) where

g is an integer.

McUcZ=(p)clq)cZ=pelq)=p=gnmeZ.
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Since p is a prime, either g =1 or m =1
m=1:>p=q:><p>=<q>:>M=U; q=1:><q>=Z:>U=Z
- M is a maximal ideal.

Note. An ideal generated by compostie integer is not a maximal ideal.
Consider M =(6)={...,—12,-6,0,6,12, ...} , the ideal generated by composite integer 6.

There exists ideal U =(3) ={...,-12,-9,-6,-3,0,3,6,...} sothat M cU cZ

Theorem. 2. If M is a maximal ideal of the ring of integers Z then M is
generated by prime integer. (0.U.05,8.V.U. 04)

Proof. Let M =(n) where n € Z be maximal ideal of Z.
We prove that n is a prime integer.
If possible, suppose that ; = qp Where a, b are prime integers.
Then y =(q) isanideal of Zand U oM sothat M cU c Z
Since M is maximal ideal of Z, by the definition either y =7 or M =U .
Case (). Let y=2Z. Then ¢ ={g)=(1) sothat ¢ =1
. n=ab=b= n is a prime integer.
Case (ii). Let M =U
Then y={(a)=M =aeM =a cln)y=a=rn forsome r €Z.
n=ab=(nb=nrb)=>l=rb=>r=1,b=1.
. n=a (1) =a= nis a prime integer.
From cases (i) and (ii) we have that n is a prime integer.

Note. 1. For the ring of integers Z, any ideal generated by prime integer is a maximal
ideal.

2. A ring may have more than one maximal ideal. For example, the ring Z has
(2),(3),(5), .... as maximal ideals.

Theorem. 3. An ideal in Z is a maximal ideal if and only if it is generated by
a prime integer. (0.U. 04)
Proof. Write the proofs of Theorems (1) and (2).
Theorem. 4. An ideal U of a commutative ring R with unity is maximal if and
only if the quotient ring R/U is a field.
(A. U. 12, N. U. 08,0.U. 07, S.K.U. 01, 05, K.U. 05, S.V.U, 08)
Proof. R is commutative ring with unity and U is an ideal = the quotient ring

R/U ={x+U|x € R} is commutative and has unity element. (Art. 2.6)
Zero element of R/U =0+U =U where 0 € R is the zero element in R.

Unity element of R/U =1+U where 1 € R is the unity element in R.
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It is to be noted that a+U =U zero element of R/U < a €U
(1) Suppose that U is a maximal ideal of R. We prove that R /U is a field.

To prove that R/U is a field we have to show that every non-zero element of R/y
has multiplicative inverse.

Let x+U € R/U and x+U be non-zero element. Then x ¢ U

If (x) is the principal ideal of R then (x)+ g 1is also an ideal of R.

( - sum of two ideals is also an ideal. Ex. 4)

xeU=>Uc{x)+U

Now we have, U  (x)+U c R and U is maximal ideal = (x)+U=R=(1)
= there exists « €U and o € R such that g+ xa =1

L 1+U=(a+x0)+U =(a+U)+(xa+U) (sum of cosets)

=U+(xa+U) =0+U)+(xa+U) (raeU=a+U=U)
=xoo+U =(x+U)(a+U) (Product of cosets)

-, for non-zero element x+U € R/U there exists a+U € R/U such that
(x+U) (a+U)=14U .

Hence every non-zero element of g/y is invertible.
.. R/U is afield.

(2) suppose that r/y is a field. We prove that U is maximal ideal.
Let U'be anideal of Rsothat y'>y and U'2U
Now we show that y'=R

Since y'>yU and y'+U , there exists oo € U' such that o0 ¢ U
o U= a+U is non-zero element of p/y

R/U 1is afield of o+U is non-zero element of R/U

= o+ U has multiplicative inverse, say x+U .

so(o+U) (x+U)=14+U

>owux+U=1+U=1-ox €U CU' (a+U=b+U=a-belU)
x€e€R oeU' and y'isanideal = ox eU".

ax eU\l1-ox eU'=sox+(1-ox)=1 €U’

~1eU'and y'isanideal = U'=R. Hence U is a maximal ideal.
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| 11. 4. PRIME IDEALS|

Definition. (Prime Ideal) An ideal U # R of a commutative ring R is said to be
prime ideal if for all a,b € R and a,b €U =a €U or b eU.

e.g. For an integral domain R, the null ideal is a prime ideal.

abeR, abe{0)=ab=0 =a=0o0r p=0

Theorem. An ideal U+ R of a commutative ring R, is a prime ideal if and
only if R/U is an integral domain. (S.K.U.07,05S.V.U.01,0.U. 05)

Proof. Let gr/y be an integral domain.

We now prove that U is a prime ideal of R.

V a,b€eR and a,b €eU = ab+U =U = (a+U).(b+U)=0+U
=a+U=04+U or p+U =0+U ( 0+U 1is the zero element of R/y )
=aelUorbel. - U is a prime ideal of R.

Conversely, let U be a prime ideal of R.

We now prove that g/y is an integral domain.

a+U,b+U € R/U and (a+U).(b+U)=0+U

=ab+U=0+U =abelU =a €U orbelU(- U isprime ideal)

=a+U=04+U or b+U =0+U

~. R/U has no zero divisors and hence is an integral domain.

Corollary. Every maximal ideal of a commutative ring R with unity is a prime
ideal. (K.U.03,N.U.01,0.U. 97)
Proof. Let U be a maximal ideal of a ring R.

By Theorem (3) of Art. 3.3; /U isafield. = R/U is an integral domain.

By Theorem (4) of Art. 3.3; U is a prime ideal.

Thus every maximal ideal of R is a prime ideal.

Note. 1. The converse of the above corollary is not true.

That is, a prime ideal of a commutative ring with unity need not be a maximal ideal.
Consider the integral domain Z of integers.

The null ideal =(p) of Zis a prime ideal. But () ideal is not maximal ideal.

There exists ideal =(2) of Z such that (g) = (2) =z and (2)#(0),(2) = Z.

Ex. If R ={0,2,4,6} is aring with respect to addition and multiplication modulo 8, then
show that M ={0,4} is a maximal ideal of R but not a prime ideal . (0.U.11)

Sol. For 0,06 M,0-0=0€ M, For 0,4 or 4,0e M,

0-4=8-4=4eM, 4-0=4ecM . For 44eM,4-4=0c M.

For 0e M,0,2,4,6€ R we have 0.0=0,0.2=0,0.4=0,0.6=0e M
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For 4e M,0,2,4,6e R we have 4.0=0€ M,4.2=8=0e M,4.4=16=0€ M,
46=24=0eM .
~. Mis an ideal of R.
U, ={0,2,4} is not an ideal, for, 2,4€ U, we have 2-4=-2=6¢ U,
U, ={0,4,6} is not an ideal, for, 6,4 U, we have 6-4=2#U,.
-, There is no ideal U of R such that Mc UcR.
- M ={0,4} is a maximal ideal.
For 2,6 R and 2.6 =12=4€ M does not imply either 2e M or 6e M
~. Mis not a prime ideal.
[ 11. 5. FIELD OF QUOTIENTS OF AN INTEGRAL DOMAIN |

If an integral domain is such that every non-zero element of it has a multiplicative
inverse then it is a field. But many integral domains do not form fields. Though the integral
domain of integers is not a field, it is such that it can be embedded in the field of rational
numbers. In this section we show that every integral domain can be regarded as being
contained in a certain field. The minimal field containing an integral domain is called field of
quotients of an integral domain.

Theorem. Every integral domain can be embedded in a field. (or)

An integral domain D can be embedded in a field F such that every element of
F can be regarded a quotient of two elements of D. A. U. 08)

Proof. Let D be an integral domain with at least two elements.
Consider S ={(a,b)|a,b € D,b#0}. Then S#¢ and S DxD.

For all (a,b), (¢,d) €S define a relation ~ on S as (a,b) ~ (¢,d) if and only if ad =bc .
We now prove that ~ is an equivalence relation on S.

(1) For each (a,b) € S we have gp = pg Which implies that (a,b) ~ (a,b) .

(2) (a,b),(c,d) €S and (a,b) ~(c,d) = ad =bc = cb=da=> (c,d) ~ (a,b) .

(3) (a,b),(c,d),(e, f)€ S and (a,b) ~ (c,d),(c,d) ~ (e, f) = ad =bc,cf =de.

= (ad)f =(bc)f,cf =de = (af )d =b(de) =d(be) = af =be (d#0)

= (a,b) ~ (e, f)

. '~" is an equivalence relation on S. The equivalence relation ~ partitions the set S
into equivalence classes which are either identical or disjoint.

For (a,b) €S leta/bdenote the equivalence class of (a,b). Then
alb={(x,y) € S|(x,¥)~(a,b)}. If a/b,c/d are the equivalence classes of (a,b), (c,d) € S
then either a/b=c/d or albnc/d=¢. Itisevidentthat a/b=c/d ifand only if ad =bc .

Let F denote the set of all the equivalence classes or the set of quotients.
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a
Then F = {Z (a,b) €§ } . Since D has at least two elements, say, 0,a € D

) 0 a 0 a
we have quotients — — € F and —#—.
a a a a

~. the set F has at least two elements.
a c . - e
For —,— € F define addition (+) and multiplication (s) as

b'd

a,c_gadtbe 4 c_ac
b d  bd ™bd ba
Since D is without zero divisors, b #0,d #0 € D= bd #0 .

So ad +bc ac

>

€
bd bd

Now we prove that the addition and multiplication defined above are well defined.

Let %:% and 2:% Then ab'=a'b and ¢d'=c¢'d .. (D

Now (I) = ab'dd'=a'bdd' and bb'cd'=bb'c'd
=ab'dd'+bb'cd'=a'bdd'+bb'c'd = (ad+bc)b'd'=(a'd'+b'c")bd
ad+bc a'd+b'c’
= =
bd b'd'

ac _a'c
bd b'd'’
~. Addition and multiplication of quotients are well defined binary operations on F.

Also (I) = ab'cd'=a'bc'd = (ac) (b'd")=(a'c") (bd) =

We now prove that (F, +,+) is a field.

a c e a c e ad+bc e (ad+bc) f+(bd) e
——,— €F.|—+= = +— =
(1) For 37 ’(b d)

foobd f (bd) f

adf)+(cf+de)b a cf+de a (c e
= b(df) :Z"' af :Z"'(g*?):>additionisassocative.

a ¢ ad+bc bc+ad c¢ a . )
= = =—+—- — addition is commutative.

- =
b d  bd b d

(2) For %2 eF

3)F #0€D h QEF h th 9+£_—Ob+ua_ua_a
(3) For u € we have suctatub ” b b

0 .
- " € F is the zero element.

(4) Let 2 ¢ F. Then —% ¢ F such that 2-;-__“:M=£=9
b b b b b2 » u

-, every element in F has additive inverse.
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<5>Forz,i,ieF;(ﬂ.ij::ﬂ.@ (ac)e _ a(ce) z_e=z,[s.g]
b d f b'd) f bd f (bd)f b(df) b df b

. multiplication is associative.

6 For L. ep.d C_ac _ca_c a
(6) For 3.7 b'd bd db d b

. multiplication is commutative.

=—=—-V—-€eF

(7) for u#0 € D we have % € F gsuch that 5

Sl
S

a au

b bu
u . :

"€ F' is the unity element.

(8) Let % e F and %ig. Then au =0 which implies that 4 20 as u=0.
u

~b#0 and a¢0=>2 eEF.

a
a 0 . b a b ab u
-, for ;(i ;) € F there exists " € F such that P (e (ab)u = (ba)u)
-, every non-zero element in F has multiplicative inverse.
a c e ac e a cf+de a(cf+de) (acf +ade) (bdf)
(9) For 3 € F5p (Z+7):Z' aF  bdf)  bdf)bdf)
_ acf bdf +ade bdf acf _ac ge

a ¢ a
=—.—+—.
b d b

e
(bdf) bdf)  bdf bdf “bd  bf 7

.. C e (1 C a e a
Similarly we can prove that | —+— —+—.—.
d f|b db fb
. multiplication is distributive over addition.
In view of (1), (2), (3), (4), (5), (6), (7), (8) and (9) (F,+,+) is a field.
Now we have to prove that D is embedded in the field F, that is, we have to show that
there exists an isomorphism of D into F.
Define the mapping ¢: D — F by d(a) = VY aeD and x(#20)eD.
X

a.b € D and 0(a) = 0(b) = “—; = b% = (ax)x = (bx)x

:>(a—b)x2=O:>a—b=0 since x> 20 = a=b. ~. ¢ is one - one.
For a.b € D: o (a+b) = (a+b)x _ (a+b)xx _ axx+bxx ax bx =¢(a)+(])(b)
X XX XX X
o(ab) = (ab)x (ab)xx ax bx_q)(a) o(b)
X XX X

. ¢ is a homomorphism. Hence ¢ is an isomorphism of D into F.

. the integral domain D is embedded in the field F.



SuccessClap: Best Coaching for UPSC Mathematics : For Info- 9346856874
Checkout ->22 Weeks Study Plan, Videos, Question Bank Solutions, Test Series

Note. 1. Every element in the field F is in the form of a quotient of two elements in D.
So, the field F is called "field of quotients of D"

2. The equivalence class of (a,b) € S is also denoted as [(a,b)] or [a,b] or (ﬂ).
Then [(a,b)] =[(c,d)] & ad =bc, [(a,b)]+[(c,d)]=[(ad +bc, bd)],
[(a,D)].[(c,d)] =I(ac, bd)],

the zero element of F =[(0,1)] and the unity element of F =[(1,1)]

3. If Dis the ring of integers then the field F, constructed in the above theorem, would
be the field Q of rational numbers.

| 11. 6. PRIME FIELDS |

Definition. A field is said to be prime if it has no subfield other than itself .

The field Z, ={0,1,2,..., p=1} where p is a prime and the field Q, of the set of all

rational numbers are prime fields. The field of real numbers R is not a prime field.

We now establish that any field F contains a subfield isomorphic to Z,, or contains a
subfield isomorphic to Q.

Theorem. 1. If R is a ring with unity element '1' then f:Z —R defined by

f(x)=n.1V ne Z is a homomorphism.

Proof. Let m,n € Z. Then f(m)=m.1, f(n)=n.1.
fm+n)=(m+n).1=m.1+n.1= f(m)+ f(n)

Let m>0,n>0.

(mn) 1=1+1+...+1 (mn times) ={(1+1+..+1)mtimes } {(1+1+..+1)n times }
=(m.1)(n.l) (using Distributivity in the ring R)
Similarly, V m,n € Z we can prove that (mn).1=(m.1) (n.1) using Distributivity.

s fmnuny=mn). 1=m.)(n.D)=f(m)f(n).

Hence f:Z — R is a homomorphism.

Theorem.2. If R is a ring with unity element '1' and characteristic of R=n>0

then R contains a sub ring isomorphic to Z,.

Proof. Consider the homomorphism f:Z — R defined by f(m)=m.1V m € Z.
~. Ker f is an ideal of Z.

But every ideal in Z is the form (s) =57 where s € Z .
Characteristic of ring R =n > 0= n is the least positive integer such that n.1=0.

. Ker f=nz=(n)



SuccessClap: Best Coaching for UPSC Mathematics : For Info- 9346856874
Checkout ->22 Weeks Study Plan, Videos, Question Bank Solutions, Test Series

By fundamental Theorem, f(Z) c R is isomorphicto Z/nz=27/{n)-
But Z/nz=27z/{n) is isomorphic to Z,. (See Ex. 7)

~ f(Z)C R isisomorphicto Z,.

Theorem.3. If R is a ring with unity element '1' and characteristic of R=0
then R contains a subring isomorphic to Z.

Proof. Consider the homomorphism f:Z — R defined by f(m)=m.1V m € Z.

Characteristic of R=0=>m.1#0V me€Z and m#0.

Ker f={meZ|f(m)y=m.1=0}=10}. - f(Z)C R isisomorphic to Z.

Corollary. A field F of prime characteristic = p contains a subfield isomorphic

to Z, and a field F of characteristic zero contains a subfield isomorphic to Q, the

field of rational numbers.
Proof. Let F be the field of characteristic = p, a prime.

Then p is the least positive integer such that p.1=0.
. Ker f=pz=(p)
Hence, by the above theorem; F' contains a subfield isomorphic to Z,.
Let F be the field of characteristic = 0.
By the above Theorem; F contains a subring isomorphic to Z.

But the field F contains a field of quotients of Z which is the field Q of rational numbers.
Thus we have established that apart from isomorphism the only prime fields

are Q and Z,.
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Rings of Polynomials

12.1. POLYNOMIALS IN AN INDETERMINATE

In our earlier classes we have studied polynomials with some of the operations like
adding, multiplying and factoring. Further we have studied their continuity, Derivative and
Integral as functions.

Now we study polynomials as elements of a ring and its algebraic properties.

Definition. Let R be a ring. A sequence (ay,aqy,as,...,a,,...) of elements of R,
with atmost a finite number of non-zero terms, is called a polynomial over the ring R.

Since polynomial is a sequence with atmost a finite number of non-zero terms,

(ap, ay, ..., a,, ...) 1s a polynomial over the ring R

& there exists n € N such that ¢; =0 V i>n. So, we can write f =(ay, a1, ..., a,) -
Definition. (Another form) Let R be a ring. A polynomial f(x) in the indeter-
minate 'x' with coefficients in R is ay+ajx+ a2x2 fotax"+..= iaixi where a; € R
and a; =0 for all but a finite number of values of i. 0 (0.U.03)

If ¢;=0 V i>n then we can write f(x)=ay+ qx+ ayx> +...+ a,x" .

Qo> @y, Ay se....n d, - are called coefficients of f(x).
ay, X, a, ¥, a,x",... are called the constant term, the x term, the x> term, ...... the
x" term, ...... of f(x).

The two forms of the definition are equivalent.

Thatis f=(ay,q,..,a,) © f(x)=ay+ax+..+a,x".

e.g. If Z is the ring of integers then f(x)=2+0x+1x>, g(x)=2+lx+(-1)x> are
polynomials.

Notation. The set of all polynomials defined over the ring R or with coefficients in the
ring R is denoted by R[x].

The set of all polynomials defined with coefficients in the field F is denoted by F [x].

Definition. (Zero polynomial). If 'O ' is the zero element in the ring R, then

f=(0,0,....,0,.....) is called zero polynomial.
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Zero polynomial is denoted by O = (0,0, ...,0,...)0r O(x) =0+ 0x+0x> +....

Definition. (Constant Polynomial). An element in the ring R is called a constant
polynomial. That is, if ay € R then (ay,0,0,..)=aqy is the constant polynomial which
can be identified with the element 'ay' of the ring.

12.2. ALGEBRA OF POLYNOMIALS

Definition. (Equality of two polynomials). Two polynomials f =(ay, ay, ..., a,,) and

g=(by.b,.... b,) in R[x] are said to be equal if a; =b; ¥ i20. We write f=g.
f(x)=ay+ax+..+a,x" and g(x)=by+bx+..+b,x" are equal

ie. f(x)=g(x)o a; =b; fori=0,1,2,... i.e. their corresponding coefficients are
equal.

Definition. (Addition of two polynomials)

Let f =(ay,q,....a,) and g=(by,b,...b,) be two polynomials in R[x]. The sum
of f and g denoted by f+g=(cy,c1,....cp) where ¢; =a;+b; for each i.

Thus f +g =(ag + by, a; +by,...) OF f(x)+g(x)=(ag+by)+(aq +b)x+..=Y (a; +b;) X

=0
The process of finding the sum of two polynomials is called addition. l

Note. 1. To add two polynomials we have to add their corresponding coefficients and
collect the terms.

2. If f(x)=aqq +a1x+...=2ai ¥ and g(x)=by+bx+...= ij x/
i=0 =0

then f(x)+g(x)= i (ap +b) x* .
k=0

e.g. Let f(x)=1+ux, g(x)=3-2x+x> with coefficients in the ring Z of integers.
By the definition.: £(x)+ g(x) = (1+ Lx+0x2) + 3+ (-2)x + 1x?)

=(1+3)+(1=2)x+(0+Dx* =4—x+x>.
Definition. (Multiplication of two polynomials)
Let f=(ay,q,..,a,) and g=(by,b,....b,) be two polynomials in R[x].

The product of f and g denoted by f.g or [ g=(dy.d,,...d,) where
k

dk = Clobk +albk—l +...+akb0 = Zaibk_i .
i=0

Thus f g= (aobo + aobl + (llbo, (10b2 + albl + azbo, ...... ) or

f(x). g(x) =agby + (agh + ayby)x + (aghy + a1by + azbo)x2 + ...
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The process of finding the product of two polynomials is called Multiplication.
k oo oo
Note. 1. dk = Zai bk—i = 2 a; b] Imp. f(X) . g(x) = 2 dkxk = 2 2 a; b] xk
i=0 i+j=k k=0 k=0 i+ j=k
2. From the definitions of sum and product of two polynomials f, g we clearly observe
that f+¢ and f.g are polynomialsin R[x].
3. The operations of addition (+) and multiplication (+) in f+g and f.g of

f. g € RIx] are respectively different from addition (+) and multiplication (+) in a+5 and

a.b of a,b €R.
e.g. Let f(x)=1+x and g(x)=3-2x+ x2 with coefficients in the ring Z of integers.
Here f(x)=1+1.x=ag+ax+ayx’> = ay=1,a,=1,ay,=0, a3 =a;,=..=0.
g(x)=3+(-2)x+1.x2 =by+byx+byx> = by =3,by ==2.by =1,by =b, =...=0.
By the definition of product of fand g we have

F(). g(x) =dy +dyx+dyx* +dsx’ +... Where di= Y, a;b; .
i+j=k

dy =agby =) 3) =33 dy =apb +ayby = () (=2) +(1) B) =1}

dy = aghy +a1by +ayby = (1) ) +(@) (-2) +(0) (3) =-1;

d3 = aghy + ajby + axby + azby = (1) (0) +(1) (D +(0) (-2)+(0) 3) =1

dy = agby + a1bs + ayby + azby + azby = (1) (0) + (1) (0) +(0) () +(0) (=2) +(0) 3) =0,

ds=dg =...=0.

s f0) g = (14 x) B=2x+x7) =3+ 1+ (=D)a +1x° .

If we multiply f(x) and g(x) in the high school style we get the same answer.
| 12.3. DEGREE OF A POLYNOMIAL. |

Definition. Let f =(ay,q,a,,...) be a non-zero polynomial over a ring R. The

largest integer ;>0 for which a; #0 is called the degree of f. The degree of zero
polynomial is not defined. The degree of constant polynomial is zero. (A. U. 07, 0.U. 03)

Degree of f(x)=deg f(x)=ne f(x)=ag +a1x+a2x2+...+anx" where
a,#0 and ¢; =0 V i>n.

Definition. (Leading coefficient of a polynomial)

If the degree of the polynomial f(x)=ay+ax+...+a,x" is n then a, #0 is called

the leading or highest coefficient in f(x).

Note. Deg f(x) is a non-negative integer.
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e.g. 1. Deg f(x) =4+2x+3x*where f(x) € Z[x] is 4 and the leading coefficient = 3.

e.g. 2. If f(x)=3/2 e Qlx], the ring of polynomials over Q then deg f(x)=0.

Theorem. Let f(x),g(x) be two non-zero polynomials of R[x], where R is a
ring. Then (i) deg (f(x)+ g(x))<max{deg f(x),degg(x)} if f(x)+g(x)#O (x)

@) deg(f(x).g(x))<deg f(x)+degg(x) if f(x)g(x)#O0 (x) where O (x)is
the zero polynomial. (S.V.U.01,0.U.01)

Proof. Let f(x)=ay+ax+...+a,x", g(x)=by+bx+..+b,x"

so that deg f(x)=m, deg g(x)=n.

Then a,, #0 and ;=0 V i>m; b, #0 and b; =0 V j>n,

(i) From the definition, f(x)+ g(x) = (ag +by) + (ay +by)x+ (@ +by)x> + ...
=cy +c1x+czx2 +..

If r=max {m,n} then ¢, #0 and ¢; =0 V i>r.

sodeg (f(x)+g(x)<r ie deg(f(x)+g(x)) <max {m,n}

(1) From the definition, f(x) g(x) = agby + (agb; +a1bg) x + ...

=dy+dyx+dyx® +... where dg= Y a; b
i+ j=s

Let s>m+n. Theni+j=s=i>m or j>n. Buti>m=q;=0and j>n=>0;=0.
“a;b;=0 for j>mor j>n=d; =0 Y s>m+n

Hence deg (f(x) g(x))<m+n=deg f(x)+deg g(x).

Corollary. If f(x).g(x) are two non-zero polynomials of F [x] where F is a
field then deg (f(x).g(x))=deg f(x)+deg g(x).
Proof. Let deg f(x)=m, deg g(x)=n so that @, #0,b, #0 € F .

. @, b, #0 ( -+ the field F has no zero divisors)
But dm+n = 2 a; bj = aObm+n + albm+n—1 +...

i+ j=m+n

+..+a,b,+a,. b, +..+a,, by =a,b, #0.

sodeg (f(x).gx)zm+n.
But from case (ii) of the above theorem, deg (f(x).g(x))<m+n.

Hence deg (f(x).g(x))=m+n=deg f(x)+deg g(x) .
Note. 1. If the ring R has no zero divisors or R is an integral domain and
f(x), g(x) € Rlx] then deg (f(x) g(x)) =deg f(x)+deg g(x).
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2. If R is an integral domain or field and f(x), g(x) € R[x]

then deg f(x) <deg (f(x) g(x)) since deg g(x) =0 as g(x) is a non-zero polynomial.

3. Let f(x),g(x) € R[x] where R is a ring. Let deg f(x)=m, deg g(x)=n. Then
a,#0 and ¢; =0 Y i>m;p #0 and b; =0V j>n.

If m > n then leading coefficient in f(x)+g(x)=a,,.

If m=n then leading coefficientin f(x)+g(x)=a, +b,.

If m <n then leading coefficient in f(x)+g(x)=b,.

Further, leading coefficient in f(x) g(x) =a,, b, where q,, b, #0.

e.g. Let f(x)=2+3x+5x> and g(x)=3-5x+x> be two polynomials in Z[x].

fx)=aq +a1x+a2x2 so that ay =2,a; =3,a, =5 so that the largest integer i having
a; #0 1s 2 = deg f(x)=2.

g(x)=by +b1x+b2x2 +b3x3 so that by =3,b =-5,b, =0and b; =1 so that the largest
integer j having b; #0 is 3= deg g(x)=3.

We have f(x)+ g(x)=5-2x+5x> +x° = ¢ + ¢y x+cox> +... s0 that the largest integer i
having ¢; 20 is 3.

sodeg (f(x)+g(x)) =3=max {2,3}.

We have f(x) g(x) =6—x—23x> +3x* +5x° =dy +dyx+d,x* +... so that the largest
integer i having d; #0 is 5= deg (f(x). g(x)) =5=deg f(x)+deg g(x).
SOLVED PROBLEMS

Ex. 1. Find the sum and product of f(x)=5+4x+2x>+2x° and

g(x)=1+4x+5x2+3x3 over the ring Zg. Also find deg (f(x) + g(x)) and deg (f(x) g(x)) .
Sol. Z¢ ={0,1,2,3,4,5} , ring of integers modulo 6.
We know that a+b =1 (mod6) and @.b=r,(mod6) for every a,b € Z .
FOO+g(0)=(G+D+(@+4) x+(2+5) x* +(2+3) x° =04 2x+1x2 4+ 513
FE(X)=(G.D+G. 4+4. ) x+(5.5+4.4+42. 1) x> +(5.3+4.5+2.4) x°
+(4.342.542. 45 +(2.542.3) 2 +(2.3)x°
=540 x+1x2+1x°0+0x* +4x°+0°.

We have deg f(x)=3, deg g(x)=3. deg (f(x)+ g(x)) =3 =max {3,3}.
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deg (f(x)g(x))=5<deg f(x)+deg g(x) (Here a,,b, =2.3=6=0(mod 6))

Ex. 2. Find the sum and product of f(x)=2+3x+4x>+2x° and g(x)=4+2x+3x*

given that f(x), g(x) € Zslx]. Also find deg (f(x)+ g(x)) and deg (f(x) g(x)). (S. V. U 04)

Sol. Z5={0,1,2,3,4} and a+b=r;(mod5),a.b=r, (mod)5) for every a,b € Zs.
F)+g(xX)=C2+D+B+2)x+(@A+0)x% +(2+0)x° +(0+3)x* =1+0x+4x> +2x° +3x%.
F(x).80)=Q2.H)+2.243.Hx+(2.0+3.2+4 . Hx*> +(2.0+43.0+4.2+2.4)x>
+(2.343.044.04+2.2)x* +(2.0+3.3+4.0+2.0)x> +(2.0+3.0+4.3+2.0)x°

+(2.043.0+4.0+2.3)x7 =3+1x+2 x> +1x° +0x* +4 0 +22% +147.
deg f(x)=3, deg g(x)=4. deg (f(x)+ g(x)) =4 =max {3,4} .

deg (f(x) g(x)=T7=3+4=deg f(x)+deg g(x). It may be noted that Zs is a field.

4.4. We now study the ring structure of polynomials with respect to addition and
multiplication of polynomials.

Theorem. 1. If R is a ring then the set R[x] of all polynomials in the
indeterminate x, is a ring with respect to addition and multiplication of polynomials.

Proof. Let f(x)=dag+ax+..+u= > ax , g(xX)=by+bhx+..= ijxj and
i=0 j=0

S
h(x)=co+ex+..= Y, X" be three polynomials in R [x].
k=0

From the definitions of addition and multiplication of two polynomials, clearly, f(x)+ g(x)

and f(x).g(x) are also polynomials in R [x].
. addition and multiplication of two polynomials are binary operations in R [x].

(1) f@+g0)=Yax + ¥ bixl =Y (@ +b) ' =Y +a)) 2
i=0 j=0 =0 =0

=Y bix/ + Y aix' = g(0)+ f(X) (a) +b; =b +a; is true ¥ a;. b, €R).
j=0 i=0
. addition is commutative.

2) (F+gN+h(x0) = X (@ +b) ¥ + Y, epx

i=0 k=0

=N (g +b)+ep) ' =Y (@ + B +¢)
1=0 1=0
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=Y a; x'+ Y, (b;+c;) X! = f(x)+(g(x)+h(x)
i=0 j=0

(aqp+b)+c;=a +(b+¢) istrue V a;,b,¢; €R) - addition is associative.

(3) Zero polynomial O (x)=0+0x+..= Y 0x" existsin R [x]

m=0

such that f()+0 ()= D (4+0x =¥ g, x' = f(x) V f(x) € RIx]
i=0 i=0
-~ O (x) is the additive identity.

@) If f(x)=2a,- ¥, a; €R for i=0,1,..we have —q; € R for i=0,1,...
i=0

such that a; +(-a;) =0, the zero element in R.

So, there exists ¢(x) = Z(_“i) x' € R[x] such that
i=0

£ +0(x) = i(a,. +(=a)) x' = io x =0 (x). - every f(x) has additive inverse.
i=0 i=0

(5) (f(X)-g(X))h(X)=[2( aiijx"J(
n=0\ i+ j=n

»
ipe
o
s
=
.
N—

=i ab; \cx xp=i 2 (a;bj)ey xP
p=0 | nt+k=p\ i+j=n p=0\ i+ j+k=p
[0 (g(x) h(x)) = [Zax HZ ( bjck)xm}
=0 | j+k=m

=i{ > “i( 2 bjck)}x“i( )y “i(bjck))xq

q=0 |i+m=¢q Jtk=m q=0 \ i+ j+k=¢q
But (a;b;) ¢; = ai(bjck) is true V ai,bj, c,ER,

S (f (). g(x0) h(x) = f(x) (g(x)h(x)) = multiplication is associative.

6) fx).(gx)+h(x)= Zax(z(b +cj)x’ J

n=0

:2(.2 a;(bj+c; )j i(g:n(ab +ac; ))
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n=0\ i+j=n n=0{ i+ j=n

- 2( Y apb; ) X+ 2( > aicj)x” = £(). () + F(x). h(x)
Similarly, we can prove that (g(x)+h(x)) f(x) = g(x) f(x)+h(x) f(x)

~. Distributive laws are true.

From (1), (2), 3), (4), (5) and (6); R[x] is a ring.

Note.l. O (x)=0+0x+... is the zero element of ring R[x].

2. Additive inverse of f(x)=ag+ax+...= Zaixl is —f(x)=—ag—ax—...= Z—aixi .
i=0 i=0

Theorem 2. The set F(x) of all polynomials in an indeterminate x with

coefficients in a field F is an integral domain with respect to addition and
multiplication of polynomials. (0. U. 05)

Proof. If F is a field then F is a ring and hence from the previous theorem F(x) is a
ring. Now we prove that (1) F(x) is commutative,

(2) F(x) has unity element and (3) F(x) has no zero divisors.

(1) Let f(x)=qy +a1x+...=2al-xi and §(X)=by+bx+..= ijxj
i=0 =0

be two polynomials in F(x) .

oo oo

From the definition : f(x) g(x) = 2( Y aibjjx” = 2( Y bjaijx” =g(x) f(x)

n=0\ i+j=n n=0\ i+j=n

(va's,b;'s e F)

(2) We have I(x)= 1+0x+0x% +... = z bjx/ where by =1, the unity element in F
i=0
and b; =0V j=1, !

oo

f(x). I(x)= 2( Yy aibjjx” =Y (a,.Dx" = ian X" = f(x)
n=0

n=0{ i+ j=n n=0

( N ab; =agh, + b, +...+ a,by =0+0+..+0+a, .1]

i+j=n
A f) Ix)=1x). f(x)=f(x) ¥V f(x) e Flxl.

I(x)=1+0x+0x2+...=1 is the unity element in F(x)
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(3) Let f(x)=ag+ax+...+a,x" #0 (x) and g(x)=by+bx+..+b,x" # O (x)

be two polynomials in F(x)

Let leading coefficient in f(x) =aq,, and leading coefficientin g(x) =0, .

Then a,, 20,5, #0. a,,,b, € F and F has no zero divisors.

=a,,, b, #0= leading coefficientin f(x) g(x)=a,, b, 20.

. there exists atleast one coefficient in f(x) g(x) which is not zero element of F' and
hence f(x) g(x)20 (x).

. F[x] has no zero divisors.

From the truth of the properties (1), (2) and (3) the ring f[y] is an integral domain.

Theorem. 3. The set D[x] of all polynomials with coefficients in an integral
domain D is an integral domain under addition and multiplication (S. V. U. 05)
Proof. (Write the proof of Theorems (1) and (2))
Note. If R is commutative ring then R[] is also commutative.

If R is a ring with unity element '1' then R[] is also a ring with unity element

I(x) =1+ 0x+0x7 +...

If R is a ring without zero divisors then R[x] is also a ring without zero divisors.

e.g.l. If Z is the ring integers then z[x] is an integral domain, because Z is integral
domain.

e.g.2. Zg=1{0,1,2,3,4,5} is a ring with zero divisors = Z¢[x] is a commutative ring
with unity element.

e.g. 3. Zs={0,1,2,3,4} is a field = Z5[x] is an integral domain.

Imp. Note. If F is a field then f[y] is only integral domain and not a field.

Let I(x) =1 be the unity elementin f[x].Let f(x)= 1+x%e Flx]. Clearly f(x)#0 (x).

Let g(x) € Flx] so that f(x).g(x)=1(x).

o deg (f(x). g(x)) =degl(x)= deg f(x)+degg(x)=0

(" f(x), g(x) € Flx] which is an integral domain)

= 2+degg(x)=0. This is impossible as deg g(x)=0.

. there is no polynomial g(x) e F[x] such that f(x).g(x)=1I(x) and

hence F[yx] is not a field.

Note. For non-zero constant polynomials in f[x], that is, for non-zero elements in F
there exist multiplicative inverses. Therefore, the non-zero constant polynomials in
F [x] are units in F[x]. The multiplicative inverse of I(x)=1 is itself.
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Theorem. 4. If F[x] is the set of all polynomials over the field F then the set

of all polynomials in F [x] with constant term 0 € F form an ideal of F [x].

Proof. Let {/[x] be the set of polynomials in f[x] with constant term =0 € F .

Then Ulxl={ay+ax+..+a, x" € Flxl:ay =0} -

Let f(x)=ay+ax+..+a, x" € Flx]. Then fi(x)=ax+..+a, x" €Ulx].

s Ulxl# ¢ and Ulxlc Flx].

Let fi(x)=0+aqx+..+ay, x", g(x)=0+bx+..+b, x" €Ulx].

f(0)—g1(x) = (0+(-0)+ (q; + (=b))x+...+ (a, +(~b,)) x" where r=max {m,n}

=0+cx+..+c,x" € Ulxl.

For f(x) € Flx] and g;(x) € Ulx] we have

f(x)g1(x)=(agy.0)+(aq; .0+ ayb)x+ (ay.0+ayby +aghy) 4= d1x+d2x2 +...€ Ulxl

Also g;(x)f(x)=(0.ay)+(0.a; +bag) x+...... € Ulx]

- Ulx] is an ideal of f[y].

Note. Clearly y[x] is the principal ideal generated by x € Flx] and hence
Ulxl=(x) ={x f(»)| f(x) € Flxl}.

| SOLVED PROBLEMS |
Ex. 3. If R is a ring and R' is the set of all constant polynomials in R[x] prove

that R' is isomorphic to R.
Sol. We know that R'={a+0x+0x>+..:ae R}.

Define ¢:R— R' such that ¢(a)=a+0x+0x>+..V ac R -

(1) a,be R and ¢(a) = o(b) = a+0x+0x> +...=b+0x+0x> +..= a=b

. ¢ is one-one. (corresponding coefficients are equal)
2) 6(R)={0(a)|a € R}={a+0x+0x>+..]ae R}=R" .. ¢ isonto.

(3) Let a,b €R.

(@) +0(b) = (a+0x+0x> +..)+(b+0x+0x> +..) = (a+b)+0x+0x> +..= ¢ (a+b) -

0(@) O(b) = (@+0x+0x> +...) . (b+0x+0x> +..) =ab+0x+0x> +...= 0 (a) & (b) -
- ¢ is a homomorphism. From (1), (2) and (3) : ¢$:R — R' is isomorphism.
Ex. 4. If D is an integral domain then every unit in p|x] is a unit in D.

Sol. Let 1 € D be the unity element and 7(x)=1+0x+0 2 + ... be the unity element

in p[x]. Let f(x) beaunitin p[y].
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By the definition of unit, there exists g(x) € D[x] such that f(x).g(x)=1(x).
sodeg (f(x).g(x))=degl(x)=0 ( -- degree of constant polynomial =0 )
= deg f(x) +deg g(x) =0 (- D[x] is integral domain)
= deg f(x)=0,deg g(x) =0 (. deg f(x), g(x)20)
= f(x), g(x) are constant polynomials = f(x) = a+0x+0x% +...; g(x) =b+0x+0x> +...
o f(x) g(x)=ab+0x+0x2+.... Hence f(x).g(x)=I(x)=ab=1=a € D is a unit.
Ex. 5. Find the units in Z;[x].
Sol. Since Z; ={0,1,2,3,4,5,6} is a field Z, [x] is an integral domain.
- the units in Z, [x] are the non-zero constant polynomials.
~ounits in Z; [x] are 1+0x+...,2+0x+...,3+0x+..., 4+0x+...5+0x+..., 6 +0x+....
Ex. 6. Give an example of non-zero and non-constant polynomial f(x) so that
f)+ f(x)=0 (x), the zero polynomial.
Sol. Consider the ring Z, [x] of polynomials over the ring Z, ={0,1}. Take f(x)=1+x.
FO+f)=1+x)+A+x)=1+D+1+Dxr=0+0x=0 (x).
EXERCISE 12 (a)

1. If px)=1+x—x? and g(x)=2+x>+x> € z[x] find p(x)+¢q(x) and p(x) g(x).

2. If fx)=2+3x+5x% and g(x)=3+5x+2x> € Zlxl find f(x)+g(x), f(x).8(x).
Also find their degrees.

3. If f(x)=3+4x% and g(x)=2+x>are in Z;[x] find f(x)+g(x), f(x) g(x) and their
degrees.

4. If f(x»)=1+2x and g =5+4x+3x are polynomials in Z[x] prove that

deg (f (x) g(x)) =deg f(x)+degg(x).

Proove left distributive law in R[] where R is a ring.

Find the units in 7[x].

If D is an integral domain describe the units in p[x].

® X A0

If f(x), g(x) are non-zero polynomials in R[x] where R is an integral domain then
prove that f(x) g(x) is also non-zero polynomial.
9. If Fis a field then prove that the set of all polynomials with constant term zero is an

ideal generated by x e F[x].
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10. If f(x)=7+9x+5x> +11x> —2x* and g(x)=3-2x+7x> +8x> are polynomials in Z; [x]
prove that (i) deg {f(x)+ g(x)}=4 and (ii) deg (f(x) g(x))=7 (S. V. U. 05)
11. If f(x)=2+3x+5x% —4x° and g(x)=3+2x—4x> +5x* are polynomials over z[] find

f()+g(x), f(x).g(x), deg (f(x)+g(x)) and deg (f(x).g(x)) (0.U.03)

3 2. 54+2x+5x2 4200, x+5% +4x°:3,5

1. 3+x+x3,2+2x—x2+2x3—x
3. 5442+ 0%, 642430 +4x°; 35 6. £1 11, 5+5x+5x2 —8x3 +5x%:

6+13x+21x% —=10x° —10x* =5x° +41x° —=20x” and 4, 7.
12. 5. THE EVALUATION HOMOMORPHISMS

To study the problem of solving a polynomial equation we use the concept of
homomorphism. In what follows, we study an important homomorphism of f[x] into E
where E is field and F is a subfield of E.

Theorem. Let F be a subfield of the field E and F |x] be the set of all polynomials

in an indeterminate x, over the field F. If o€ E then the mapping ¢ :F [x]>E

defined by ¢ (ay+ayx +...+a,x")=ay +a;0+...+a,o" ¥ ag+ayx +...+a,x" € F [x] is a
homomorphism.

Proof. Let f(x), g(x) € Flxland f(x)=ay+ax+...+a,x", g(x) =by +byx+...+b,x".
Clearly, ¢, mapping is well defined.

(1) f0)+g(x)=co+cpxt..+c,xl’ where ¢ =ag+by,c; =a+by,...c, =a, +b,

and p=max {m,n}.

O, (f () + g(x)) =0 (co +c1x+...+cpxp) = +cloc+...+cpocp

= (ag +by) +(ay + b0+ ...+ (ay +b,)0 = (ag + @00+ ...+ @, ™) + (by + bt + ...+ b0 )

= 0o (f (1) + 0y (8(x)) . (" a;'s,bj's and o are elements of field)

(2) f).g(x)=dy+dx+..+d,x? where

dk = 2 a; b] i.e., dO =a0b0, dl =a0b1 +a1b0,...
i+j=k

0o, (f (%) g(%)) = O (d +dyx + ...+ dyxT) = dy + djou+ ...+ d o

But ¢, (£(x)). 0q(g(x) = (dg + @ 0+ ...+ ap ™) (By + byoi+...+ b, o)

:a0b0+(aob1+a1b0)oc+...+( D aibj)aq = dy +dyo+...+d ol
i+j=q
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S0 (f(). (1) =0 (f (). 05 8(%) .

Hence from (1) and (2) : ¢, : Flx]— E is a homomorphism.

Definition. Let F be a subfield of the field E and F|[yx], the set of all polynomials
over the field F. For o € E, the homomorphism

0y : Flx]l— E is called the Evaluation at o.

Notation. If ¢,:F[x]— E is an evaluation homomorphism at o € E and
f(x)=ay+ax+..+a,x" € Flx] then ¢, (f(x))=ay+ao+..+a,0" is denoted by f(a).

eg. 1. Let F=E=Z,; and ¢,:Z;[x]—>Z; be the evaluation homomorphism
at o € Zy.

0y (x> +3) =0, B3+0x+1x%)=3+0(2)+1(2%) =3+0+4=7=0 (- 7=0(mod 7))

0p(2+3x—x2+2x°) =2+43(0)-0%+2(0*) =2+0-0+0=2

e.g 2. Let f(x)=x e Flx] and a € E.

0o (f (X)) = g () = 0, (0+1x) =0+lar =0 . Sodg (=0

Corollary. Let F be a field, o.e F and F [x] be the set of all polynomials over

the field F. If F' is the set of all constant polynomials in F [x] then ¢, :F —F is
an isomorphism.

Proof. We have F'={a+0x+0x>+..|a € F}.

Let a,b € F and f(x)=a+0x+..., g(x)=b+0x+... be two constant polynomials.

By the definition of ¢ ; 0y, (f(x))=a+00+..=a and ¢, (g(x))=b+0c+..=b

O (f(0) =0y (g(x))=a=b . 0y 1s one - one.

YV a € F there exists f(x)=a+0x+... € Flx] such that ¢, (f(x)=a. .. ¢, is onto.
~ Og : F'— F is an isomorphism.

In fact F'= F and hence ¢, : F'— F is identity mapping.

Definition. (Zero of a Polynomial) Ler F be a subfield of the field E and o € E.

Let ¢, : F[x]— E be an evaluation homomorphism.

For f(x)=ag+ajx+...+a,a" € Flx],if f(0) =0y (f(x) =ag+a0+..+a,a" =0 then
o € E is a zero of the polynomial f(x) or o € E is a solution of f(x)=0 polynomial
equation.

Note. In view of the above definition our elementary problem of all real solutions of
polynomial equation f(x) =0 is equivalent to finding all o € R suchthat ¢, (f(x)) =0 where

0, :[x]— R is the evaluation homomorphism.
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e.g.l. Let 0 cR and Ql[x] be the set of all polynomials over the field Q of rational

numbers. Let f(x) =x2-3x+2. Solving f(x)=0 is equivalent to finding zeros of
f(x)=x*-3x+2. Thatis, finding o € R such that ¢,,(f(x)) = 0, (x> =3x+2)=0.

We have ¢;(f(x) =12 =3()+2=0, ¢,(f(x)=2%=3(2)+2=0.

. Solutions of f(x)=0 in R={1,2}.
e.g. 2. We have R c C, where C is the set of all complex numbers.

Consider f(x)=1+x> € R[x].

For o € R, if ¢, : R[x]— R is an evaluation homomorphism,

we know that ¢, (f(x))=1+0a? =0 forany o € R.

Therefore f(x)=1+x> has no zeros in R.

For a € C,if ¢, : R[x] - C is an evaluation homomorphism,

then ¢, (f(x)=1+0?=0=0a=*i.

Therefore, f(x)=1+x> has two zeros —i,+i in C.

Note. Even though f(x)=1+x> has no zero in R we could find field C containing R

such that f(o) =¢,(f(x))=0 for oo € C.
KERNEL OF EVALUATION HOMONMORPHISM

Definition. Letr F be field and F[x] be the set of all polynomials over F. Consider

the field E containing F. For o € E we have an evaluation homomorphism

0y : Flxl— E defined as ¢y (f (x)) = f(a).Kernel of the evaluation homomorphism ¢,
= Ker ¢ ={f(x) € Flx)|9y, (f(x)) = f(a) =0} where '0' is the zero element in the field E.

From the fundamental theorem of homomorphism we further know that ¢, is an ideal
of F[x] and Flx]/Ker ¢, = ¢y (Flx]).

e.g. Consider the evaluation homomorphism ¢5:Q[x]— R for 5 € R, the set of all

real numbers. The zero elementin R=0.
Consider f(x)=5-x, g(x)=-5x+x>, h(x)=25-10x+x> € Q[x]-
We have ¢s5(f(x))=5-5=0; ¢5(g(x))=-5(5)+5> =0 and ¢s(h(x)) =25-10(5)+5> =0.

o f(x)=5-x, g(x)=—5x+x> and h(x)=25-10x+x> are three elements in Ker ¢5.
| SOLVED PROBLEMS |
Ex. 1. Let Z; ={0,1,2,3,4,5,6} the set of all integers modulo 7. For 5 € Z; if

05 : Z7[x1— Z7 is an evaluation homomorphism find ¢5 [(3 +4x3) 2+ °) 1+32% +x7 )] .
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Sol. Let f(x)=3+4x> =3+0x+4x>, g(x)=2+x> =2+0x+0x% +1x>,

h(x) =140x +3x% +0x> +0x* +0x° +0x° +1x7 .

By homomorphism property : ¢q[f(x) g(x) A(x)] = 0, (f (X)) g, (g(x)) Oy, (A(x)) .

0s(f(x)) =3+0(5)+4(5%) =3+5+4(4) =3+5+2=3

05(g(x) =2+0(5)+0(5%)+1(5°) =2+0+0+6=1

05 (h(x)) =1+0(5) +3(5%) +0(5%) +0(5") +0(5°) +0(5°) +1(5")

=1+0+3(4)+0+0+0+0+5=1+5+5=4.

05 (f(x) g(x) R(x)) =) ) () =5.

Ex. 2. Find the zeros of f(x)=1+x> € Zs[x] in Zs. (N. U. 97)

Sol. We have Z5={0,1,2,3,4}.

We have ¢y(f(x))=1+0% =120, ¢;(f(x) =1+12 =220, 0,(f(x)=1+2%>=5=0,

(])3(]”()6))=1+32 =10=0, (])4(]”()6))=1+42 =17=2#0.

.. Zeros of f(x)=1+x>in Zs={0€ Zs | 0o (f(x))=0}={2,3}

We can also say that f(x)=1+x> is in Ker ¢, and Ker ¢5.

Ex. 3. Let Ql[x] be the set of all polynomials over the field Q, of rational numbers
and R is the set of real numbers. For 0e R if ¢y,:Q[x]—> R is the evaluation
homomorphism then prove that Q is isomorphic with Q[x]/ Ker ¢q.

Sol. Let f(x)=ag+aqx+..+a,x" € Q[x]. Then ¢o(f(x)=ay € Q.

- every f(x) € Q[x] is mapped into a rational number € Q by ¢, .

Thus ¢ (Q[x1)=0. Ker of ¢y ={f(x) € Q[x][9y(f(x) =0}

= the set of all polynomials of Q[x] with constant term '(' = (x).

By fundamental theorem, Q = O [x]/ Ker ¢ .
| EXERCISE 12 (b) |

1. If ¢5:Z;[x]—> Z; is an evaluation homomorphism find ¢5(2+x*), 95(3+4x%) and

052 +x7) 3 +4x?).
2. Find all zeros in Zs of 2x+x? +3x> +x° € Zs[x] .
3. Prove that 1+x? € Q[x] is in the Kernel of ¢, : Q[x] > C.
4. Prove that 1 € Zs is a zero of 4+2x+3x> +x* € Z5[x].

Also prove that (=1+x) (1+4x+4x> +x°) =4+ 2x+3x> +x*.
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5. Find all the zeros of x> +x-6 € Q[x] in R.

6. If f(x),g(x),h(x) € F[x] where F is a field, f(x)=g(x)h(x) and oo € ED F then
prove that f(a)=0< g(o)=0 or h(a) =0.

7. If F[x] is the field of polynomials show that (x) ={ x f(x)| f(x) € F[x] } is the Kernel
of 0p: F[x]— F .

1. 1,5,5 2. 0,4 5. 3,2

12.6. FACTORISATION OF POLYNOMIALS OVER A FIELD

More important applications arise for polynomial rings of the form F [x] where Fis a

field. We now prove a division algorithm for polynomials in F [x]. This division algorithm is
very similar to that of integers .
THEOREM. 1. THE DIVISION ALGORITHM.

Let F be a field. Given two polynomials f(x),g(x)#0 (x) in F [x] there exist

unique polynomials q(x) and r(x) in F [x] such that f(x)=q(x)g(x)+r(x) where
r(x)=0(x) or degr(x)<degg(x). (K. U.05,A.U.07,S8.V.U.01,N. U. 07)

Proof. Consider the set S ={ f(x)=h(x) g(x) | h(x) € F[x] }.

For O (x) € F[x], f(x) -0 (x) g(x)=f(x) eS=>5#0

Let O(x) €. Then by the definition of S, there exists g(x) € F [x] so that
O(x) = f(x) = q(x) g(x) = f(x) = g(x) g(x) + O(x)

= f(x)=¢q(x) g(x)+r(x) where r(x)=0(x). . the theorem is proved.
Let O(x) ¢ S.

Then every polynomial in S is a non-zero polynomial and hence non-negative degree.

Let r(x) € S be polynomial of least degree.

By definition of S, there exists g(x) € F [x] so that

r(x) = f(x)—q(x) g(x) = f(x) = g(x) g(x) +r(x) (D
Let g(x)=ay+ax+..+a,x",a, #0 so that degg(x)=n.

Now we have to prove that deg r(x)<n.

If possible, suppose that deg r(x)=n.

Let r(x)=cy+cpx+...+c,x™, ¢, #0 so that m>pn and deg r(x)=m
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1 m—n+1 1 m—1 m

XM e (x) = epyay tagx™ " + ¢ pay ey x Fot Cpay a1 X"+ x

Now Cply

sor(x) - cma,zlxm_ng(x) = (cm_l)cm_1 +otcg)— (cmarjlan_lxm_l +..+ cma,zlaoxm_n) ...(2)

sor(x) = cma,zlxm_ng(x) +a(x) where o(x)=(c,_; —cmarjlan_l)xm_l Fotonto

So, deg ou(x) £m—1= deg au(x) <deg r (x)
From (1) and (2) : ou(x) = f(x)—g(x) {q(x) + cmarjlxm_"}

= ox) = f(x)—g(x) B(x) where B(x) = g(x)+c,a, x"" € F[x].

= o(x) € S ( From the definition of S)

Now we have o(x), 7(x) € S and dega (x) <degr (x)

This is a contradiction since r (x) is the polynomial of least degree in S.

. our supposition is wrong. sodegr(x)<n e, degr(x)<deg g(x)

Hence there exist g(x), r(x) € F [x]

so that f(x)=¢g(x)g(x)+ r(x) where r(x)=0(x) or degr(x)<degg(x).

Uniqueness of g(x) and r(x) :

If possible, suppose that f(x) =¢q'(x)g(x)+ r'(x) where

r'(x)=0(x) or deg r'(x)<degg(x).

Then g(x) g(x)+r(x) =q'()g(x) +r'(x) = (g(x) —q'(x))g (x) = r'(x) = r(x).

If g(x)—q'(x) # O(x) then deg (q(x)—q'(x)g(x) = deg (g(x) - q'(x)) +deg g(x)

= deg (r'(x)—r(x)) 2 deg g (x) .

This is a contradiction because deg r(x) <deg g(x) and degr'(x) <deg g(x).

s q(x)—q'(x)=0(x)and r'(x)—r(x) = O(x) which implies that ¢'(x) = g(x)

and r'(x)=r(x). Hence g(x), r(x) € F[x] are unique.

Note. 1. The polynomials g(x) and r(x) of the above theorem are called the quotient
and the remainder.

2. In the above theorem if r(x) = O(x) then we say that g(x) divides f(x) or g(x) is
a factor of f(x)in F[x]. We write g(x)| f(x).

Corollary (The Remainder Theorem.) Let F be a field, o. € F and f (x)€ F [x].
Then f(o) is the remainder in the division of f(x)by (x—a).
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Proof. Let deg f(x)=n and take g(x)=x-a. By the above theorem there exist
gx),r(x) 1n F[x] such that f(x)=(x-a)gx)+r(x) where r(x)=0(x) or
degr(x) <deg (x—o) .

But deg(x—o)=1 and degr(x)<deg(x—o) = degr(x)<l=r(x)is a constant
polynomial = r (say). s f()=(x—a)g(x)+r where r € F .

By evaluation homomorphism, ¢, : F [x] > F . We have f(o)=r = the remainder.

Hence the remainder, obtained by dividing the polynomial f(x) with (x—o) is f (o).

Definition. (Divisibility or Factor of a Polynomial)

If f(x),g(x) € F[x] then we say that g(x) divides f(x) in F[x] if there exists
q(x) € F[x] such that f(x)=g(x)q(x). We also say that g(x) and q(x) are factors of
f(x) in F[x].

Notation. If g(x) divides f(x) then we write g(x)|f(x).

Otherwise we write g(x) | f(x)

Imp. g(x) divides f(x) or g(x) is a factor of f(x)

& f(x)=g(x) q(x) where g(x) € F[x].

Theorem. 2. (Factor Theorem). An element o € F where F is a field, is a

zero of f(x)€ F [x] if and only if (x—0) is a factor of f(x) in F [x]. (0. U. 12)

Proof. Let oo € F be a zero of f(x). Then f(a)=0.

Let g(x)=x—o so that degg(x)=1.

By division algorithm, there exist g(x),r(x) € F [x] such that f(x) = g(x) g(x)+r(x)
ie. f(x)=(x-o)q(x)+r(x)where r(x)=0(x) or degr(x)<deg (x—a)

Since deg (x—a) =1, degr(x) <deg (x—a) = degr(x)<1

= r(x) is a constant polynomial = r(x)=r € F .

Using evaluation homomorphism, ¢ : F [x] > F ; for f(x) € F [x]

we have ¢y (f(0) =0, (x—a)g(x)+r) = f(a)=0q)+r= f(a)=r=r=0.
< r(x)=0(x) and hence f(x)=(x—a)gq(x).

o (x—a) is a factor of f(x) in F[x]

Conversely, let (x—o) be a factor of f(x) in F[x].

.. there exists g(x) € F [x] such that f(x)=(x—a)g(x).
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By evaluation homomorphism ¢, : F [x] > F ;
O, (f (X)) =g, (x—a)g(x)) = f(0) =0 (x—) . 0y (q(x)) = f(a) =0 g(a) = f(o)=0.
o €F isazeroof f(x) e F[x].

Note. (x—0o) is a factor of f(x)< f(x)=(x—)g(x) where degq (x)=deg f(x)-1.

Corollary. If f(x)e F [x] is a non-zero polynomial of degree n then f(x) can
have atmost n zeros in F.

Proof. We suppose that f(x) has atleast one zero o € F .
By factor theorem, f(x)=(x-04) ¢ (x) where degq(x)=deg f(x)-1=n-1.
0, € F is azero of g;(x)= ¢q;(x) =(x—0y) g (x)
where degg,(x) =degq(x)-1=n-2.

o f()=(x=0y) (x=0y) g (x) Where deg gy(x)=n-2.
Continuing this process, we have f(x)=(x—0oy) (x—0y)...(x—0,.) g, (x)
where degg,(x)=n—-r2=0 and g,(x) has no zero in F.

IfBeF andP=0,,i=12,..r then fF(B)=P-0y) B-0y)..B-0,)q,.B)#0 as Fis
a field having no zero divisors.

. 04,0y, ..., 0, (r=n) are all the zeros of f(x)in F.

Working method for finding ¢(x) and r(x) in the Division algorithm
f(x)=g(x)g(x)+r(x).

Using long division of the high school we can obtain quotient g(x) and remainder r(x) .

The technique of synthetic division can be used to find factors or zeros of f(x) € F[x].
SOLVED PROBLEMS

Ex. 1. If f(x)=x>+x+4 € Z,,[x] find the remainder when f(x) is divided by
(x=3).
Sol. When f(x) is divided by (x—a) the remainder = f(o).

Remainder f(3)=32+3+4=9+3+4=16=5. (*v 16=5(mod11))

Ex. 2. If f(x)=x%+3x>+4x*>-3x+2 and g(x)=x*>+2x-3 are polynomials in

Z4[x] find q(x) and r(x) in f(x)=g(x)q(x)+r(x).

Sol. £(x)=x%+3x" +0x* +0x> +4x% —3x+2; g(x) =% +2x-3.
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x4+x3+x2+x—2

x2+2x—3 x6+3x5+0x4+0x3+4x2—3x+2

X0 +2x0 =34

(3=2)x° +(0+3)x* +0x°
x5 + 3x4 + Ox3

¥ +2x* -3x°

¥ 30 + 42

Xt + 253 —3x?

x> +0x% —3x (- 4+3=0(mod7))

¥ +2x7 = 3x

—2x% +0x+2

2x% —4x+6
4dx—4

g =xt+ 3 +x% +x-2; r(x)=4x—4 50 that deg r(x)=1<deg g(x)=2.
Ex. 3. Prove that the factors of 1+ x2 in Z,[x] are 1+x and 1+x.
Sol. To prove that p(x) and ¢(x) are factors of f(x) we have to show that
fx)=px)q(x).
(I+x)d+x)=1.D)+A.1+L.D)x+(1.0+1.1+0.D x2
=14+ 204 1% =1+ 0x+ x> =1+x* (7 2=0(mod 2))
Ex. 4. Find the factors of y*+4 in Zs[x].
Sol. Let f(x)=x*+4; Z5={0,1,2,3,4}.
We observe that f(1)=1+4=0, f(2)=4*+4=0, f(3)=0and f(4)=0.
o x—1,x-2,x-3,x—4 are factors of f(x).
deg f(x)=4 and deg { (x—1) (x=2) (x=3) (x—4) }
=deg (x—1)+deg (x—2)+deg (x—3)+deg (x—4)=4 (- Zs is field)
Leading coefficient in f(x)=1 and

leading coefficient in (x—1) (x—2) (x—3) (x—4)=1.

Laxtrd= (-1 (x-2) (x-3) (- 4) -
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Ex. 5. Solve the equation x> +1=0 in the field Zs.

Sol. Let f(x)=x>+1 € Zs[x]. Solving f(x)=0 in Zs is equivalent to finding zeros of
f(x) in Zs.

We have £(0)=1#0, f(1)=2#0, f(2)=22+1=5=0, f3)=3>+1=10=0,

f(4)=4>+1=2#0. -~ 2,3 € Zs are the solutions of 2 y1-0 in Zs.

[12. 7. IRREDUCIBLE POLYNOMIALS |
Definition. A non constant polynomial p(x) in F[x] is said to be irreducible
over the field F if whenever p(x)= f(x) g(x) with f(x), g(x) € F[x] then one of f(x)

or g(x) has zero degree. If p(x) is irreducible over F then p(x) is called an irreducible

polynomial in F [x]. If p(x) is not irreducible over F then we say that p(x) is reducible
over F.
Imp. p(x) € F[x] is an irreducible polynomial & p(x) = f(x) g(x)

for f(x), g(x) € F[x], then one of f(x) or g(x) is a constant polynomial.
Note. A non constant polynomial p(x) € F[x] is an irreducible polynomial < p(x)
cannot be expressed as the product f(x) g(x) with f(x), g(x) € F [x] so that both of lower

degree than the degree of f(x).
Remark. Irreducibility of a polynomial depends on the field.
Thatis, a polynomial f(x) may be irreducible over the field F, but may not be irreducible

over the field E containing F.

e.g.l. f(x)=1+x> isirreducible over the field of real numbers R. But £(x)=1+x> is
not irreducible over the field of complex numbers C, as f(x) = x> +1= (x+i) (x—i) where
2-_1and i eC.

. x+i,x—i are non-constant factors in C[x] of x2+1 e R [x]-

e.g2. f(x)= x% =2 is irreducible over the field of rational numbers Q.

But f(x)= x2 —2 is not irreducible over the field of real numbers R,

as f(x)=x%-2=(x++2) (x—+2) where 2 eR.

", x+\/§, x—+/2 are non-constant factors of x2 -2 e Q[x] in R[x].

Note. We know that every non-zero constant polynomial in F [x] is a non-zero element
of the field F. But every non-zero element in F is a unit having multiplicative inverse.

So, non-zero constant polynomials in F [x] are units.

Hence p(x) = f(x) g(x) is irreducible polynomial in F[x]= f(x) or g(x) isaunitin F.

= p(x) =q; g(x) where q; #0 € F is a unit.
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Theorem. 1. If f(x)e F [x] and deg f(x)=2 or 3 then f(x) is reducible over
F if and only if f(x) has a zero in F. (0.U. 12)

Proof. Let f(x) be reducible over F.

There exist g(x), h(x) € F [x] such that f(x)=g(x)h(x) where the degree of g(x)
and h(x) are both less than the degree of f(x).

If deg f(x)=2 , then degg(x)=1, degh(x)=1

If deg f(x)=3, then degg(x)=2, degh(x)=1 or degg(x)=1 or degh(x)=2.

In either case, one of g(x) or h(x) is of degree 1.

Let degh(x)=1 and h(x)=x-a.

L f)=gx)(x—a)= f(o)=g()0=0. - f(x) has a zero in F.

Conversely, let f(x) has a zero in F.

Let f(a)=0 for oo € F .

. x—ad is a factor of f(x) and hence f(x)=(x—a) g(x) so that degg(x)=1 or 2.

.. f(x) is reducible over F.

Note. We can test the irreducibility of f(x) € F [x] by finding zeros of f(x) in F.

Consider f(x)=x>+2x+3 € Zs [x]. We have Z5={0,1,2,3,4}.

For a € Zs if f(a)=0 then o isazeroof f(x) and hence (x—o) is a factor of f(x).

We have f(0)=3; fU)=P+2)+3=2; f(2)=2>+2(2)+3=3+4+3=0,
FB) =3 +23)+3=2+143=1; f(4) =4 +24)+3=4+3+3=0.

o 2,4 € Zs are zeros of f(x)= x—2,x—4 are factors of f(x)

= f(x)=(x=-2)(x—4)q(x) where g(x)e F [x]

By long division we can find that g(x)=x+1. -~ f(x) is reducible over Zs .

Theorem (without proof). f(x)€ Z[x] can be factored as the product of two
polynomials of lower degree r and s in Q [x] if and only if f(x) can be factored as

the product of two polynomials of the same degree r and s in Z [x].

Theorem.2. If f(x)=ag+ajx+..+a,x" € Z[x] with ay#0 and if f(x) has a

zero in Q then f(x) has a zero = m in Z such that m|a,.

Proof. Let o € Q be a zero of f(x).
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s (x—a) € Q[x] is a factor of degree = 1 of f(x).
By the above theorem : f(x) must have a factor of degree 1 in Z [x].

Let m € Z be the zero in f(x) so that (x—m) is a factor of degree 1 in Z [x].

n f)=(x—m) (@, X"+t by) = apx" + ...+ (—m)by

o (=m)by =ayg = m (-by) =ay where m,ay,by €Z. .. m|aqy.

The Eisenstein Criterion : Let p € Z be a prime and

f(x)=ap+ayx+..+a,x" € Z[x]. If pla,, plag.play...pla, and p?a,

then f(x) is irreducible over Q, the set of all rational numbers.

e.g. Consider f(x)=x>-2 € Z[x]. we have ay=-2,a4,=0,a, =1.

Take p=2 which is a prime. 211=2)ay,2|10=2]q, 2|2=2]|q;.
p=4and 4]-2=4]q.

By Eisenstein criterion £(x)= x> -2 is irreducible over Q.

Note.The conditions p | a,, p|ay, plaj,.... pla,; and p? | q,can also be stated as :

a, £0(mod p), a; =0 (mod p) for j<n and gy %0 (mod p?).
| SOLVED PROBLEMS |

Ex. 1. Prove that f(x)=x"+2x+2 € Q[x] is irreducible over Q.

Sol.  f£(x)=2+2x+0x> +0x> +1x* so that ay=2,a; =2,a,=0,a3=0,a, =1

Consider p=2 € Z which is a prime.

We have 2 |ay =12]ay=2,2|a;=2,2]a,=0,2]a3 =0 and 2% |4y =2.

By Eisenstein Criterion, f(x) is irreducible over Q.

Ex. 2. Prove that f(x)=25x"—9x*+3x* —12 € Z[x] is irreducible over Q.

Sol.  £(x)=—12+0x+3x> +0x> —=9x* +25%°

so that ag =-12,a;=0,a, =3,a3 =0, a4 =-9,a5=25.

Consider p =3 € Z which is a prime.

We have 3}as5=253|ay=-12,3|a;=0,3|ay, =3,3|a3 =0,3|a, =-9.

Also 32 | ay =12 . By Eisentein criterion f(x) is irreducible over Q.

Ex. 3. If f(x)=8x+6x>—9x+24 verify whether f(x) satisfies Eisenstein criterion
for irreducibility.

SOI. Here ag = 24, a = —9, ay = 6, asz = 8.
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p=2 issuch that 2|a3,2]ay,2 ) a; 2|ay and 2% |q,.
p=3 is such that 3fas,3|ag.3|q.3|a, and 32 | q.
~. p =2 does not satisfy Eisenstein criterion while p =3 satisfies Eisentein criterion.
Ex. 4. Prove that x> +x+4 € Z;,[x] is irreducible over Z;;.
Sol. Z;,={0,1,2,..,10}. Let f(x)=x>+x+4-
fO)=4=20,f1)=6=0, f(2)=10#0, f3)=5#0, f(4)=2=0, f(5)=1#0,
F(6)=2#0, f(T)=5#0, f(8)=10%0, f(9)=6%0 and f(10)=4#0.
. x—0 where a=0,1,...,10 is not a factor of f(x). Since deg f(x)=2,

it should have two linear factors (factors of first degree) for reducibility.

-~ f(x) is irreducible over Z;; .
Ex. 5. Prove that f(x)=x"-22x> +1 € Z[x] is irreducible over Q.

Sol. It f(x)=ay+ax+ a2x2 + a3x3 + a4x4 then ay =1.
ay =1 has two factors —1 and 1 in Z.

f(D)=1-22+1=-20#0,f(1)=1-22+1=-20#0. - f(x) has no linear factor.

Let x* —22x? +1= (x> +ax+b) (x> +cx+d) in Z[x].

Equating the corresponding coefficients,

a+c=0 ...(1); b+d+ac=-22 (@), ad+bc=0 .. (3)
and pg=1 ..(#4) where a,b,c,d € Z .

A=>bd=1=b=d=1o0r p=g=-1.

b=d=1 and (2) result =2+ac=-22=ac=-24.

b=d=-1 and (2) result = -2+ac=-22=ac=-20.
H=a+c=0=a=-c.

ac=-24 and a=-c=c? =24 and ac=-20and a=-c=c>=20.

But ¢? =24 or ¢? =20 are impossible in Z.

- f(x) has no factors of 2nd degree. Hence f(x) is irreducible in Q.

| 12. 8. IDEAL STRUCTUREIN F [x]

If F[x] is the set of all polynomials over a field F then F [x] is an integral domain.

So, {O(x)} is atrivial ideal and F [x] itself is an improper ideal of F [x].
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If R is a commutative ring with unity and a € R, We learnt in the earlier chapter, that
the set Ra={ra|r € R} of all multiples of 'a' is the principal ideal =({a), generated by 'a'.
Since F [x] is an integral domain, we can think of its principal ideals other than the
zero trivial ideal {O(x)}=(0) generated by zero polynomial and the improper ideal

= F [x]=(1) generated by the unity polynomial.

Theorem 1. If F[x] is the set of all polynomials over a field F then every ideal

in F[x] is a principal ideal. (or) F [x] is a principal ideal ring. (0. U. 05, S. V. U. 04)

Proof. Let U [x] be an ideal of F [x].

Let U [x]={0O (x)}, the trivial ideal.

- U[x]1=(0(x)) is the principal ideal generated by the zero polynomial.

Let U[x]#{O(x)} and g(x) € U [x] be a constant polynomial.

Then g(x) € F and g(x) # O(x) and hence a unit of F.

. U [x] = F [x]=(1), the principal ideal.

Let deg g(x)>1 and be a polyomial of least degree.

Consider any element f(x) € U [x]. Then f(x), g(x) € F [x].

By using Division Algorithm; there exist unique g¢(x),r(x) € F[x] such that
f(x)=g(x) qg(x)+ r(x) where deg r(x)<deg g(x).

Since U [x] is anideal, g(x) € U [x], g(x) € F [x] = g(x)q(x) € U [x].

Also f(x) € Ulxl, glx)q(x) € Ulx] = f(x)-g(x)q(x) € U[x].

v r(x) e Ulx].

Since g(x) is a polynomial of least degree in U [x]; deg r(x) <deg g(x)=r (x)=0 (x).

Thus f(x)=g(x)q(x) V f(x) € U [x].

U [x]=(g(x)), the principal ideal generated by g(x).

Hence every ideal U [x] in F [x] is a principal ideal.

Note. 1. Let g(x)=0+1lx=x € F[x] and f(x)=ayx+ax+..+a,x" € F[x].

Then g(x)f(x) = x f(x) = agx +a;x> +...+ a,x"*! having zero constant term.

Therefore (x)={x f(x)| f(x) € F[x]} is the set of all polynomials in F [x] having
Zero constant term.

Hence (x)={x f(x)| f(x) € F[x]} the principal ideal generated by x € F [x], is the

set of all polynomials in F [x] having zero constant term.
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2. From Ex. 3 of Art. 4.5 we observe that () = the set of all polynomials of F [x] with

zero constant term = Ker of ¢, where ¢y : F [x] > F 1is the evaluation homomorphism.

By fundamental theorem of homomorphism, F = F [x]/Ker ¢ .

Definition. An integral domain D is a principal ideal domain (P.I.D.) if every
ideal in D is a principal ideal.

Definition. (Maximal ideal) A maximal ideal M [x] of the field of polynomials
F[x] is an ideal different from F [x] such that there is no proper ideal U [x] of F [x]
properly containing M [x].

Definition. (Prime ideal) An ideal U [x]# F [x] of F[x] is said to be prime ideal
if ¥V f(x),g(x) € Flx] and f(x)g(x) eU[x] = f(x) €eU[x] or g(x) €U [x].

We also observe that every maximal ideal of F [x] is a prime ideal.

Theorem. 2. An ideal (p(x))#O (x) generated by p(x) € F[x] is maximal if

and only if p(x) is irreducible over F.

Proof. Let (p(x))#O(x) be a maximal ideal.

By the definition of maximal ideal, (p(x)) # F [x].

- {p(x))#(1) and hence p(x) is nota constant polynomial i.e. p(x) ¢ F .

If possible, suppose that there exist f(x), g(x) € F [x] so that p(x)= f(x) g(x)
and both of lower degree than degree of p(x).

(p(x)) is maximal ideal = ( p(x)) is prime ideal.

o p() = f(0) g(x) €(p(x))= f(x) €(px))or g(x) €(p(x))

= p)| f(x) or p(x)|g(x).

p(x)| f(x)= p(x) is a factor of f(x)= deg p(x)<deg f(x).

p(x)| g(x) = p(x) is a factor of g(x) = deg p(x) <deg g(x).
This is a contradiction. . Our supposition is wrong.

.. p(x) isirreducible over F.

Conversely, Let p(x) be irreducible over F.

If possible, suppose that there exists an ideal U [x] such that (p(x)) cU [x] C F [x]
Since every ideal of F [x] is a principal ideal, U [x] = < g(x)> for some g(x) € U [x].

(p(x) U [x]=(g(x)) = p(x) €(g(x)) = p(x) = g(x) g(x) for some g(x)€ F [x].
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Since p(x) is irreducible over F, either deg g(x) =0 or deg q(x)=0.

deg g(x)=0=> g(x) € F andisaunitin F [x] = (g(x))=U [x]=F [x].

deg g(x) =0= ¢g(x) = constant polynomial. = g(x)=q; where gy F and q; #0.
Then p(x) = g(x) g(x) = p(x) = g(x). g = g(x) = (") p(x)

w8 (D€ (p(x)= (g(x))=U [x]=F [x].
- {p(x))cU [x]C F [x] isimpossible.

- {p(x)) is a maximal ideal.

Note. If R is a commutative ring with unity and U is a maximal ideal of R, in the earlier
chapter, we learnt that the quotient ring r/y 1is a field.

eg. 1. p(x)= 2-2ez [x] is irreducible over Q. From the above theorem, if p(x) is

irreducible over Q and p(x) € Q[x] then (p(x)) is a maximal ideal of QO [x].

Therefore Q[x]/(p(x)) is a field.
e.g. 2. p(x)=x>+1 € R[x] is irreducible over R.

Also p(x)= x2 +1 is a maximal ideal of R [x] . R[x]/{p(x)) is a field.

Imp. Note. If (p(x)) in F[x] is a maximal ideal then the elements of the field
F[x]/(p(x)) are cosets of the form f(x)+(p(x)) for f(x) € F[x].
Zero element in F [x]/{p(x)) is (p(x)).
| SOLVED PROBLEMS |
Ex. 1. Is Q[x]//<x2 Z5x+6) a field ? Explain.

Sol. f(x)= 2 —5x+6= (x=2) (x—3) where x—2,x-3 are linear factors in Q [x].
.. f(x) is not irreducible over Q and hence < f (x)> is not a maximal ideal of Q[x].

Hence Q[x]/(f(x)) is not a field.

Ex. 2. If Qlx] is the field of polynomials then prove 2 _o is irreducible over Q
Obtain the elements of the field Q [x]/<x2 _2).

Sol. We know that ,2 _ is irreducible over Q. Let f(x) € Q[x].
By division algorithm, #(x)= (x> —2) g(x) + r(x) where r(x)=0(x) or
deg r(x) < deg(x® —2) =2 =5 r(x) is of first degree.

. r(x)=ay+ax where ag,q; €0.

~. Elements of @ [x]/(x2-2)or Q[x]/ U where yj —(,2_5) are of the form :
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F()+U = fF)+(x2=2) V f(x) € 0[x] and zero elementis (2 _5) _
f(x)+<x2—2>=(x2—2) q(x)+ag +a1x+<x2—2> =qy +a1x+<x2—2>
(- (=2 (o) € (¥?-2))

= (ay +<x2—2>)+a1 (x+<x2—2>)
(" (a+b)+U =(a+U)+(B+U) and r (a+U)=ra+U)

=ay+at where t=x+<x2—2>=x+U

Also 2 -2=(x+U)? -2=(x+U) (x+U)-2 =x*+U-2=(x*-2)+U =U .
(v x2-2elx?-2))

= zero element of Q[x]/ U .

12.9. UNIQUENESS OF FACTORISATION IN F [x]

In the integral domain Z of integers, if p,a,b € Z and pis a prime then we know that

plab= pla or p|b. Theset F[x] of all polynomials over the field is an integral domain.
Anirreducible polynomial p(x) € F [x] may be considered as analogous to the prime element

pEe’z.

Theorem.1. Let p(x) be an irreducible polynomial in F[x]. For
r(x),s(x) € F [x] if p(x)|r(x)s(x) then either p(x)|r(x) or p(x)|s(x).
Proof. p (x) is irreducible over F = the principal ideal (p(x))=O (x) of F[x] is

maximal and (p(x)) is maximal ideal = (p(x)) is prime ideal.
p(x) divides r (x) s (x) = r (x) s (x) € (p(x)) = r(x) € (p(x)) or s(x) € (p(x)).
But 7 (x) € (p(x))= p ()| r (x) and s (x) € (p(x))= p (x)]s (x).
-, either p (x)|r (x) or p(x)|s(x).
Note. By mathematical induction we can prove that p (x)[7(x) ry(x) ... 1, (x)

=p@|ri(x) or p(X)|ry(x) or....or p(x)|r,(x), when p(x) is irreducible over F

and P (X), rl(x)’ sy ()C) EF [)C] .

Theorem. 2. Let F be a field and f(x)€ F [x] be a non-constant polynomial.
Then f(x) can be written as a product of irreducible polynomials in F [x] in a

unique way except for order and for unit factors in F.

Proof. Let f(x) € F [x] be a non-constant polynomial.
If f(x) is reducible, then f(x)= p;(x)h(x) where p,(x), h(x) € F [x]
with degree of both p;(x), i(x) less than the deg f(x).

If both p;(x) and h(x) are irreducible then our aim is achieved.
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If not, at least one of them, say, h(x) can be written as h(x) = p,(x).v(x) where
po(x), v(x) € F[x] with degree of both less than the degree of h(x).

Continuing the process, by induction, we arrive at a factorisation,

F(x) = p(x) py(x) ... p,,(x) where each p;(x),i=1,2,..., m is irreducible.

If possible, suppose that f(x) = g;(x)g,(x) ... g, (x) be another factorisation of f(x).

2o pr(X) po () e Py (X)) = 1 (0) o (X) ... g, () .. (D

P | fxX)= p(0)] q1(%)gy(x) ... g, (x) = p1(x)| g;(x) for some i=1,2,...,n.

Assume that p(x)|q;(x) .

Since ¢;(x) is irreducible we have ¢, (x) =u; p;(x) where u; #0 € F is a unit.

Substituting u; p;(x) for ¢;(x) in (1) and cancelling p,;(x) we get

P2(X)p3(X) ...y (X) =1y G2 (X)q3(%) ... ¢, (X) - (2)

Using similar argument we have ¢, (x) =u, p,(x) where u, #0 € F 1is a unit.

Substituting u, p,(x) in (2) and cancelling p,(x) we get

P3(X) e Py (%) =uguty 3(X) ... g (X)

Continuing, we arrive at 1=y uy ...u,, Gpyaq (%) ... @, (x) if m<n.

Clearly, the above equation is impossible unless m =n .

- We arrive at 1=u uy ...u,, .

Hence the irreducible factors p;(x) and ¢;(x) must be same except possibly for order
and units in F.
Note. We know that from Note under Theorem (1) of Art. 4.7, the factorisation of

f(x)= B +2x43 € Zs[x] is (x+1) (x=2) (x—4). These irreducible factors must be same

except possibly for order and units in F’ by the above theorem.
It means that (x+1) (x=2) (x—=4)= (2) 3) (x+1) (x=2) (x—4) (~-6=1(mod 5))
=Bx+3)(2x-4) (x—4).
| EXERCISE 12 (¢ )|
1. If f(x)= x> +5x% +4x+50 and g(x)=x-3 are polynomials in Z[x] find g(x), the

quotient and r (x) , the remainder of the Division algorithm.
2. (@If fx)=x*-3x"+2x% +4x—1 and g(x) = x> —2x+3 are polynomials in Zs[x] find
q(x), the quotient and r(x) , the remainder of the Division algorithm.

(b) If f(x)=x*+5x" =3x*;g(x) =5x* —=x+2 in Z,,[x] then find ¢ (x),r (x) of division
algorithm. (K. U. 07)

3. If fx)=3x" +5:°+2i° —ix* + 1+i)x> —2-i)x? +2x-3i and g(x)=x-2i are poly

nomials in C[x] find g(x) and r(x) of Division algorithm.
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4. Find the factors of x* +3x> +2x+4 € Zs [x].

5. Provethat x> -3 ¢ 7 [x] isirreducible over the field of rational numbers Q and reducible
over the field of real numbers R.

6. Prove that 14,2 is irreducible over Z, the set of integers but it is reducible over
Z,={0,1}.

7.  Prove that (i) x* +3x+2 is irreducible over Zs. (ii) x*>+x+2 is irreducible over Z; .
A.U. 07)

8. Using Eisenstein criterion prove that 2-2ez [x] is irreducible over Q.

9. Prove that x> +3x*>-8 € Z [x] is irreducible over Q.

10. Prove that x> -9 is reducible over Z;; .

11. Is f(x)=2x> + x> +2x+2 € Zs [x] anirreducible polynomial in Zs [x]? why ?
12. Find all irreducible polynomials of degree 2'in Z, [x] .

13. Is o [x1/{x* —6x+6) afield ? Explain.

14. Prove that x2 +1 is irreducible over the field Zy, . Also prove that 7, [x] / < 2+ 1> isa

field having 121 elements.

ANSWERS

1. x? +8x+28:134 2. x*—x-3: x+3
3. 3x0 +(5+60)x° +(12i —12)x* = (24 +250)x> + (51=47i)x? + (92 +103i)x — 204 +184i ;

—411i-368 . 4. (x-1)>(x+1)
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Problems for Practicals

10.
11.

12.

13.

14.
15.

16.

17.

18.

Construct a field of two elements.

Give an example of a division ring which is not a field.

Define the characteristic of a ring. Prove that the characteristic of an integral domain
(D,+, ) is zero or a positive integer according as the order of any non zero element of

R regarded as a member of the group (D,+).

Define Boolean ring. Show that every Boolean ring is commutative.

Define Integral Domain and Field. Prove that every field is an integral domain.

If D is an integral domain then prove that the set {n.1:ne€ Z} where 'l' is the unity
element in D, is a subdomain of D.

If the characteristic of a commutative ring R is 2 then prove that

()c+y)2 =x2+y2 =()c—y)2 Vx,yeR.

Prove that the characteristic of an integral domain is either zero or prime.

Do the following sets form integral domain with respect to ordinary addition and
multiplication ?

(@) D={a\2 |ae Q} (D) the set of even integers.

Prove that the set of Gaussian integers is an integral domain.

Prove that Z, ={0,12,...... p—1} where p is a prime, is a field.

Prove that Zs ={0,1,2,3,4}is a commutative ring with unity under addition and
multiplication modulo5. Prove that it has no zero divisors and hence an integral domain.

Prove that in the ring Z, ={0,1,2,......,n—1} the zero divisors are precisely the elements
that are not relatively prime to n.

Prove that the ring Z,, ={0,1,2,......,n—1}is a field if and only if # is a prime.

In the ring of 2x2 matrices over the integers Z:write (i) Zero element (i) Unity
element and (iii) give an example to show that it has zero divisors.

In the ring of 2x2 matrices over the integers Z give examples of (i) left ideal which is
not a right ideal and (i7) right ideal which is not a left ideal.

Define idemptent element in a ring. If R is a non - zero ring so that 4> =q V ae R

prove that characteristic of R=2.

Define idempotent element in a ring. Show that a field contains exactly two idempotent
elements.
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19. Define the concept of evaluation homomorphism. Prove that the evaluation
homomorphism ¢, maps F [x] isomorphically to F by identity map.

20. Evaluate the following by using evaluation homomorphism ¢, : Z7[x] — Z; .
(1) ¢3:Q2+3x—x"+2x°) (i) ¢s5:(2+x>) A+3x% +x7)

21. If Fis a subfield of a field E and f(x)e F(x) then prove that the set of all zeros of
f(x)in E is an ideal of E.

22. State division algorithm in F[x].Provethat qe F isazeroof f(x)e F [x]iff (x—o)is

a factor of f(x).
23. If F()=x*-3x3+2x% +4x-1, ¢ (¥ =x? —2x+3€ Zs[x] find q(x) and r (x) of the

division algorithm.

2

24. Define irreducible polynomial in F [x]. Prove x“ +x+4 isirreducible over the field of

integers modulo 11.
25. Is the concept of irreducibility global ? Give an example and explain.

26. If f(x) is a polynomial of degree 2 or 3 prove that f(x)is reducible over the field
F iff it has a zero in F.

27. Show that f(x)=x*-2x?+8x+1 is irreducible over Q.

28. State Eisenstein criterion for irreducibility. Using it prove that x> —2 is irreducible
over Q.

29. Obtain the linear factors of x* +4¢ Zs [x] -

30. Find irreducible polynomials of deg 2 in Z,[x]and Z;[x].

31. Show that f(x)=2x>+x%+2x+2 has no zeros in Zs .

32. Using Eisentein criterion prove that X +3x2-8eZ [x] is irreducible over Q.

33. Using division algorithm obtain the factors of x 43 +2x+de Zs[x] in Zs.

34. Prove that a ring has zero divisors if and only if cancellation hold in the ring.

35. Show that Z[v/2]={m+nv2|m,ne Z}is an integral domain under addition and
multiplication of numbers.

36. If R|,R,,......,R, are rings then prove that R;xR,X....xR, ={(f,7r,....7;,)/ 1; € R;}
form a ring w.r.t. component wise addition and multiplication.

37. R=2ZxZ is what type of ring w.r.t. addition and multiplications by components ?

38. Compute the products in the given ring R when - a is additive inverse of a in R.
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() (12)(16) in Zy, (i) (16)(3) in Z3, (iii) (4)in Z;5
(ZV) (20) (_8) in 226 (V) (2, 3) (3, 5) in ZS X 29 (Vl) (_3, 5) (2, —4) Z4 X le
39. Give example of a ring with unity in which unit element is same as Zero element.

40. Define an Idempotent element and prove that product of any two idempotent elements
is again idempotent element in a commutative ring. Find all idempotent elements in

41. Define Boolean ring and prove that every Boolean ring is commutative.

42. (i) If S is a non empty set containing n elements. Prove that P (S) forms finite Boolean
ring w.r.t. '+ and "' defined as A+B=(AnB)-(AUB), A.B=ANBVYA,BeP(S)
What is order of P(S). (ii) Find addition and multiplication tables when S ={a,b} .

43. Consider the system (S,+,) such that (i) (S,+)is a group.
(i) (S, is a group where S is set of all elements of S except additive identity of S.

(iii) a(+c)=ab+ac and (a+b)c=ac+bc ¥V a,b,ce Sthen show that S is a division ring.

44. If me Z* prove that <Zm,+m,-m> is commutative ring with unity and prove that it is an
integral domain if m is prime.

45. Prove that {a+b+/2/a,be Z} with respect to usual addition and multiplication froms an

integral domain.

46. If {ae Z" /a<m,(a,m)# 1} are zero divisors in Z,, and then prove that Z,, has no zero

divisors when m is prime.

47. Solve the equation (i) K2 =5x+6=0 (i) ¥ =2x*-3x=0 in Zi»

48. Show that the set Q of all real quaternions forms a strictly skew field w.r.t. addition
and multiplication of quaternions.

49. Give an example of a field F (by verifying field axioms) such that Q c Fc R when
Q, R are rational, real fields.

50. Define unit in an integral Domain. Find all units in the Domain of Gaussian Integers.
51. Find the number of units in <Zm,+n,-n> when , ¢ z+ and hence find all units of Zj,
52. Find the order of the matrix ring M, (Z,) and also find all units of it.

53. If (R,+,) is an integral domain and U is collection of all units in R, prove that (U,s) is
a group.
54. If p is prime show that (¢ +5)? =a? +b? in Z,.

55. If R is ring with unity, prove that characteristic of R is either O or n according as the
order of unit element in (R,+) is either O or n respectively.
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56.
57.

58.

59.

60.

61.
62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

Prove that (F,+q,*¢) is a field and find is characteristic when F={0,2,4,6,8)}
Find characteristic of the following rings.

(i) 27 (i) zxZz (iii) Z3x3Z (iv) ZyxZ, V) ZgxZis
If R is a commutative rign with unity of characteristic 3, compute and simplify
@) (x+ y)6 @) (x+ y)9 Vx,y€ R

Show that characterstic of sub domain of an integral domain D is same as characteristic
of D.

Prove that characteristic of a field is zero or prime. Justify this result by giving one
example to each.

Show that M, (F) , the set of all 2x2 matrices over a field F is a non- commutative ring
under matrix addition and matrix multiplication.

Show that M, (Q) is a non-commutative ring under usual operations.

1 0
Show that [0 J is unity in M, (F) . Describe the unity element in M, (F) .

(a) Find all units in the ring ZxZ

(b) Find the solutions of the equation x> +x—-6=0 in the ring Z,, by factoring the
quadratic polynomial.

(a) Find all units in the ring Zs

(b) Find all solutions of the equation x* —2x*-3x=0 in Z,,.
(a) Find all units in the ring ZxQxZ

(b) Solve the equation 3x=2 in the field Z,.

(a) Find all units in the ring Z, .

(b) Find the characteristic of the ring Z;xZ, .

(a) Find all units in the matrix ring M,(Z,) .

(b) Find the characteristic of the ring ZxZ.

(a) Find all solutions of the equation x*+2x+2=0 in Z -
(b) Find the characteristic of the ring Z,x3Z.

(a) Find the characteristic of the ring 2Z.

(b) LetR be a commutative ring with unity of characteristic 4. Compute and simplify

(a+b)4 for a,beR.

(a) Find the characteristic of the ring Z;xZ,s .
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72.

73.

74.

75.

76.

77.

78.

79.

80.

81.

82.

(b) LetR be a commutative ring with unity of characteristic 3. Compute and simplify

(a+b)° for a,beR.
Let ¢, :Q[x] >R be defined by ¢,(ay+ax+...+a,x")=ay+a2+...+a,2" .
Then show that ¢ is a homomorphism. Find its kernel.

Find the kernel of the homomorphism ¢; : Q[x] — C given by

0 (g + @ x+ .o Ay x> + .ot ayx") = ag + ayi + ayi® +....+a,i" where > =—1

Consider the evaluation homomorphism ¢s : Q [x] — R . Find six elements in the kernel
of ¢5.

Evaluate each of the following for the indicated evaluation homomorphism
(I)a . Z7 [)C] — Z7

(D) (x> +3) 0, (i) (2x°-x*+3x+2) ¢, (i) [ +2x)(x> =35 +3)] ¢3
(a) Find the characteristic of the ring Z;xZ;

(b) If ¢, :Z; = Z, is the evaluation Homomorphism, then compute

Oy [(x* +2x) (x° =3x% +3)]

(a) Find all solutions of x* —2x+4=0 in Z

(b) If ¢,:C—C is the evaluation Homomorphism, then compute ¢, (x* +3)
In Zs[x] divide f(x) = x4 —3)(3 +2x2 +4x—-1 by g (x)= x2 —2x+3t0ﬁl’ld q (x) and r (x)

Let f(x)=x%+3x>+4x” —3x+2and g(x)=x>+2x-3 bein Z,[x] . Find ¢ (x) and r(x)
in Z;[x]such that f(x) = g(x) q(x) + r(x) with (degree r(x)) <2

Let f(x)=x%+3x" +4x% —=3x+2 and g(x)=3x%+2x-3 bein Z;[x]. Find g (x)and
r(x) in Z;[x] such that f(x)=g(x)g(x)+r(x) with (degree r(x)) <2

(a) Consider f(x)=x°+3x" +4x* =3x+2, g(x)=x*+2x-3 in Z;[x]; and the division
algorithm.

f(x) = g(x)g(x)+r(x), r(x) =0o0r deg (r(x)) <deg (g(x)), then find g(x)and r(x).

(b) The polynomial x*+4 can be factored into linear factors in Zs[x]. Find this
factorization.

(a) Find ¢(x) and r(x) as described by the division algorithm so that
f(x)=g(x)g(x)+r(x) with r(x)=0 or of degree less than the degree of g(x), where

f(x)=x —2x* +3x-5,8(x)=2x+1in Z;, [x].
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83.

84.

8S.

86.

87.
88.

89.

90.

91.

92.

93.

(b)Is 2x* + x* + 2x +2 onirreduible polynomial in Z [x] ? Why ? Express it as a product

of irreducible polynomials in Zs[x] .

(a) Show that f(x)= x2 +6x+12 is irreducible over Q. Is f(x) irreducible over R ?
(b) Find all prime ideals and all maximal ideals of Z .

(a) Demonstrate that x* —22x* +1 is irreducible over Q.

(b) Find all prime ideals and all maximal ideals of Z,, .

(a) The polynomial 2x* +3x?>-7x—5 can be factored into linear factors in 7y, [x].
Find this factorization.

(b) Find all prime ideals and all maximal ideals of Z, xZ,

(a) Find ¢q(x) and r(x) as described by the division algorithm so that
f(x)=g(x) g(x)+r(x) with r(x) =0 or of degree less than the degree of g(x), where

fx)=x*+5x" -3x%, g(x) =5x* —x+2 in Z,,[x].

(b) Find all ce Z; such that Z,[x]/ < x* +¢> is a field.
Find all ce Z; such that 75 [x]/ < x> +ex+1> is a field.
(a) Find ce Z; such that Z, [x]/ < x> +ex” +1> is a field.

(b) Find g(x)and r(x)as described by the division algorithm so that
F(x)=g (x) g (x)+r (x) with r(x) =0 or of degree less than the degree of g(x), where

F(x)=x°+3x° +4x* —3x+2 and g(x)=3x%+2x-3in Z,[x].

a b
Show that for a field F, the set S of all matrices of the form [ 0 0] for a,beF is a

right ideal but not a left ideal of M, (F). Is'S'a sub ring of F ?

Let A and B be ideals of a commutative ring R. The quotient A : B of A by B is defined
by A:B{reR/rbe Aforall be B}.

Show that A : B is an ideal of R.

The polynomial x* +4 can be factored into linear factors in Zs[x]. Find this
factorization.

Define an irreducible and reducible polynomials and show that £(x)=x>+3x+2 is

irreducible over Zs[x]

Show that f(x)= x* —2x2 +8x+1 viewed in Q[x] is irreducible over Q.
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94. State Fisenstein criterion and apply the same to prove
() f(x)=x+7x>+14x-7 (i) f(x)=25¢ -9x* +3x2-12

(i) f(x)=x>—4x+2 (V) f(0)=3x-6 (V) f(x)=x>+6
are irreducible over Q.

As a special case f(x)=x"-p, is always irreducible over Q where p is prime, n

belongs to Z* .

95. Show that (i) f(x)= %2 + x+1 is irreducible over the field of integers modulo 2.
@) fx)= x2 +1 is irreducible over the field of integers modulo 7.

(@) f(x)= =9 isirreducible over the field of integers modulo 31

@) f(x)= ¥ +2x+3 isirreducible over the field of integers modulo 5.

96. Show that f(x)=x’+x+4 is irreducible over the field of integers modulo 11.

f(x)= x> —9 is irreducible over the field of integers modulo 11.

97. Show that Eisenstein criterion is not necessary for irreducibility for

f(x)=x3—x+1,f(x)=x3+x2+3x—1

xp—l 2

98. Show that the polynomial C, (x) = = xP1 4+ xP72 4+ x? + x+1 isirreducible over

Q. As special case f(x)=x" +1=x" +a,ae Z p» are irreducible over Q, where p is a
prime.
OBJECTIVE TYPE QUESTIONS
MULTIPLE CHOICE QUESTIONS:

1. For any two elements a, b in a ring, a (—-b) =

(a) —(ab) D) ab (¢) = (ba) (d) none
2. If (R,+,+)is aring then (R,+)is
(a) a group (b) an abelian group (c) a finite group (d) semi group

3. The residue classes modulo 11 with respect addition and multiplication modulo 11 is
(a) commutative ring (b) an integral domain (c) a field (d) skew field

4. The characteristic of the residue classes mod 8 is

(a) O (b) 2 (c) 8 (d) none
5. If F is a field then the number of ideals in F'is
(@) 0 b) 1 ()2 (d) infinite

6. If a, b are nilpotent elements in a commutative ring then ab is
(a) nilpotent (b) not nilpotent (c) idempotent (d) zero
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7. The characteristic of the field of rational numbers is .
(a) O (b) (c) a prime (d) none

8. For (M,,+,+) ring. S={(a) 2}' a,be Z}isa

(a) left ideal (D) right ideal (c) subring (d) none
9. With the usual addition and multiplication, the set of all even integers is
(a) aring (b) a field (c) an integral domain (d) none

10. The number of proper ideals of a field is
(@) 0 b) 1 (c) 2 (d) none of these

11. The set {a+bi|a,be Z’iz = —1}of Gaussian integers is

(a) ring (b) integral domain (c) field (d) none
12. A commutative ring satisfying cancellation laws is a

(a) field (b) skew field (c) integral domain (d) none
13. M= HZ 8}| a,be Z}. For the ring R of 2x2 matrices over Z, M is

(a) ideal (D) leftideal  (c) right ideal (d) subring
14. In the ring Z of integers the ideal generated by 7 is

(a) prime ideal (b) maximal ideal (c) not maximal (d) none

15. For the homomorphism f:R — R defined by f(x)=xV xe RKer f =

(a) {0} (b) R (c) {0,1} (d) none
16. In the ring of integers Z, the units are
(a) 0,1 (b) 1 only (c) 1,-1only (d) none
17. If a, b are two non-zero elements of an euclidean ring R and b is a unit in R, then
(@) d(ab)y=d(a) (b) d(ab)>d(a) (¢) d(ab)<d(a) (d) none
18. In the ring Zg, the associates of 2 are
(@) 1,5 () 0,2 (c)2,4 @0,2,4
19. In the ring of integers Z every integer has
(a) only one associate (b) only two associates
(¢) need not have an associate (d) none

20. If Fisafield and f:F — Ris a homomorphism so that Ker f = {0} then fis

(a) isomorphism  (b) monomorphism (c) zero homomorphism (d) none
21. If a, b are associates in an Euclidean ring then

(a) d(a)<d(®) (b) d(a)=d(®) (¢) d(b)<d(a) (d) none
22. Inthe ring Z[i] of Gaussian integers 1+ i is

(@) unit (b) unity element (c¢) prime element (d) none
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23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

3s.

36.

If f(x),g(x)are two non-zero polynomials over a ring R[x]then deg {f(x)+ g(x)} is

(a) =deg f(x)+degg(x) (b) < max {deg f(x),degg(x)}

(¢) 2 max {deg f(x),deg g(x)} (d) none

If f(x)=2+4x+2x%, g(x)=2x+4x> over the ring (I,+¢,%¢) the deg {f(x)+g(x)}=
(@) 0 (b)1 (c) 2 (d) none

For the data in problem (24), deg {f(x).g(x)} =

(a) 4 (b) 2 (0 (d) none

A polynomial f(x)in F [x] is reducible if it has

(a) proper divisors (b) improper divisors  (c) prime divisors (d) none
The polynomial x* +1 is

(a) reducible over real field (b) reducible over complex field

(c) irreducible over complex field (d) none

In the field of residues modulo 5, the remainder when 300 —dx> +2x-2 is divided by

x-3 by

(a) 49 b) 0 (c) 4 (d) none

If U is an ideal of ring R with unity 1 such that 1€ U then U is

() U (b) R (¢) cR (d) none
Let R be a commutative ring with unity and ae R, then U ={ra|re R}is
(a) left ideal only (b) ideal only

(c) prime ideal (d) smallest ideal containing ‘a’

If f(x)=ag+ax+...+a,x".a,#0and g(x)=by+bx+.... +b,x" b, # 0 then

deg {f(x) g(x)} is

(a) <m+n (b) m+n (¢) >m+n (d) mn

Every ring of numbers with unity is

(a) integral domain (b) division ring (c) field (d) none
The ring R ={a+by2 |a,be Q} is

(a) integral domain (b) skew field (c) field (d) none
If §,,S, are two subrings of a ring R then S; + S, is

(a) subring (b) ideal (c) need not be a subring

A subring S of aring R is called ideal if

(a) ooe S,ae R=aac S (b) e S,ae R=a0e S

(¢c) ae S,ae R= aa,a0e S (d) none

The set Q of rational numbers is
(a) subring (b) ideal
(c) not subring (d) not ideal, for the ring of real numbers
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37. Homomophic image of an integral domain is
(a) a ring (b) integral domain (c) need not be integral domain (d) none

38. If R is a non-zero ring so that 4% = 4 V a e R then characteristic of R =
(@) 0 (b) 1 (c) 2 (d) prime
39. If the characteristic of a ring R is 2 and a,be R then (a+b)> =

(@ a*+2ab+b*> (D) a* +ab+ba+b? (©) a® +b? (d) none
40. If p is a prime, the ring of integers modulo p is .
(a) field (b) integral domain (c) skew field (d) none
41. Z4={0,1,2,3,4,5} is the ring of integers modulo 6 and U ={0,3} is an ideal of Z4. Then
coset 2+U =
(a) {0,3} (b) {2,5} (¢) {0,1,2,3,4,5) (d) none
42. For the homomorphism f:R — R definedby f(x)=xV xe RKer fis
(@) R (®) {0} () R (d) none
43. If f:R— R’is aring homomorphism then Ker f
(a) subring of R (D) ideal of R’ (c¢)ideal of R (d) none

44. The set of residue classes modulo m, with respect to addition and multiplication mod m
is

(a) ring (D) integral domain (c) field (d) none
45. A commutative ring zero divisors is a

(a) field (b) skew field (c) integral domain (d) none
46. Euclidean ring has

(a) unity element (b) no unity element

(c) no principal ideal ring (d) none
47. A finite integral domain is

(a) field (D) ring (c) group (d) none
48. Afieldisa

(a) non commutative ring (b) division ring

(c) commutative division ring (d) none

49. Field Z, is of characteristic = p where p is

(a) prime (b) integer (c) even integer (d) composite

FILL INTHE BLANKS:

50. If Ris aring without zero divisors then ................. hold in R.
51. A ring R has no zero divisors if ..............

52. A division ring has ........ccccceee.e. divisors.

53. A finite integral domain is a................

54. Inaring Rif a®> =a for ac R 'd'is called .............. w. 1. t. multiplication.
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55.
56.

57.

58.
59.
60.

61.

62.
63.
64.
65.

66.

67.
68.
69.

70.
71.

72.
73.

74.
75.
76.

717.

78.
79.

80.

a#0€ R,R is aring, is called nilpotent element if there exists ..............
If characteristic of a ring R=2 and g¢,be R commute then (q—b)> =.....c......

A subring of (Zg,+6.Xg) 1S coerrererennenn

A field has ..................... ideals.
The union of two ideals of a ring R, ......ccceeeveerueennnen. of R.
For a field every ideal is ................

A subring of (R,+,+) which is not an ideal is ................

In the quotient ring R / U the zero element is and the unity element is ..............

An ideal U of a ring R is prime ideal if ..............

For the ring of integers any ideal generated by prime integer iS a .......c..ccceeueeneen.
For a commutativering R, with unity if U is a maximal ideal then R/ Uis a ..................

If f:R— R’ is aring isomorphism and R is an integral domain then R’ is ...........
If f:R— R’is a ring homomorphism then Ker fis ..............

Every non-zero element of a field is a ..............

a€ R, R is Euclidean ring, is a unity iff....................

In the ring (Zg,+4,%g) the associates of 2 are ...................
If f£(x)=2x>+4x% +3x+2, g(x) =3x* + 2x+4 over the ring (Zs,+5.%s) then

FO+g(xX)=iiiiiiiinnnen.

The units of the domainof Gaussian integers are ..............
Every Euclidean ring possesses ..............

If f, g are two non-zero polynomials over a ring R and fg #0then deg fg ................
If p is a prime-elementof the Euclidean ring R and g,be R then plab= ...............

In an Euclidean ring if p, g are prime and p|q then p, g are ...................

The mapping f:Z [V2] — Z [2]defined by f(m+ny2)=m-nJ2 Vm+nJ2 € Z[V2]
IS teeeiieiiiiieee

A maximal ideal of the ring of integers is generated by..............

If U is a maximal ideal of the ring R then there exists no ideal ¢’ of R

such that .................

If ¢ #0 is an idempotent element of an integral domain with unity then a=..................

MARK EACH OF THE FOLLOWING TRUE OR FALSE :

81.
82.
83.

84.

Every ring with unity element has atleast two units.
Every ring with unity element has atmost two units.
The non-zero elements of a field form a group under the multiplication in the field.

The characteristic of ring nZ is n.
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8s.
86.

87.

88.
89.

90.

91.
92.
93.
94.
9s.

A zero divisor in a commutative ring with unity can have no multiplicative inverse.
Q is a field of quotients of Z.

Z, is anideal of 4Z .

If a ring R has zero divisors then every quotient ring of R has zero divisors.
Every prime ideal of every commutative ring with unity is a maximal ideal.

If the degrees of f(x),g(x)e R[x] where R is a ring, are 3, 4 respectively then
deg f(x) g(x) is always 7.

x? +3 is irreducible over Z;.

If Fis afield then F [x] is a principal ideal ring.

If F is a field then the units of F [x] are precisely the non-zero elements of F.
The Kernel of a ring homomorphism is an ideal of the whole ring.

The rings z/4z and Z, are isomorphic.

ANSWERS
1.a 2. b 3. ¢ 4.c 5.c 6. a 7.a, ¢ 8.c 9.a 10. a
11. b 12.¢ 13. b 14.b 15.a 16.c 17.a 18. ¢ 19.bH 20.a
21. b 22.¢c 23.b 24.a 25.c¢ 26.a 27.0 28.c 29.b 30.d
31. b 32.a 33.¢c 34.¢ 35.¢ 36.a 37.c 38.c¢c 39.¢ 40.a
41. b 42. b 43.c 44.a 45.c 46.a 47.a 48.c¢ 49.a
50. cancellation laws 51. There exist a,be R and ab=0=a=0 or b=0
52. no zero divisors 53. field 54. idempotent element
55. ne N sothat " =0 56. a*+b* 57. {0,3} 58. no proper
59. need not be an ideal  60. a principal ideal 61. (0,+,+)
62. U,1+U 63. for all a,be R and abe U = acU or be U
64. maximal ideal 65. field 66. integral domain
67. an ideal of R 68. a unit 69. d(a)=d()
70. 2, 4 1. 354 403 v 452 41 720 L+
73. unity element 74. <deg f+degg 75. pla or p|b
76. associates 77. automorphism 78. prime integer
79. UcU' cR 80. 1 81. True
82. False 83. True 84. False
85. True 86. True 87. False
88. False 89. False 90. False
91. False 92. True 93. True

94. True 95. True
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