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2.1. Methods of describing fluid motion.
There are two methods for studying fluid motion mathematically. These are Lagrangian and

Eulerian (flux) methods and refer to ‘individual time-rate of change’ and ‘local time rate of change’
respectively.
(I) Lagrangian method. [Garhwal 2005; Meerut 2009, 10, 12]

In this method we study the history of each fluid particle, i.e. any fluid particle is selected
and is pursued on its onward course observing the changes in velocity, pressure and density at
each point and at each instant. Let (x0, y0, z0) be the coordinates of the chosen particle at a given
time t = t0.  At a later time, t = t, let the coordinates of the same particle be (x, y, z). Since the
chosen particle is any particle in the fluid, the coordinates (x, y, z) will be functions of t and also
of their initial values (x0, y0, z0), so that

x = f1(x0, y0, z0, t), y = f2 (x0, y0, z0, t),    z = f3 (x0, y0, z0, t). ...(1)
Let u, v, w and ax, ay, az  be the components of velocity and acceleration respectively. Then,

we have
/ ,u x t   /v y t   /w z t   ...(2)

and 2 2/ ,xa x t   2 2/ ,ya y t   2 2/za z t   ...(3)

Remark 1. The fundamental equations of motion in Lagrangian form are non-linear and
hence it leads to many difficulties while solving a problem. In fact, the present method is employed
with an advantage only in some one-dimensional (involving one space coordinate) problems.
Hence we need to think about another method of describing fluid motion.

Remark 2. This method resembles that of dynamics of a particle in so far as (x, y, z) are
dependent on t. However, in Lagrangian method of fluid dynamics (x, y, z) are dependent on four
independent variables x0, y0, z0, t.
(II) Eulerian method. [Ranchi 2010, Agra 2005; Garhwal 2005; Meerut 2009, 2010, 12]

In this method we select any point fixed in space occupied by the fluid and study the
changes which take place in velocity, pressure and density as the fluid passes through this point.
Let u, v, w be the components of velocity at the point (x, y, z) at time t. Then, we have

      u = F1 (x, y, z, t),    v = F2 (x , y, z, t),       w = F3 (x, y, z, t). ...(4)
For a particular value of t, (4) exhibits the motion at all points in the fluid at that time. Again

for a particular point (x, y, z), u, v, w are functions of t, which define the mode of variations of
velocity at that point.

Remark 1. The point under consideration being fixed, x, y, z and t are independent variables
and hence dx/dt d2x/dt2 etc. have no meaning in this method.
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2.2 FLUID DYNAMICS

Remark 2. In Lagrangian method a particular fluid particle is identified and changes in
velocity etc. are studied as that fluid particle moves onwards. On the other hand, in Eulerian
method the individual fluid particles are not identified. Instead, a point in fluid is chosen and
changes in velocity etc. are studied as the fluid passes through the chosen fixed point.
Relationship between the Lagrangian and Eulerian methods.

[Garhwal 2001, 05; Meerut 2005]
In order to establish relationship between the two methods, we investigate a relation between

the particle parameters and space parameters.

(i) Lagrangian to Eulerian. Suppose  (x0, y0, z0, t) be some physical quantity involving
Lagrangian description

        =  (x0, y0, z0 ,t) ...(5)
Since Lagrangian description is given, (1) holds. Solving (1) for x0, y0, z0  we have
      x0 = g1 (x, y, z, t),             y0 = g2 (x, y, z, t),      z0 = g3(x, y, z,t) ...(6)
Using (6), (5) reduces to

 =   [g1 (x, y, z, t), g2 (x, y, z, t), g3 (x, y, z, t), t], ...(7)

which expresses   in terms of Eulerian description.

(ii) Eulerian to Lagrangian. Suppose (x, y, z, t) be some physical quantity involving
Eulerian description

        =  (x, y, z, t). ...(8)
Since Eulerian description is given, (4) holds. Again, (2) holds for the proposed Lagrangian

description. Hence (2) and (4) yield
dx/dt = F1 (x, y, z, t), dy/dt = F2 (x, y, z, t),    dz/dt = F3 (x, y, z, t) ...(9)
The integration of (9) involves three constants of integration which may be taken as initial

coordinates x0, y0, z0 of the fluid particle. Thus the integration of (9) leads to the well known
equations of Lagrange (1). Using (1), (8) reduces to

 =   [f1 (x0, y0, z0, t), f2 (x0, y0, z0, t) f3 (x0, y0, z0, t), t], ...(10)
which expresses   in terms of Lagrangian description.

2.2. Illustrative solved examples.
Ex. 1. The velocity components for a two-dimensional fluid system can be given in the

Eulerian system by u = 2x + 2y + 3t, v = x + y + t/2.
Find the displacement of a fluid particle in the Lagrangian system.

[kanpur 2000, 05, Rajasthan 2003, Rohalkhand 2005]
Sol. Given        u = 2x + 2y + 3t,    v = x + y + t/2 ...(1)
In terms of the displacement x and y, the velocity components u and v may be represented by

u = dx/dt,       v = dy/dt ...(2)
From (1) and (2), we have

     dx/dt  = 2x + 2y +3t,  dy/dt = x + y + t/2 ...(3)
Let / .D d dt  Then equations (3) become

    (D – 2) x – 2y = 3t ...(4)
 – x + (D – 1) y = t/2 ...(5)

Operating (5) by (D – 2), we have
       – (D – 2) x + (D – 2) (D – 1) y = (1/2) × (D – 2) t

or           – (D – 2) x + (D2 – 3D+ 2) y = (1/2) – t ...(6)
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KINEMATICS OF FLUIDS IN MOTION 2.3

Adding (4) and (6), we have
      (D2 – 3 D) y = (1/2) + 2t ...(7)

Auxiliary equation of (7) is D2 – 3D = 0. Solving for D, it gives D = 0, 3. Hence complementary
function (C.F.) is given by

      C.F. = c1 + c2e
3t

Next, the particular integral (P.I.) is given by

2
1 1. . 2

23
P I t

D D
     

     
1 1 2

3 (1 / 3) 2
t

D D
      

11 1 11 2
3 3 2

D t
D


         
   

      
1 1 11 .... 2

3 3 2
D t

D
        
  

1 1 12 2
3 2 3

t
D
     
 

      
1 1 72
3 6

t
D
     
 

2 21 7 72
3 2 6 3 18

t t tt
 

         
 

Hence the general solution of (7) is
     y = c1 + c2e

3t – (t2/3)  – (7t/18) ...(8)
From (8),                             dy/dt = 3c2e

3t – (2t/3) – (7/18) ...(9)
Re-writing the second equation of (3), we get

          x = dy/dt – y – (t/2) ...(10)
Putting the values of y and dy/dt given by (8) and (9) in (10), we get

3 3 2
2 1 2

2 7 1 7 13
3 18 3 18 2

t tx c e t c c e t t t       

or 3 2
1 22 ( / 3) (7 / 9) (7 /18)tx c c e t t      ...(11)

We now use the following initial conditions :
   x = x0,                   y = y0             when           t = t0 = 0 ...(12)

Using (12), (8) and (11) reduce to
  y0 = c1 + c2                    and          x0 = – c1 + 2c2 – (7/18) ...(13)

Solving (13) for c1 and c2, we have

0 0
1

2 7
3 54

y xc 
             and         0 0

2
7

3 54
x yc 
  ...(14)

Using (14), (11) and (8) give

3 2
0 0 0 0

1 2 1 7 7 1 72 2
3 3 3 9 9 3 27

tx x y x y e t t         
 

....(15)

and
3 2

0 0 0 0
1 2 1 7 7 1 7
3 3 3 18 18 3 54

ty x y x y e t t          
 

....(16)

(15) and 16 give the desired displacements x and y in the Langrangian system involving the
initial positions x0 and y0 and the time, t.
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2.4 FLUID DYNAMICS

Ex. 2. For a two-dimensional flow the velocities at a point in a fluid may be expressed in the
Eulerian coordinates by u = x + y + 2t and v = 2y + t. Determine the Lagrange coordinates as
functions of the initial positions x0 and y0 and the time t. [I.A.S. 1999]

Sol. Given u = x + y + 2t  and v = 2y + t. …(i)
In terms of the displacements x and y, we have

u = dx/dt  and         v = dy/dt. …(2)
From (1) and (2),                    dx/dt = x + y + 2t …(3)

and            dy/dt = 2y + t or dy/dt – 2y = t. …(4)

Integrating factor (I.F.) of (4) =
(– 2) – 2dt te e  and solution of (4) is

       – 2 –2
1 ( ) ,t tye c t e dt   c1 being  an  arbitrary constant

or –2 –2 –2 –2 –2 –2
1 1 1

1 1 1 1 1– – 1 – – – – (2 1)
2 2 2 4 4

t t t t t tye c t e e dt c te e c t e           
   

or          y = c1e
2t – (2t + 1)/4. …(5)

Substituting the above value of y in (3), we have

2
1

1– (2 1) 2
4

tdx x c e t t
dt
       or        2

1
1– (6 –1)
4

tdx x c e t
dt

  …(6)

I.F. of (6) =
(–1) –dt te e and solution of (6) is

– – 2 –
2 1 2 1

1 (6 –1)(6 –1)
4 4

t t t t ttxe c e c e t dt c c e e dt         
or – – –

2 1
6 –1 6(– ) – (– )

4 4
t t t ttxe c c e e e dt     

 
or – – – –

2 1 2 1
1 6 1– (6 –1) – – (6 5)
4 4 4

t t t t t txe c c e t e e c c e e t    

or                    2
2 1 – (6 5) / 4.t tx c e c e t   …(7)

We now use the following initial conditions :
         x = x0,          y = y0 when           t = t0 = 0. …(8)

Using (8), (5) and (7) reduce to
      y0 = c1 – (1/4)            and            x0 = c2 + c1 – (5/4). …(9)

Solving (9) for c1 and c2,         c1 = y0 + (1/4),     c2 = x0 – y0 + 1. …(10)
Using (10), (7) and (5) reduce to

       x = (x0 – y0 + 1)et + (y0 + 1/4)e2t – (6t + 5)/4 …(11)
and        y = (y0 + 1/4)e2t – (2t + 1)/4. …(12)

(11) and (12) give the desired displacements x and y in the Lagrangian system involving the
initial positions x0, y0 and the time t.

Ex. 3. The velocity distribution of a certain two-dimensional flow is given by u = Ay + B
and v = Ct, where A, B, C are constants. Obtain the equation of the motion of fluid particles in
Lagrangian method.

Sol. Let r (x, y) be the position of the given particle at any time t. Then the path lines for
the fluid particle are given by

d
dt


rq  ( ).du v x y
dt

  i j i j
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KINEMATICS OF FLUIDS IN MOTION 2.5

                         u = dx/dt = Ay + B …(1)
and          v = dy/dt = Ct. …(2)

Integrating (2),    y = (1/2) × Ct2 + c1 where c1 is a constant of integration …(3)
Initially, let y = y0, t = 0. Then (3) gives c1 = y0
So (3) gives          y = (1/2) × Ct2 + y0. …(4)
Substituting the above value of y in (1), we get

2
0

1
2

dx A Ct y B
dt

    
 

        so that   3
0 2

1 ,
6

x A Ct y t Bt c     
 

…(5)

where c2 is a constant of integration.
Initially, let x = x0, t = 0. Then (5) gives c2 = x0.

So (5) gives 3
0 0

1 .
6

x A Ct y t Bt x     
 

…(6)

The required equation of motion is given by (4) and (6).
Ex. 4. (a) The velocities at a point in a fluid in the Eulerian system are given by

   u = x + y + z + t,               v = 2(x + y + z) + t,            w = 3 (x + y + z) + t.
Obtain the displacements of a fluid particle in the Lagrangian system. [Garhwal 2000]
(b) The velocity field at a point in fluid is given by

       q = [x + y + z + t, 2(x + y + z) + t, 3(x + y + z) + t].
Obtain the velocity of a fluid partifcle which is at (x0, y0, z0) initially.
Sol. (a) In terms of the displacements x, y and z, the velocity components u, v and w, may

also be represented by
    u = dx/dt,          v = dy/dt                 and              w = dz/dt …(1)

Using (1) and the given values of u, v, and w, we have
                dx/dt = x + y + z + t …(2)

    dy/dt = 2 (x + y + z) + t …(3)
    dz/dt = 3 (x + y + z ) + t …(4)

Let  / .D d dt  Then (2) and (3) yield
               (D – 1) x – y = z + t …(5)
           – 2x + (D – 2) y =  2z + t …(6)

Operating (5) by (D – 2) and then adding the resulting equation to (6), we have
     (D – 2) (D – 1) x – 2x = (D – 2) (z + t) + 2z + t

or        (D2 – 3D) x = Dz + 1 – t …(7)
Next, multiplying both sides of (5) by 2, operating (6) by (D – 1) and adding the resulting

equations, we have
  – 2y + (D – 1) (D – 2) y = 2 (z + t) (D – 1) (2z + t)

or        (D2 – 3D) y = 2D z + 1 + t …(8)
Re-writing (4), we have           (D – 3) z = 3x + 3y + t

or             (D2 – 3D) (D – 3) z = 3(D2 – 3D)x + 3(D2 – 3D)y + (D2 – 3D)t
or      (D3 – 6D2 + 9D)z = 3Dz + 3 – 3t + 6Dz + 3 + 3t – 3, using (7) and (8)
or      (D3–6D2)z = 3 …(9)

Auxiliary equation of (9) is D3 – 6D2  = 0. Solving for D, it gives D = 0, 0, 6.
       Hence,             C.F. = c1 + c2t + c3e

6t, c1, c2 and c3 being arbitrary constants.
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2.6 FLUID DYNAMICS

Next, 3 2 2
1 1P.I. 3 3 1
6 6 (1 / 6)D D D D

  
  

1

2
1 1 1

62
D

D


    
 

                        2
1 1 ... 1

62
D

D
     
 

2

2
1 11

2 22
t

D
    

Hence the general solution of (9) is
z = c1+ c2t + c3e

6t – (t2/4), c1, c2 and c3 being arbitrary constants ...(10)
Re-writing (3) and (4), we have

(D – 2) y – 2z = 2x + t ...(11)
and         – 3y + (D – 3) z = 3x + t ...(12)

As before, (11) and (12) give
        (D2 – 5D)y = 2Dx + 1 – t ...(13)

and        (D2 – 5D) z = 3Dx + 1 + t ...(14)
But from (2),     (D – 1)x  = y + z + t

         (D2 – 5D) (D – 1)x = (D2 – 5D)y + (D2  – 5D) z + (D2 – 5D) t
or           (D3 – 6D2 + 5D)x = 2Dx + 1 – t + 3Dx + 1 + t –5, using (13) and (14)
or (D3 – 6D2)x  = – 3 ...(15)

As before, the general solution is      x = a1 + a2t + a3e
6t + (1/4) × t2 ...(16)

Re-writing (4) and (2), we have
              (D – 3) z – 3x = 3y+ t ...(17)
             – z + (D – 1) x = y + t ...(18)

As before, (17) and (18) give
       (D2 – 4D) z = 3Dy + 1 +2t ...(19)

and         (D2 – 4D)x = Dy + 1 – 2t ...(20)
But from (3),           (D – 2) y = 2x + 2z + t

       (D2 – 4D) (D – 2)y = 2(D2 – 4D)x + 2 (D2 – 4D) z + (D2 – 4D)t
or (D3 – 6D2 + 8D)y = 2Dy + 2 – 4t + 6Dy + 2 + 4t – 4, using (19) and (20)
or                  (D3 – 6D2)y = 0 ...(21)

As before, the general solution is    y = b1+ b2t + b3e
6t ...(22)

Also suppose         x = x0,           y = y0          z = z0            when t = t0 = 0 ...(23)
Using (23), (16), (22) and (10) give

x0 = a1 + a3,      y0 = b1 + b3,   z0 = c1 + c3
so that a1 = x0 – a3,      b1 = y0 – b3,   c1 = z0 – c3 ...(24)

Using (24), (16), (22) and (10), we have
  x = x0 – a3 + a2 t + a3e

6t + ( 1/4) × t2 ...(25)
  y = y0 – b3 + b2t + b3e

6t ...(26)
             z = z0 – c3 + c2t + c3e

6t – (1/4) × t2 ...(27)
Substituting these values of x, y and z into (2), (3) and (4), we have

    a2 + 6a3e
6t + t/2 = x0 + y0 + z0 – (a3 + b3 + c3) + (a2 + b2 + c2)t + (a3 + b3 + c3) e

6t + t ...(28)
b2 + 6b3e

6t = 2(x0 + y0 + z0) – 2(a3 + b3 + c3) + 2( a2 + b2 + c2)t +2(a3 + b3 + c3) e
6t + t ...(29)

   c2 + 6c3e
6t – (t/2) = 3(x0 + y0 + z0) – 3(a3 + b3 + c3) + 3(a2 + b2 + c2)t

  + 3(a3 + b3 + c3)e
6t + t          ...(30)
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KINEMATICS OF FLUIDS IN MOTION 2.7

(28), (29) and (30) are identities. So equating coefficients of t, e6t and absolute terms, these
identities give

                                 x0 +y0 + z0 – (a3 + b3 + c3) = a2 ...(31a)
                                            a3 + b3 + c3 = 6a3 ...(31b)
                                       a2 + b2 + c2 + 1 = 1/2 ...(31c)
                    2(x0 + y0 +z0) – 2(a3 + b3 + c3)= b2 ...(32a)
                                           2(a3 +b3 +c3) = 6b3 ...(32b)
                                    2(a2 + b2 + c2) + 1= 0 ...(32c)
                   3(x0 + y0 + z0) – 3(a3 + b3 + c3)= c2 ...(33a)
                                          3(a3 +b3 + c3) = 6c3 ...(33b)
                                    3(a2 + b2 + c2) + 1= – (1/2) ...(33c)
From (31c) or (32c) or (33c), we have

 a2 + b2 + c2 = – (1/2) ...(34)
Adding (31a), (32a) and (33a), we get

    6[(x0 + y0 + z0) – (a3 + b3 + c3)] = a2 + b2 + c2

or     6[(x0 + y0 + z0) – (a3 + b3 + c3)] = – (1/2), by (34)
or a3 + b3 + c3 = x0 + y0 + z0 + (1/12) ...(35)

Using (35), (31b), (32b) and (33b) give
a3 = (1/6) × (x0 + y0 + z0 + 1/12) ...(36)
b3 = (1/3) × (x0 + y0 + z0 + 1/12) ...(37)
c3 = (1/2) × (x0 + y0 + z0 + 1/12) ...(38)

Again, using (35), (31a), (32a) and (33a) give
   a2 = – 1/12,                      b2 = – 1/6,                and               c2 = – 1/4 ...(39)
Substutituting the above values of  a2, b2, c2, a3, b3 and c3 into (25), (26) and (27) and

simplifying, we have
x = (5/6) × x0 – (1/6) × y0 – (1/6) × z0 +(1/6) × (x0 + y0 + z0 + 1/12)e6t –t/12 + t2/4 –  (1/72) ...(40)
y = – (1/3) × x0 + (2/3) × y0 – (1/3) × z0 + (1/3) × (x0 + y0 + z0 + 1/12) e6t – t/6 – (1/36) ...(41)
z = – (1/2) × x0 – (1/2) × y0 + (1/2) × z0 + (1/2) × (x0 + y0 + z0 + 1/12) e6t – t/4 – t2/4 – (1/24) ...(42)
which give the desired displacements.

Part. (b) Let , ,u v w    be the components of the velocity in Lagrangian system. Then using
(40), (41) and (42), we have

  6
0 0 0/ 1/12 (1/12) ( / 2)tu x t x y z e t          ...(43)

  6
0 0 0/ 2 1/12 (1/ 6)tv y t x y z e         ...(44)

  6
0 0 0/ 3 1/12 (1/ 4) ( / 2)tw z t x y z e t          ...(45)

The required velocity is ,u i v j w k     where ,u v   and w  are given by (43), (44) and
(45) respectively.
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 Velocity of a fluid particle.
Let the fluid particle be at P at any time t and let it be at Q at time t + t such that

                 OP

 r                  and                     .OQ


  r r

Then in the interval t the movement of the particle is PQ

 r  and hence the velocity of the

fluid particle q at P is given by

                                            0
lim ( / ) / ,
t

t d dt
 
   q r r

assuming such a limit to exist uniquely. Taking the fluid as continuous, the above assumption is
justified. Clearly q is a function of r and t and hence it can be expressed as q = f(r, t). If u, v, w
are the components of q along the axes, we have           q = ui + vj + wk.
2.4. Material, local and convective derivatives. (Meerut 2009, 2011)

Suppose a fluid particle moves from P (x, y, z) at time t to ( , , )Q x x y y z       at time

t t  . Further suppose f (x, y, z, t) be a scalar function associated with some property of the fluid
(e.g. the pressure or density etc.). Let the total change of f due to movement of the fluid particle
from P to Q be f. Then, we have

       ( / ) ( / ) ( / ) ( / )f f x x f y y f z z f t t                
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KINEMATICS OF FLUIDS IN MOTION 2.9

or                  
f f x f y f z f
t x t y t z t t
       
   

        ...(1)

0 0

0 0

Let lim or , lim ,

lim and lim

t t

t t

f Df df x dx u
f Dt dt t dt
y dy z dzv w
t dt t dt

   

   

       


        

...(2)

where q = (u, v, w) is the velocity of the fluid particle at P. Making 0t   and using (2), (1) reduces
to

      
Df f f f fu v w
Dt x y z t

   
   
    ...(3)

But                    q = ui + vj + wk ...(4)
and         ( / ) ( / ) ( / )x y z         i j k ...(5)

From (4) and (5),          u v w
x y z
  

   
  

q ...(6)

Using (6) and (3) reduces to                      ( )Df f f
Dt t


  


q ...(7)

Again, suppose g (x, y, z, t) be a vector function associated with some property of the fluid
(e.g. velocity etc.). Then proceeding as above, we have

     ( )D
Dt t


  


g g q g ...(8)

From (7) and (8), we have for both scalar and vector functions

      
D
Dt t


  


q ...(9)

D/Dt is called the material (or particle or substantial) derivative. It is also spoken of as
differentiation following the motion of the fluid. The first term on R.H.S. of (9), namely / ,t   is
called the local derivative and it is associated with time variation at a fixed position.  The second
term on R.H.S. of (9), namely ,q  is called the convective derivative and it is associated with the
change of a physical quantity f or g due to motion of the fluid particle.

Note. The operator D/Dt signifies that we are calculating the rate of change of a physical
quantity f or g associated with the same fluid particle as it moves about. The symbol d/dt is also
used for the material derivative D/Dt.
2.5A. Acceleration of a fluid particle. [Kanpur 2004]

Suppose a fluid particle moves from P (x, y, z) at time t to ( , , )Q x x y y z z       at time

.t t   Let
      q = (u, v, w) = ui + vj + wk ...(1)

be the velocity of the fluid particle at P and let  q q  be the velocity of the same fluid particle at
Q. Then, we have
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2.10 FLUID DYNAMICS

x y z t
x y z t
   

        
   
q q q qq       or      

x y z
t x t y t z t t
       
   

       
q q q q q

...(2)

Let
0 0

0 0

lim or , lim ,

lim and lim

t t

t t

D d x dx u
t Dt dt t dt

y dy z dzv w
t dt t dt

   

   

      
     
  

q q q
...(3)

Making 0t   and using (3), (2) reduces to

   
D u v w
Dt x y z t

   
    

   
q q q q qa ...(4)

Let           ( / ) ( / ) ( / )x y z         i j k ...(5)

From (1) and (5),                 ( / ) ( / ) ( / )u x v y w z         q ...(6)
Using (6), (4) may be re-written as

           ( ) ,D
Dt t


   


q qq qa ...(7)

which shows that the acceleration a of a fluid particle of fixed identity can be expressed as the
material derivative of the velocity vector q.

(i) Components of acceleration in cartesian coordinates (x, y, z).    (Meerut 2010)
Let a = axi + ayj + azk. Then (4) yields

  ( ) ( ) ( ) ( )x y za a a u u v w v u v w w u v w u v w
x y z t
   

             
   

i j k i j k i j k i j k i j k

 ,x
Du u u u ua u v w
Dt x y z t

   
    

   

,y
Dv v v v va u v w
Dt x y z t

   
    

   

and .z
Dw w w w wa u v w
Dt x y z t

   
    

   

(ii) Components of acceleration , θ( )r za a a  in cylindrical coordinates (r,  , z) with

velocity components , θ( )r zv v v .

2
r r r r

r r z
v vv v v va v v

t r r z r
    

    
   

r
r z

v v v v v v va v v
t r r z r
     


   
    
   

z z z z
z r z

vv v v va v v
t r r z

   
   
   
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KINEMATICS OF FLUIDS IN MOTION 2.11

(iii) Components of acceleration , θ( )ra a a  in spherical polar coordinates (r, θ, )  with

velocity components , θ( )rv v v .

2 2

sin
r r r r

r r
vv v vv v v va v

t r r r r
     

    
    

2 cot
sin

r
r

v vv v v v v v v
a v

t r r r r r
      


   

     
    

cot
sin

r
r

v v v v v v v v v v
a v

t r r r r r
        


    
     
    

2.5B. Acceleration in cartesian coordinates (an alternative proof).
Let P(x, y, z) be any point within the fluid. Let u, v, w be components of velocity of the

element of the fluid at P.
Let                    u = f(x, y, z, t) …(1)

Let particle which is at P(x, y, z) at time t move to  ( , , )Q x u t y v t z w t       after a short
interval t . If u u   be x-component of velocity at Q, then

       ( , , , )u u f x u t y v t z w t t t          

    ( , , ) f f f ff x y z u v w t
x y z t

    
          

        + terms containing higher power of t , by Taylor’s theorem

 ,u u u uu u u u v w t
x y z t

    
             

 using (1) ...(2)

Let ax, ay, az be the components of acceleration of the element of the fluid at P. Then,

0 0

( )lim limx t t

u u u ua
t t   

   
 

 

   
0

( )
lim ,
t

u u u uu u v w t u
x y z t

t 

   
     
   




  using (2)

             , ,u u u u Duu v w u v w u
t x y z t x y z Dt

        
                 

where                   ,D u v w
Dt t x y z

   
   
   

which in known as material or substantial derivative.

           x
Du u u u ua u v w
Dt t x y z

   
    

   
...(3)
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2.12 FLUID DYNAMICS

Similarly, we have

          ,y
Dv v v v ya u v w
Dt t x y z

   
    

    ...(4)

and           ,z
Dw w w w wa u v w
Dt t x y z

   
    

    ...(5)

2.6. Illustrative solved examples.
Ex. 1. If the velocity distribution is q = i Ax2y + j By2zt + kCzt2, where A, B, C, are

constants, then find the the acceleration and velocity components.
[Agra 2005; Garhwal 2001; Kanpur 2001; Meerut 2009, 2010, 2011]

Sol. The acceleration a = axi + ayj + azk is given by

                u v w
t x y z
   
   
   
q q q qa ...(1)

Also   q = ui + vj + wk = iAx2y + jBy2zt + kCzt2 ...(2)
Hence,   u = Ax2y,               v = By2zt,              w = Czt2 ...(3)
Using (2) and (3), (1) reduces to

a = By2zj +2Cztk + Ax2y × (2Axyi) + By2zt(Ax2i + 2Byztj) + Czt2(By2tj + Ct2k)
   = A(2Ax3y2 + Bx2y2zt) i + B (y2z + 2By3 z2t2 + Cy2zt3)j + C(2zt + Czt4) k

The components of the acceleration (ax , ay , az ) are given by
ax = A(2Ax3y2 + Bx2y2zt),        ay = B (y2z + 2By3z2t2 + Cy2zt3),          az = C(2zt + Czt4)
Ex. 2. The velocity components of a flow in cylindrical polar coordinates are

2 2( cos , sin , ).r z rz z t   Determine the components of the acceleration of a fluid particle.

Sol. Let , ,r zv v v  be the components of velocity in cylindrical polar coordinates ( , , ).r z
Then, we have

       2 cos ,rv r z                     sin ,v rz                    2
zv z t ...(1)

Let ar, a  and az be the components of acceleration. Then using (1), we have

2
r r r r

r r z
v vv v v va v v

t r r z r
    

    
   

   2 2 2 20 ( cos ) (2 cos ) {( sin ) / }( 2 sin ) ( ) ( cos ) ( sin ) /r z rz rz r rz z t r rz r           

    2 2 2 2(2 cos 3sin cos )rz r rt    

r
r z

v v v v v v va v v
t r r z r
     


   
    
   

   2 2 2( cos )( sin ) {( sin ) / }( cos ) ( ) ( sin ) (1/ ) ( cos )( sin )r z z rz r rz z t r r r z rz          

   2 sin (3 cos )z r r t  

z z z z
z r z

vv v v va v v
t r r z

   
   
   

   2 2 2 2 2( cos ) 0 {( sin ) / } 0 ( ) (2 ) (1 2 ).z r z rz r z t zt z t z         
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2.7. Significance of the equation of continuity, (or conservation of mass.)
[Kurukshetra 1999; Meerut 2010; Himachal 2002, 09, 10; Garhwal 2005; Kanpur 2003]
The law of conservation of mass states that fluid mass can be neither created nor destroyed.

The equation of continuity aims at expressing the law of conservation of mass in a mathematical
form. Thus, in continuous motion, the equation of continuity expresses the fact that the increase
in the mass of the fluid within any closed surface drawn in the fluid in any time must be equal to
the excess of the mass that flows in over the mass that flows out.
2.8. The equation of continuity (or equation of conservation of mass) by Euler’s method.
[Kurukshatra 1999; Himachal 2010; Kanpur 2003, 05, 08; Meerut 2003, 10  Purvanchal 2004, 05]

Let S be an arbitrary small closed surface drawn in the compressible fluid enclosing a volume
V and let S be taken fixed in space. Let P (x, y, z) be any point of S and let  (x, y, z, t)  be the fluid
density at P at any time t. Let S denote element of the surface S enclosing P. Let n be the unit
outward-drawn normal at S  and let q be the fluid velocity at P. Then the normal component of q
measured outwards from V is n.q. Thus,

Rate of mass flow accross S =  (n.q) S
 Total rate of mass flow across S

      ( ) ( )
S V

dS dV       n q q

                               (By Gauss divergence theorem)

 Total rate of mass flow into ( )
V

V dV     q   ...(1)

Again, the mass of the fluid within S at time 
V

t dV   V

S

q n

P
S
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2.14 FLUID DYNAMICS

 Total rate of mass increase within S
V V

d V d V
t t
 

  
   ...(2)

Suppose that the region V of the fluid contains neither sources nor sinks (i.e. there are no
inlets or outlets through which fluid can enter or leave the region). Then by the law of conservation
of the fluid mass, the rate of increase of the mass of fluid within V must be equal to the total rate
of mass flowing into V. Hence from (1) and (2), we have

  ( )
V V

d V d V
t


    
  q          or        ( ) 0

V
d V

t
       q

which holds for arbitrary small volumes V, if                 ( ) 0.
t

   


q ...(3)

Equation (3) is called the equation of continuity, or the conservation of mass and it holds at
all points of fluid free from sources and sinks.

Cor. 1. Since ( ) ,     q q q  other forms of (3) are

/ 0,t     q q ...(4)

        / 0,D Dt    q ...(5)

and      (log ) / 0.D Dt  q ...(6)
Cor. 2. For an incompressible and heterogeneous fluid the density of any fluid particle is

invariable with time so that / 0.D Dt   Then (5) gives

0 q  i.e. div  q = 0     or       / / / 0u x v z w z           if       q = ui + vj + wk.

Cor. 3.  For an incompressible and homogeneous fluid,   is constant and hence / 0t   .

Then (3) gives ( ) 0  q  i.e. 0 or / / / 0,q u x v y w z           as   is constant.

2.9. The equation of continuity in cartesian coordinates.
[Garhwal 2005; I.A.S. 1999; Kanpur 2011; Meerut 2002; Agra 1997; Bombay

1998’ G.N.D.U. Amritsar 2000, 03, 05; Rohilkhand 2005]
Let there be a fluid particle at P (x, y, z). Let

 (x, y, z, t) be the density of the fluid at P at any time t and
let u, v, w be the velocity components at P parallel to the
rectangular coordinate axes. Construct a small parallelepiped
with edges , ,x y z    of lengths  parallel to their respective
coordinate axes, having P at one of the angular points as
shown in figure. Then, we have

Mass of the fluid that passes in through the face PQRS

( )y z u   per unit time = f (x, y, z) say ...(1)

 Mass of the fluid that passes out through the opposite face P Q R S   

( , , )f x x y z    per unit time ( , , ) ( , , ) ...f x y z x f x y z
x


   


…(2)

     (expanding by Taylor's theorem)

Z

O

Y

X

S S 

R

P 

Q Q

y

z

x

R

P
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KINEMATICS OF FLUIDS IN MOTION 2.15

 The net gain in mass per unit time within the element (rectangular parallelepiped) due to
flow through the faces PQRS and P Q R S     by using (1) and (2)

= Mass that enters in through the face PQRS – Mass that leaves through the face P Q R S   

( , , ) ( , , ) ( , , ) ...f x y z f x y z x f x y z
x
        

( , , ),x f x y z
x


   


 to the first order of approximation ( ),x u y z
x


      


 by (1)

( )ux y z
x

 
    


...(3)

Similarly, the net gain in mass per unit time within the element due to flow through the

faces PP S S   and QQ RR 
( )vx y z

y
 

    


...(4)

and the net gain in mass per unit time within the element due to flow through the faces PP Q Q 

and SS R R  ( )wx y z
z

 
    


                          ...(5)

 Total rate of mass flow into the elementary parallelepiped

( ) ( ) ( )u v wx y z
x y z

      
          

...(6)

Again, the mass of the fluid within the chosen element at time t x y z   

 Total rate of mass increase within the element

      ( )x y z x y z
t t
 

       
 

...(7)

Suppose that the chosen region (bounded by the elementary parallelepiped) of the fluid
contains neither sources nor sinks. Then by the law of conservation of the fluid mass, the rate of
increase of the mass of the fluid within the element must be equal to the rate of mass flowing into
the element. Hence from (6) and (7), we have

        
( ) ( ) ( )u v wx y z x y z

t x y z
       

              

or      ( ) ( ) ( ) 0u v w
t x y z
      
   

   
...(8)

or          0u v wu v w
t x x y y z z
      
      

      

or         0u v wu v w
t x y z x y z
         
                   
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2.16 FLUID DYNAMICS

or                      0,D u v w
Dt x y z

    
       

...(9)

which is the desired equation of continuity in cartesian coordinates and it holds at all point of the
fluid free from sources and sinks.

Remark. If the fluid is homogeneous and incompressible,   is constant and (9) reduces to

         / / / 0u x v y w z         ...(10)
Further, if the fluid is heterogeneous and incompressible,   is a function of x, y, z and t

such that / 0D Dt  . Hence the corresponding equation of continuity is again given by (10).

2.10. The equation of continuity in cylindrical coordinates. (Kanpur 2009)
          [Agra 2005, Himachal 1998, Meerut 2000, 01, Garhwal 2000, Rajasthan 1998]

Let there be a fluid particle at P whose cylindrical coordinates are ( , , ),r z  where

0, 0 2 ,r      .z     Let ( , , , )r z t   be the density of the fluid at P at any time t. Withith
P as one corner construct a small curvilinear parallelepiped (PQRS, )P Q R S     with its edges
SS r   , arc  SP r   and .PQ z   Let qr, q  and qz be the velocity components in the direction
of the elements SS , arc SP and PQ respectively. Then, we have
     Mass of the fluid that passes in through the face PSRQ

= rr z q     per unit time ( , , )f r z  , say ...(1)Z

R
Q

z
qz

P qr Q 

P 

S 

R 

O

Y

X

 r

q


r
S

R

Q Q

S

P

R

S

r 


P
q

qr

qz
r 

r

z

 Mass of the fluid that passes out through the opposite face P S R Q   

         ( , , )f r r z     per unit time ( , , ) ( , , ) ...f r z r f r z
r


     


...(2)

                 (expanding by Taylor's theorem)
 The net gain in mass per unit time within the chosen elementary parallelepiped

( , )PQRS P Q R S     due to flow through the faces PSRQ and P S R Q     by using (1) and (2)

= Mass that enters in through the face PQRS – Mass that leaves through the face P Q R S   

( , , ) ( , , ) ( , , ) ...f r z f r z r f r z
r
           
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KINEMATICS OF FLUIDS IN MOTION 2.17

( , , ),r f r z
r


    


 tothe first order of approximation ( ),rr r z q
r


    


 by (1)

       
( )rrqr z

r
 

   


...(3)

Similarly, the net gain in mass per unit time within the element due to flow through the faces

SRR S  and QPP Q               ( )r z q


    


...(4)

and the net gain in mass per unit time within the element due to flow through the faces PSS P   and

QRR Q    ( )( ) z
z

qr z r q r r z
z z

 
        

 
    ...(5)

 Total rate of mass flow into the chosen element

( ) ( ) ( )r zr z rq q r q
r z
               

...(6)

Again, the mass of the fluid within the element at time t r r z   

  Total rate of mass increase within the element ( )r r z r r z
t t
 

      
 

...(7)

Suppose that the chosen region of the element of the fluid contains neither sources nor
sinks. Then by the law of conservation of the fluid mass, the rate of increase of the mass of the
fluid within the element must be equal to the rate of mass flowing into the element. Hence from
(6) and (7), we have

( ) ( ) ( )r zr r z r z rq q r q
t r z
                  

or
1 1 1( ) ( ) ( ) 0,r zrq q q

t r r r z
  
      

   
...(8)

which is the desired equation of continuity in cylindrical coordinates and it holds at all points of
the fluid free from sources and sinks.

2.11. The equation of continuity in spherical polar coordinates.
[Meerut 2008; Garhwal 1995, 96; Rajasthan 1997; Rohilkhand 2000]

Let there be a fluid particle at P whose spherical polar coordinates are ( , , ) ,r    where

0, 0 2 , 0 .r           Let ( , , , )r t    be the density of the fluid at P at any time t. With P

as one corner construct a small curvilinear parallelopiped ( , )PQRS P Q R S     with its edges

,PP r    arc ,PQ r   arc sin .PS r   Let ,rq q  and q  be the velocity components in

the direction of the elements ,PP  arc PQ and arc PS respectively. Then, we have
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2.18 FLUID DYNAMICS

z

P

S

Q

R

r

qr

q

Sr sin   

r 

 

q
R

O 


y

x


S

RP

r

S

R
P

r sin 


r 

Q

Q

qr

q

q

P

Q

Mass of the fluid that passes in through the face PQRS
                       sin rr r q       per unit time ( , , ),f r    say ...(1)

 Mass of the fluid that passes out through the opposite face PQRS

    ( , , )f r r     ( , , ) ( , , ) ...f r r r
r


       


...(2)

                                      (expanding by Taylor's theorem)
 The net gain in mass per unit time within the chosen elementary parallelopiped

( , )PQRS P Q R S     due to flow through the faces PQRS and P Q R S     by using (1) and (2)

 = Mass that enters in through the face PQRS – Mass that leaves through the face 'P Q R S  

( , , ) ( , , ) ( , , ) ...f r f r r r
r
              

( , , ),r f r
r


     


 to the first order of approximation

2( sin ),rr r q
r


      


 by (1) ...(3)

Similarly the net gain in mass per unit time within the element due to flow through the

faces PSS P   and 'QRR Q ( sin )r r r q
r 


      


    ...(4)

and the net gain in mass per unit time within the element due to flow through the faces PQQ P 

and SRR S 
1sin ( )

sin
r r r q

r 


      
                  ...(5)
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KINEMATICS OF FLUIDS IN MOTION 2.19

 Total rate of mass flow into the elementary parallelepiped

2sin ( ) ( sin ) ( )rr z r q r q r q
r  

   
              

...(6)

Again, the mass of the fluid within the chosen element at time t sinr r r    

 Total rate of mass increase within the element

2 2( sin ) sinr r r r
t t
 

      
 

...(7)

Suppose that the chosen region of the fluid contains neither sources nor sinks. Then by the
law of conservation of the fluid mass, the rate of increase of the fluid within the element must be
equal to the rate of mass flowing into the element. Hence from (6) and (7), we have

2 2sin ( ) ( sin ) ( ) sinrr z r q r q r q r r
r t 

    
                

or 2
2

1 1 1( ) ( sin ) ( ) 0
sin sinrr q q q

t r r rr  
   
       

     
, ...(8)

which is the desired equation of continuity in spherical polar coordinates and it holds at all points
of the fluid free from sources and sinks.
2.11A. Generalised orthogonal curvilinear coordinates

Let the rectangular cartesian coordinates
(x, y, z) of any point P in space be expressed in
terms of three independent, single-valued and
continuously differentiable scalar point functions
u1, u2, u3 as follows :

       

1 2 3

1 2 3

1 2 3

( , , )
( , , )
( , , )

x x u u u
y y u u u
z z u u u

 
 
 

…(1)

Suppose that the Jacobian of x, y, z with
respect to u1, u2, u3 does not vanish, that is,

1 2 3

( , , ) 0.
( , , )

x y z
u u u





 Then the transformation (1)

can be inverted, i.e., u1, u2, u3 can be expressed
in terms of x, y, z giving

       u1 = u1(x, y, z),                u2 = u2(x, y, z),               u3 = u3(x, y, z). ...(2)
Thus to each point P(x, y, z) we can assign a unique set of new coordinates (u1, u2, u3)

called the curvilinear coordinates of P. In this sense the equations (1) or (2) may be interpreted
as defining a transformation of coordinates.

The surfaces u1(x, y, z) = C1, u2(x, y, z) = C2, u3 (x, y, z) = C3, where C1, C2, C3 are
constants, are called coordinate surfaces and each pair of these surfaces intersect in curves called
coordinate curves or lines.  The surfaces u2 = C2 and u3 = C3 intersect in a curve along which the
coordinate ‘u1’ alone varies and hence it is called u1-curve or line. Similarly, we have u2- line and
u3- line.  The coordinate axes are determined by the tangents PQ1, PQ2 and PQ3 to the coordinate
curves u1 = C1, u2 = C2, u3 = C3. Note carefully that the directions of these coordinate axes
depend on the chosen point P of space and consequently the unit vectors associated with them are
not necessarily constant.

Z Q3

u
– curve

3

u
– curve

2u  = C3 3

u =C2 2

u = C1 1

P(x, y, z)
Q2 

u – curve
1

Q1

Y

X

O

Figure. Curvilinear coordinate system
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2.20 FLUID DYNAMICS

If at every point P(x, y, z), the coordinate axes are mutually perpendicular, then u1, u2, u3 are
called orthogonal curvilinear coordinates of P.

The line element ds in cartesian coordinates in given by
     (ds)2 = (dx)2 + (dy)2 + (dz)2. ...(3)

Now, from (1), we have

1 2 3
1 2 3

,x x xdx du du du
u u u
  

  
     1 2 3

1 2 3

y y ydy du du du
u u u
  

  
  

and dz
z
u

du
z

u
du

z
u

du












1

1
2

2
3

3

Substituting these values of dx, dy and dz in (3) and using the fact that by orthogonal
property coefficents of du1du2, du2 du3 and du3du1 must vanish in the result so obtained, we have

(ds)2 = h1
2 (du1)

2 + h2
2 (du2)

2 + h3
2 (du3)

2, ...(4)

2 2 2
1 1 1 1

2 2 2
2 2 2 2

2 2 2
3 3 3 3

where ( / ) ( / ) ( / )

( / ) ( / ) ( / )

and ( / ) ( / ) ( / ) ,

h x u y u z u

h x u y u z u

h x u y u z u

        
         
         

…(5)

h1, h2, h3 being known as scale factors.
2.11B. Equation of continuity in generalised orthogonal curvilinear coordinates

Let there be a fluid particle at P whose orthogonal
curvilinear coordinates are (u1, u2, u3). Let
 (u1, u2, u3, t) be the density of fluid at P at any time t
and let q1, q2, q3 be the velocity components at P along
PP, PQ and PS respectively.  Consider an infinitesimal
parallelepiped PQRS, PQRS with one vertex at P as
shown in the figure. Then we know that the lengths of
edges of parallelopiped are PP = h1u1, PQ = h2 u2 and
PS = h3 u3.  Areas of the faces are h2h3 u2u3,
h3h1u3 u1 and h1 h2 u1u2 and volume of the parallel-
epiped is h1 h2 h3 u1 u2 u3.

Then, mass of the fluid that passes in through the face PQRS
   (h2u2 h3u3)q1 per unit time = f(u1, u2, u3), say. ...(1)

 Mass of the fluid that passes out through the opposite face PQRS 

     =  f (u1 + u1, u2, u3) per unit time = f (u1, u2, u3) + u1

u1

f(u1, u2, u3) + ... ...(2)

(expanding by Taylor’s theorem)
 The net gain in mass per unit time within the elementary parallelepiped due to flow

through the faces PQRS and PQRS
= Mass that enters in through the face PQRS  Mass that leaves through the face PQRS

= f(u1, u2, u3)  [f(u1, u2, u3) + u1

u1

f(u1, u2, u3) + ...], by (1) and (2)

= u1

u1

f(u1, u2, u3), to the first order of approximation

= u1

u1

(pq1h2h3u2u3), using (1)

= u1u2u3

u1

(q1h2h3). ...(3)

Q3

O

Q2

Q

R

S

P

S

q1

q3

P(u ,u ,u )1 2 3

R

Q

Q1

q2

(Kanpur 2007, 10)
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KINEMATICS OF FLUIDS IN MOTION 2.21

Similarly, the net gain in mass per unit time within the element due to flow through the faces

PPSS and QQRR                      = u1u2u3

u2

(q2h1h3) ...(4)

and the net gain in mass per unit time within the element due to flow through the faces PPQQ

and SSRR                        = u1u2u3

u3

(q3h1h2). ..(5)

From (3), (4) and (5), total rate of mass flow into the elementary parallelopiped

    = u1u2u3



 


 


L
NM

O
QPu q h h u q h h u q h h

1
1 2 3

2
2 1 3

3
3 1 2( ) ( ) ( )   . ...(6)

    Again the mass of the fluid within the chosen element at time t =h1h2h3u1u2u3.
 Total rate of mass increase within the element

              =

t (h1h2h3u1u2u3) = h1h2h3u1u2u3


t

. ...(7)

Now, by the law of conservation of fluid mass, the rate of increase of mass of the fluid
within the element must be equal to the rate of flowing into the element.  Hence, from (6) and
(7), we have

h1h2h3u1u2u3

t   = u1u2u3




 


 


L
NM

O
QPu q h h u q h h u q h h

1
1 2 3

2
2 1 3

3
3 1 2( ) ( ) ( )  

or        

t +

1
1 2 3h h h




 


 


L
NM

O
QPu q h h u q h h u q h h

1
1 2 3

2
2 1 3

3
3 1 2( ) ( ) ( )    = 0 ...(8)

This is the required equation of continuity in orthogonal curvilinear coordinates (u1, u2, u3).
Deductions. (i) Rectangular Cartesian Coordinates (x, y, z)
Then,                (ds)2 = (dx)2 + (dy)2 + (dz)2 = (h1du1)

2 + (h2du2)
2 + (h3du3)

2

           h1 = h2 = h3 = 1,           u1 = x,           u2 = y     and     u3 = z.
Also,  here          q1 = u,              q2= v             and               q3 = w
In this case the equation of continuity (8) becomes

( ) ( ) ( ) 0u v w
t x y z
      
    

   
Deduction (ii). Cylinderical coordinates (r, , z)
Cylindrical coordinates (r, , z) are defined by means of equations
      x =  r cos ,            y = r sin ,               z = z,

where     r  0,                   0    2,            < z < 
Here (ds)2 = (dr)2 + (rd)2 + (dz)2 = (h1du1)

2 + (h2du2)
2 + (h3du3)

2

    h1 = 1,    h2 = r,    h3 = 1,    u1 = r,    u2 = ,    u3 = z.
Also, here      q1 = qr,       q2 = q        and      q3 = qz
In this case the equation of continuity (8) becomes

                    
1 ( ) ( ) ( )r zq r q q r

t r r z

              
= 0

or                        
1 1( ) ( ) ( )r zq r q q

t r r r z
   
     

   
= 0.

Deduction (iii). Spherical coordinates (r, , ).
Spherical coordinates (r, , ) are defined by means of equations

O

X
 r

M

Y

z

P(r, , z)z

Cylindrical Coordinates
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2.22 FLUID DYNAMICS

   x = r sin  cos ,       y = r sin  sin ,       z = r cos ,
where        r  0,                0  ,             0  2.
Here (ds)2 = (dr)2 + (rd)2 + (r sin d)2 = (h1du1)

2 + (h2du2)
2 + (h3 du3)

2

  h1 = 1,   h2 = r,   h3 = r sin ,   u1 = r,   u2 = ,   u3 = 
Also, here      q1 = qr,       q2 = q      and       q3 = q
In this case the equation of continuity (8) becomes

2
2

1 ( sin ) ( sin ) ( ) 0
sin rr q r q rq

t rr  
    

              

or                  
2

2

1 1 1( ) ( sin ) ( ) 0
sin sinrr q q q

t r r rr  
   
        

     

2.12A. The Equation of continuity by the Lagrangian method.
[G.N.D.U - Amritsar 2000, Meerut 2005, 07, Rohilkhand 2005, Kanpur 2003, 04]

Let R0 be the region occupied by portion of a fluid at the time t = 0,  and R the region
occupied by the same fluid at any time t.

Let (a, b, c) be the initial co-ordinates of a fluid particle
P0 enclosed in this element and o  be its density..

Then mass of the fluid element at t = 0 is .o a b c   
Let P be the subsequent position of P0 at time t and let

  be the density of the fluid there.
Then mass of the fluid element at t = t is .x y z  
From the law of conservation of mass, the mass contained inside a given volume of fluid

remains unchanged throughout the motion. Thus, the total mass inside R0 must be equal to the
total mass inside R.

       
0

0
R R

a b c x y z         ...(1)

From the advanced calculus, we have
     x y z a b c      J ...(2)

where     Jacobian 
/ / /

( , , ) / / /
( , , )

/ / /

x a x b x c
x y zJ y a y b y c
a b c

z a z b z c

     

       


     

...(3)

Using (2), (1) may be re-written as

0
0

oR R
a b c a b c          J         or        

0
0( – ) 0

R
a b c      J ...(4)

which holds for all regions R0 if        0 – 0,  J ...(5)
which is the equation of continuity in Lagrangian form.
2.12B. Equivalence between Eulerian and Lagrangian forms of equations of continuity.

[Meerut 2007, Kurukshetra 1997]
Refer figure of Art. 2.12A. Let R0 be the region occupied by portion of a fluid at the time

t = 0, and R the region occupied by the same fluid at any time t. Let (a, b, c) be the initial
coordinates of a fluid particle P0 enclosed in this element and 0  be its density. Then mass of the

fluid at t = 0 is 0 .a b c     Let P be the subsequent position of P0 at time t and let  be the

density of the fluid there. Then mass of the fluid element at t = t is .x y z  

0 

P0
P

R0 R

O

X


M

Y

P(r, , ) z



r

Spherical Coordinates
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KINEMATICS OF FLUIDS IN MOTION 2.23

The velocity components in the two systems are connected by the equations
                  / ,u dx dt                 / ,v dy dt                 /w dz dt ...(1)
Also,      x = x (a, b, c, t),                y = y (a, b, c, t),             z = z (a, b, c, t) ...(2)

        
u dx d x
a a dt dt a
              

            so that           
d x u
dt a a
      

         etc. ...(3)

The equation of continuity in the Lagrangian form is
          0 ,  J ...(4)

where
/ / /

( , , ) / / /
( , , )

/ / /

x a x b x c
x y zJ y a y b y c
a b c

z a z b z c

     

       


     

...(5)

Also, the equation of continuity in the Eulerian form is

0d u v w
dt x y z

    
       

...(6)

Differentiating both sides of (5) w.r.t. ‘t’ and using (3), we get

     

/ / / / / / / / /
/ / / / / / / / /
/ / / / / / / / /

u a u b u c x a x b x c x a x b x c
dJ y a y b y c v a v b v c y a y b y c
dt

z a z b z c z a z b z c w a w b w c

                 
                    
                 

or   1 2 3/ ,dJ dt J J J   ...(7)

Since
u u x u y u z
a x a y a z a
      
  

      
 etc, J1 can be re-written as (after interchanging its

rows and columns) Thus, we have

       
1

u x u y u z y z
x a y a z a a a
u x u y u z y zJ
x b y b z b b b
u x u y u z y z
x c y c z c c c

       
 

       
       

  
       
       

 
       

u y y zu x y z u z y z
y a a ax a a a z a a a

u x y z u y y z u z y z
x b b b y b b b z b b b
u x y z u z y zu y y z
x c c c z c c cy c c c

          
          

           
  
           
          
          

,

x y z
a a a

u x y z
x b b b

x y z
c c c

  
  

   

   
  
  

[the last two determinants vanish
because they possess two identical
columns]
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2.24 FLUID DYNAMICS

        1
uJ
x




J, using (5)

Similarly, we have                 2
vJ J
y




            and             3
wJ J
z




 (7) becomes
dJ u v wJ
dt x y z

   
      

...(8)

Derivation of Eulerian form from Lagragin form :

From (4),           0( ) ( ) 0d dJ
dt dt

                 or            0d dJJ

dt dt

 

 0,d u v wJ J
dt x y z

    
        

 using (8)

or      0,d u v w
dt x y z

    
        

which is (6) i.e. Eulerian form of equation of continuity.
Derivation of Lagrangian form from Eulerian form :

From (6), 0d u v w
dt x y z

    
       

 1 0d d
dt dt
    

 

J
J

 using (8)

or            0d dJJ
dt dt

                     or                    ( ) 0d J

dt
  ...(9)

Integrating (9),       0 ,J  

which is (4) i.e. Lagrangian equation of continuity.
2.13. Some symmetrical forms of the equation of continuity.

The equation of continuity takes a simplified form in cases when the motion of the fluid
possesses certain symmetrical properties as shown below :

(i) Cylindrical Symmetry. Let there be a fluid particle at P whose cylindrical coordinates
are ( , , ).r z  Due to cylindrical symmetry, let qr (r, t) be the velocity at P perpendicular to the axis

OZ and let ( , )r t  be the density of the fluid at P. Consider an element of the fluid consisting of
two cylinders of radii r and r r   with OZ as axis, bounded by planes at unit distance apart.
Then, we have

Rate of flow across the inner surface (2 ) ( , ),rq r f r t     say ...(1)

Rate of flow across the outer surface ( , )f r r t   ...(2)

Rate of change of mass within the element ( 2 )r r
t


    


...(3)
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KINEMATICS OF FLUIDS IN MOTION 2.25

Suppose the element of the fluid contains neither sources nor sinks. Then by the law of
conservation of the fluid mass, the rate of increase of the mass within the element must be equal
to the rate of mass flowing into the element. Hence from (1), (2) and (3), we have

   ( 2 ) ( , ) ( , )r t f r t f r r t
t

       



or 2 ( , ) ( , ) ( , )r r f r t f r t r f r t
t r
           

, expanding by Taylor's theorem

or                2 ( , ),r r r f r t
t r
 

    
 

 to first order of approximation

or                              2 (2 ),rr r q
t r
 

    
 

 by (1)

or      2 2 ( )rr r q
t r
 

    
 

       or            1 ( ) 0rr q
t r r
 
  

 
...(4)

If   is constant, / 0t    and (4) reduces to

( ) 0rr q
r

 


...(5)

Integrating (5) w.r.t. ‘r’, we have

            ( )rr q g t                       or    r qr = g (t) ...(6)
If the flow is steady, g(t) reduces to an absolute constant. Thus, for a steady flow

                r qr = C, where C is a constant. ..(7)
Note. The relation (4) may be also be derived as a special case of equation(8) of Art. 2.10 by

using the cylindrical symmetry (i.e. / 0 and / 0z      )

(ii) Spherical Symmetry. Let there be a fluid particle at P whose spherical polar coordinates
are ( , , ).r    Due to spherical symmetry, let qr (r, t) be the velocity at P in the direction of OP and
let  (r, t) be the density of the fluid at P. Consider an element of the fluid consisting of two
concentric spheres of radii r and r r   with O as centre. Then, we have

Rate of flow across the inner surface 24 ( , ).rq r f r t      say ...(1)

Rate of flow across the outer surface ( , )f r r t   ...(2)

Rate of change of mass within the element 2( 4 )r r
t


     


...(3)

Then as in part (i) above, we have

     2(4 ) ( , ) ( , )r r f r t f r r t
t

     



or    24 ( , ) ( , ) ( , )r r f r t f r t r f r t
t r
           

, expanding by Taylor's theorem

or        24 ( , ),r r r f r t
t r
 

    
 

to first order of approximation
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2.26 FLUID DYNAMICS

or    2 24 ( 4 ),rr r r q r
t r
 

       
 

 by (1)

or     2 24 4 ( )rr r q
t r
 

    
 

      or          2
2

1 ( ) 0rr q
t rr
 
  

 
...(4)

If   is constant, / 0t    and (4) reduces to

      2( ) 0rr q
t


 


...(5)

Integrating (5) w.r.t. ‘r’, we have

    2 ( )rr q g t        or 2 ( )rr q g t ...(6)
If the flow is steady, g(t) reduces to an absolute constant. Thus, for a steady flow

                    r2 qr = C, where C is a constant.     ...(7)
Note. The relation (4) may be derived as a special case of equation (8) of Art. 2.11 by using

the spherical symmetry ( . ., / 0, / 0)i e       .

2.14. Equation of continuity of a liquid flow through a channel or a pipe.
Let an incompressible liquid continuously flow through a channel

or a pipe whose cross-sectional area may or may not be fixed. Then the
quantity of liquid passing per second is the same at all sections.

Suppose some liquid is flowing through a tapering pipe as shown
in figure. Let S1, S2, S3 be areas of the pipe at sections 1-1, 2-2, 3-3
respectively. Further, let V1,V2 and V3 be velocities of the liquid at
sections 1-1, 2-2, 3-3 respectively. Let Q1, Q2, Q3 be the total quantity
of liquid flowing across the sections 1-1, 2-2, 3-3 respectively. Then

Q1 = S1 V1,          Q2 = S2 V2,          Q3 = S3 V3 ...(1)
From the law of conservation of mass, the total quantity of liquid

flowing across the sections 1-1, 2-2, 3-3 must be the same. Hence
         Q1 = Q2 = Q3 = … and so on.

Thus, S1 V1 = S2 V2 = S3 V3 = … is the equation continuity.
2.15. Working rule of writing the equation of continuity.

Let P be any fluid particle and let   be density at P. With P as one corner construct a
parallelepiped whose edges are , , ,v    in the chosen coordinate system. Let

Lengths of elements :     ,      ,   ,v
Components of velocity :        u        v                w
Now calculate the rate of the excess of the flow-in over flow-out along the first length by

taking the negative derivative with respect to the first length of the product (density × velocity in
the first direction × product of remaining lengths) and finally multiplying this by first length
itself. We thus obtain

( ).u v
   


Similarly calculate the rates of the excess of the flow in over the flow-out along the remaining

two lengths and obtain

( )v
   


v                    and                    ( ).v w

v


   


1
2

3

3
2

1

S1
S2 S3

V1 V2 V3
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KINEMATICS OF FLUIDS IN MOTION 2.27

Now, the total mass of fluid in the element
= density × product of the three edges of the element =  v .

Hence the rate of increase in mass of the element ( )v
t


  


For the equation of continuity, we have
Rate of increase in mass of the element

= Total rate of the excess of the flow-in over the flow out along the three lengths of the element

i.e. ( ) ( )v u v
t
 
      

 
( ) ( ),v v w

v
 

       
 

v

which on simplification yields the desired equation of the continuity.
2.16. Illustrative solved examples.

Ex. 1. The particles of a fluid move symmetrically in space with regard to a fixed centre;
prove that the equation of continuity is

         2
2 ( ) 0,u r u

t r rr
   
  

  
 where u is the velocity at distance r..

[Meerut 2011; Rohilkhand 2005; Himachal 2003; Kanpur 2004]
Sol. Here we have spherical symmetry. Proceed as in case (ii) Art. 2.13 upto equation (4) and

obtain (noting that qr = u in the present problem).

       2
2

1 ( ) 0r u
t rr
 
  

 
            or          2 2

2
1 ( ) 0r u r u

t r rr
           

or         2
2 ( ) 0.u r u

t r rr
   
   

  

Ex. 2. A mass of fluid moves in such a way that each particle describes a circle in one plane

about a fixed axis; show that the equation of continuity is          / ( ) / 0,t      
where   is the angular velocity of a particle whose azimuthal angle is  at time t

(Meerut 2009; Ranchi 2010)
Sol. Here the motion is confined in a plane. Consider a fluid

particle P, whose polar coordinates are ( , ).r   Let P describe a circle
of radius r. With P as one corner, consider an element PQRS such
that PS r   and arc .PQ r   Here there is no motion of the
fluid along PS. The rate of the excess of the flow-in over the flow-out along PQ

     ( ).r r r
r


     


Again, the total mass of the fluid within the element = .r r  

The rate of increase in mass of the element ( )r r
t


   


Hence the equation of continuity is given by

   ( ) ( )r r r r r
t r
 
       

 
          or         ( )r r r r

r
 

      
 

or     / ( ) / 0,t      

o r P r S

Q

R
r 

 r

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2.28 FLUID DYNAMICS

Ex. 3. If   is the area of cross-section of a stream filament prove that the equation of

continuity is      ( ) ( ) 0,q
t s
 
   

 

where s  in an element of arc of the filament in the direction of flow and q is the speed.
[Garhwal 1993, 95]

Sol. Let PP Q Q   be stream filament whose area of cross-section is   and arc .PQ s 
The rate of the excess of the flow-in over the flow-out along PQ

       ( )s q
s


   


Again, the total mass of the fluid within the stream filament is s .

 the rate of increase in mass of the stream filament ( ).s
t


 


Hence the equation of continuity in given by

      ( ) ( )s s q
t s
 
     

 
             or            ( ) ( ) 0.q

t s
 
    

 

Ex. 4. (i) A pulse travelling along a fine straight uniform tube filled with gas causes the

density at time t and distance x from the origin where the velocity is u0 to become 0 ( ).vt x  
Prove that the velocity u ( at time t and distance x from the origin) is given by

     
0( ) ( )

( )
u v vtv

vt x
 


 

(ii) A gas is moving in a uniform straight tube. Prove that if the density be f(at –x) at a
point where t is the time and x is the distance of the point from an end of the tube, its velocity is

            
( ) ( ) ( ) ,

( )
af at x v a f at

f at x
  



where v is the velocity at that end of the tube and a is a constant.
Sol. (i) Let  be the density and u the velocity at a distance x. Then we are given that

       0 ( )vt x     ...(1)
Again the equation of continuity is

        ( ) 0u
t x
 
  

 
              or           0u u

t x x
  
  

  
...(2)

From (1), 0 ( ),v vt x
t
    


                  and                0 ( )vt x
x
    


...(3)

Using (1) and (3), (2) reduces to

0 0 0( ) ( ) ( ) 0uv vt x vt x u vt x
x
           


   or    ( ) ( ) ( ) 0uv u vt x vt x
x
      


or            
( ) 0
( )

du vt x dx
v u vt x

 
 

  


Q

Q

P

P

q

s
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KINEMATICS OF FLUIDS IN MOTION 2.29

Integrating,           – log (v – x) – log  (vt – x) = – log C, C being an arbitrary constant

or   (v – u)  (vt – x) = C ...(4)

Given, u = u0 when x = 0 so that (v – u0)  (vt) = C. With this value of C, (4) reduces to

     (v – u)  (vt – x) = (v – u0)  (vt)              or       0( ) ( )
( )

u v vtu v
vt x
 

 
 

(ii) Do just like (i) yourself.
Ex. 5. A mass of fluid is in motion so that the lines of motion lie on the surface of co-axial

cylinders. Show that the equation of continuity is

     
1 ( ) ( ) 0,u v

t r z
  
    

  
where u,v are the velocity perpendicular and parallel to z.

[Agra 2003; Rohilkhand 2002, Kanpur 2000, 08; Meerut 1999, 2002, 2012]
Sol. Consider a fluid particle P, whose cylindrical coordinates are ( , , )r z . With P as one

corner construct an element (curvilinear parallelepiped PQRS, P Q R S    ) with edges PQ r 
PS r   and .PP z  

Let   be the density of the fluid at P.
Since the lines of motion lie on the surface of co-axial cylinder, there is no motion along

PQ. Hence the rate of the excess of the flow-in over flow-out along PQ vanishes. Again, we have

Rate of excess of flow-in over flow-out along ( )PS r u r z
r


     


Rate of excess of flow-in over flow-out along ( )PP z vr r
z
     


Again, the rate of increase in mass of the element ( )r r z
t


   


Hence the equation of continuity is given by

       ( ) ( ) ( )r r z u r z z vr r
r z
  
            

  

or     ( ) ( ) 0r r z r z u r r z v
t z
  

          
  

or                1 ( ) ( ) 0.u v
t r z
  
    

  
Ex. 6. If the lines of motion are curves on the surfaces of cones having their vertices at the

origin and the axis of z for common surface, prove that the equation of continuity is

2 cosec( ) ( ) 0,
r

uu w
r r r
    
     

  

where u and w are the velocity components in the directions in which r and   increase.
[Agra 2001; Garhwal 2000; Meerut 2001, 02, 03, 04, G.N.D.U. Amritsar 1998; Rohilkhand 2004]
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2.30 FLUID DYNAMICS

Sol. Let O, the vertex of cones, be the origin and let OZ, their common axis, be the axis of z.
Let OAB be a cone of semi-vertical angle  . Consider a fluid particle P whose spherical polar

coordinates are ( , , ).r   . With P as one corner construct an

element (curvilinear parallelepiped PQRS, P Q R S    ) with

edges ,PP r   PS r   and sin .PQ r 

Since the lines of motion are curves on the surfaces of
cones, there would be no motion perpendicular to the surface of
the cone i.e., the velocity in the  -direction (in the direction of
PS) is zero. Further, given that u and w are velocities along
PP and PQ respectively. Since velocity along PS is zero, the
excess of flow-in over flow-out along PS vanishes.
Again, we have

Rate of excess of flow-in over flow-out along PP

    2( sin ) sin ( )r u r r r r u
r r
 

            
 

Rate of excess of flow-in over flow-out along PQ

    sin ( ) ( )
sin

r w r r r r w
r
 

           
 

Also, the rate of increase in mass of the element

    2( sin ) sinr r r r r
t t
 

        
 

Hence the equation of continuity is given by

2 2sin sin ( ) ( )r r r r u r w
t r

   
             

or    2
2

1 1( ) ( ) 0
sin

r u w
t r rr
  
    

   
  or   2

2
1 ( ) 1 ( )2 0

sin
u wr r u

t r rr
              

or                
( ) 2 cosec ( ) 0.u u w

t r r r
      
   

  

Ex. 7. If every particle moves on the surface of a sphere prove that the equation of continuity is

cos ( cos ) ( cos ) 0,
t
           
  

 being the density, ,  the latitude and longitude of any element,   and   the angular
velocities of the element in latitude and longitude respectively. (I.A.S. 1991)

Sol. Consider a fluid particle P on the semi-circle APB making an angle   with semi-circle
ACB. Suppose that OP makes an angle   with OC. With P as one corner construct and elementary

parallelepiped PQRS, P Q R S     on the surface of edges ,PQ r  PP r    an cos .PS r 
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KINEMATICS OF FLUIDS IN MOTION 2.31

Let   be the density of the fluid at P.
Since every particle moves on the surface of the

sphere, there will be no velocity normal to the surface
of the sphere (i.e. radial direction or along PQ). Again
the velocities along PP  and PS are r  and cosr 
because   and   are the angular velocities in
latitude and longitude respectively.

Since velocity along PQ is zero, the rate of
excess of flow-in over flow-out along PQ vanishes.
Further, we have

Rate of excess of flow-in over flow-out along PP

      2( cos ) ( cos )r r r r r r
r
 

            
 

Rate of excess of flow-in over flow-out along PS

     
2cos ( cos ) ( cos )

cos
r r r r r r

r
               
 



Again, the rate of increase in mass of the element

        2( cos ) cosr r r r r
t t
 

        
 

Hence the equation of continuity is given by

2 2cos ( cos ) ( cos )r r r r
t

                  

or             cos ( cos ) ( cos ) 0.
t
          
  

Ex. 8. If the lines of motion are curves on the surfaces of spheres, all touching the plane of
xy at the origin O, the equation of continuity is

   sin ( ) sin ( ) (1 2cos ) 0,r v u u
t
  
          
  

where r is the radius CP of one of the spheres,  the angle PCO, u the velocity in the plane PCO,
v the perpendicular velocity and   the inclination of the plane PCO to a fixed plane through the
axis of z.
[Agra 1995; Garhwal 2001; I.A.S. 1999, Rohilkhand 2000, U.P.P.C.S. 2002; Rajasthan 1998]

Sol. Let C and C  be the centres of the two consecutive spheres of radii r and r r 
respectively touching the plane of xy at the origin O as shown in the figure. Clearly,

( ) .CC OC OC r r r r          Consider a fluid particle P on the inner sphere. Produce CP
so as to meet the outer sphere at Q. Let S be a consecutive point on the circle in the given plane
PCO so that .SCO     Hence SCP SCO PCO    ( ) .        Let PR be an
elementary arc in a plane perpendicular to the plane PCO.

Z

A
Q 

Q

R 

S 

S
P  R

P 

C X 
MN







Y

B

O

Created with Print2PDF. To remove this line, buy a license at: http://www.software602.com/

SuccessClap: Best Coaching for UPSC Mathematics : For Info- 9346856874
Checkout ->22 Weeks Study Plan, Videos, Question Bank Solutions, Test Series

Succ
ess

Clap



2.32 FLUID DYNAMICS

In ,CC Q  we have form Trigonometry,,

2 2 2 2 cosC Q CC CQ CC CQ QCC      

or   2 2 2( ) ( ) 2 ( ) cos ( )r r r r PQ r r PQ          

or     22 2 2 cos 2 cosr r r PQ PQ r r r PQ       

Since PQ and r  are small quantities, to first order
of approximation we have

                2 (1 ) 2r r cos r PQ   

or                           (1 ) .PQ cos r   

With P as one corner consider an elementary
parallelepiped with edges (1 ) ,PQ cos r    PS r 

and sin ,PR r   where   is the angle that the plane PCO makes with a fixed plane through the
z axis (say, the plane XOZ). The value of PR can be calculated by rotating the plane PCO about Z-
axis through an angle .

Since the lines of motion are curves on the surfaces of spheres touching the plane of xy,
there would be no motion along PQ, i.e., the velocity along PQ is zero. Further, given that u and
v are the velocity components along the edges PS and PR in the direction of   and   increasing.

Since velocity along PQ is zero, the rate of excess of flow in over flow-out along PQ
vanishes. Further, we have

Rate of excess of flow-in over flow-out along PS

      (1 cos ) sinr u r r
r


         


      2sin (1 cos ) ( ) cos (1 cos ) sinr r u u                  

     2[sin (1 cos ) ( ) {cos (1 cos ) (1 cos )}]r r u u
              



     (1 cos ) [sin ( ) (1 2cos )]r r u u
          


Next, rate of excess of flow-in over flow-out along PR

    sin { (1 cos ) } (1 cos ) ( )
sin

r v r r r r v
r
 

               
 

Also, the rate of increase in mass of the element

    { (1 cos ) sin }r r r
t


        


2 sin (1 cos )r r
t


     


Hence the equation of continuity is given by

2 sin (1 cos ) (1 cos ) [sin ( )r r r r u
t
 

            
 

(1 2cos )]u  

(1 cos ) ( )r r v
     


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KINEMATICS OF FLUIDS IN MOTION 2.33

or     sin sin ( ) ( ) (1 2cos ) 0.r u v u
t
  
         
  

Ex. 9. Show that in a two-dimensional incompressible steady flow field the equation of
continuity is satisfied with the velocity components in rectangular coordinates given by

       
2 2

2 2 2
( )( , ) ,

( )
k x yu x y
x y



                                        2 2 2

2( , ) ,
( )

kxyv x y
x y




where k is an arbitrary constant. [Meerut 1994; Rolhilkhand 2001, 03, 04]
Sol. The equation of continuity for incompressible steady flow in cartesian coordinates is

                    / / / 0u x v y w z         ...(1)
For a two dimensional flow in xy-plane, w = 0 so that (1) reduce to

                          / / 0u x v y      ...(2)
Differentiating the given values of u and v partially w.r.t ‘x’ and ‘y’ respectively, we get

  
2 2

2 2
2 2 3 2 2 2 2 2 3 2 2 2

( 2) (2 ) 2 ( ) 2( ) 4
( ) ( ) ( ) ( )

u x k x x y kxk x y kx
x x y x y x y x y
    
     

     ...(3)

2

2 2 3 2 2 2 2 2 3 2 2 2
( 2) (2 ) 2 8 22
( ) ( ) ( ) ( )

v y kx kxy kxkxy
y x y x y x y x y
  
    

     ...(4)

From (3) and (4), we have

3 2 2 3 2 2 2 2

2 2 3 2 2 2 2 2 3
4 4 8 4 4 4 8 4 ( ) 0

( ) ( ) ( )
u v kx kxy kxy kx kx kxy kxy kx x y
x y x y x y x y
         
    

    

Hence, the equation of continuity (2) is satisfied.
Ex. 10. Consider a two dimensional incompressible steady flow field with velocity components

in spherical coordinates ( , , )r     given by

3
0 0

1 3
3 11 cos ,
2 2r

r r
v c

r r

 
     
 

         0,v          
3

0 0
1 03

3 11 sin , 0
4 4

r r
v c r r

r r
 

        
 

where c1 and r0 are arbitrary constants. Is the equation of continuity satisfied.
Sol. The equation of continuity in spherical polar coordinates is given by (using Art. 2.11

with notations : , ,r rq v q v q v      )

2
1 1 1 1( ) ( sin ) ( ) 0

sin sinrr v v v
t r r rr


 

  
       

     

For a two-dimensional incompressible steady flow with 0,v   we have  = constant and

/ 0.t    Hence for the present flow, the equation of continuity is given by

   
2

2
( ) (sin ) 0

sin
rr v v

r rr 
  

  
  

  or   2
2

1 12 sin cos 0
sin

r
r

vvr rv v
r rr




               

or                
2 1 cot 0r r v vv v

r r r r
 

    
 

...(1)
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2.34 FLUID DYNAMICS

From the given values of vr and v , we have

       
3

0 0
1 2 4

330 cos
2 2

r r rv
c

r r r

 
       

...(2)

and        
3

0 0
1 3

3
1 cos

4 4
v r r

c
r r

  
        

...(3)

Using (2) and (3), we have

L.H.S. of (1) 
3 3

0 0 0 01
1 2 4 3

3 23 3 1cos 1 cos
2 2 22

r r r rc
c

r rr r r

   
            
   

3
0 01

3
3

1 cos
4 4
r rc

r r r

 
     
 

3
0 01

3
31 cot sin
4 4

r rc
r r r

 
      
 

= 0, on simplification

Hence, the equation of continuity (1) is satisfied.
Ex. 11. A pipe branches into two pipes C and D

as shown in the adjoining figure. The pipe has diameter
of 45 cm at A, 30 cm at B, 20 cm at C and 15 cm at D.
Determine the discharge at A, if the velocity at A is
2m/sec. Also determine the velocities at B and D, if
the velocity at C is 4 m/sec.

Sol. Let SA, SB, SC,  and SD be areas of cross sections and let VA, VB, VC, VD, be velocities at
A, B, C and D respectively. Then, we have

20.45 0.159 square meters
2AS     

 
,

20.3 0.0706 square meters
2BS     
 

20.2 0.0314 square meters
2CS     
 

,
20.15 0.01767 square meters

2DS     
 

Also, given that       VA = 2 m/sec                  and                   VC = 4 m/sec
Let QA, QB, QC, and QD, be discharges at A, B, C and D respectively. Remembering that
Discharge = area of cross-section × velocity, we have

QA = SA VA = 0.159 × 2 = 0.318 m3/sec
From the equation of continuity (refer Art. 2.14), we have

SA VA = SB VB                    so that           0.318 4.5 m/sec.
0.0706

A A A
B

B B

S V QV
S S

   

Again, from the geometry of flow, we have
        QA = QC + QD              or            0.138 = SC VC + SD VD

or    0.138 = 0.0314 × 4 + 0.01767× VD          so that       VD = 10.6 m/sec
Ex. 12. The diameters of a pipe at the sections A and B are 200 mm and 300 mm respectively.

If the velocity of  water flowing through the pipe at section A is 4m/s, find
(i) Discharge through the pipe (ii) velocity of water at section B.
Sol. Radii r1 and r2 at the section A and B are given by

B
C

D

A
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KINEMATICS OF FLUIDS IN MOTION 2.35

r1 = d1/2 = 100 mm = 0.1 m,
r2 = d2/2 = 150 mm = 0.15 m

S1 = area of section 1
2A r 

   2 2(0.1) 0.0314m  

v1 = velocity at section A = 4m/s (given)

S2 = area of  section 2
2B r  2 2(0.15) 0.0707m  

(i) To determine discharge Q through the pipe. We have
           Q = S1 v1 = 0.0314 × 4 = 0.1256 m3/s.

(ii) To determine velocity v2 of water at section B : Here the continuity equation is

     S1 v1 = S2 v2                              
1 1

2
2

0.0314 4 1.77 /
0.0707

S vv m s
S


  

Ex.13. A pipe A 450 mm in diameter branches into two pipe B and C of diameters 300 mm
and 200 mm respectively. If the average velocity in 450 mm diameter pipe is 3 m/s, find
(i) Discharge through 450 mm diameter pipe (ii) Velocity in 200 mm diameter pipe if the average
velocity in 300 mm pipe is 2.5 m/s.

Sol.   S1 = area of section 2 2
1( / 2) ( / 4) (0.45) 0.159mA d      

    S2 = area of section 2 2
2( / 2) ( / 4) (0.3) 0.0707mB d      

    S3 = area of section  2 2
3( / 2) ( / 4) (0.2) 0.0314mC d      

(i) To find dischange Q1 through A :
Q1 = S1v1 = 0.159 × 3 = 0.477 m3/s.

(ii) To find velocity v3 in pipe C.
 By continuity equation,we have
 S1v1 = S2v2 + S3v3 so that
   v3 = (S1v1 – S2v2)/S3. ...(1)

But by part (i),  S1v1 = 0.477 m3/s.
Also                    S2v2 = 0.0707 × 2.5 = 0.1767 m3/s.

Hence (1) reduces to 3
0.4770 0.1767 9.55 / .

0.0314
m s

 v

Ex. 14. In a three dimensional incomperessible flow, the velocity components in y and z
directions are v = ax3 – by2 + cz2,w = bx3 – cy2 + az2 x. Determine the missing component of
velocity distribution such that continuity equation is satisfied.

Sol. Given             v = ax3 – by2 + cz2           and    w = bx3 – cy2 + az2x.    ...(1)
The continuity equation for an incompressible fluid flow is

                ( / ) ( / ) ( / ) 0u x v y w z        

or       / 2 2 0u x by azx                   or      / 2 2 .u x by azx   
Integrating (2) w.r.t. ‘x’,        u = 2byx – 2az × (x2/2) + f (y, z), ...(2)

where f (y, z) is an arbitrary function which is independent of x.
Ex. 15. Water flows through a pipe of length l which tapers from the entrance radius r1

to the exist radius r2 If the entrance velocity is V1 and the relation between r1 and r2 is given
by r2 = r1 ± ml, where m is the slope, prove that the exist velocity V2 is

v m/s1 = 4 v2

B

d2 = 300 mm

d1 = 200 mm

A

A

Cd1 = 450 mm
v3d

3 = 200 mm

v 2
= 2.5 m/s

d 2
= 300 mm

B
v 1 = 3m/s
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2.36 FLUID DYNAMICS

             
2 2

1 1
2 1 2 2

1 1

2 ( / ) ( / )
1

1 2 ( / ) ( / )
m l r m l r

V V
m l r m l r

  
   

   
Sol. If S1 and S2 be the areas of cross-sections of the pipe at the entrance and exist, then

2
1 1S r   and 2

2 2 .S r   From the equation of continuity, we have

            S1V1= S2 V2                or               2 2
1 1 2 2r V r V  

Thus, 
2 2

1 1 1 2
2 2 2

2 1
,

( )
r V r VV
r r ml

 


           as given         r2 = r1 ± ml

       
2 2

1 1 1 1
12 2 2 2 2

1 1 1 1 1

2 ( / ) ( / )
1

{1 ( / )} 1 2 ( / ) ( / ) 1 2 ( / ) ( / )
V V m l r m l r

V
m l r m l r m l r m l r m l r

  
    
      

Ex. 16. Determine the constants l, m and n in order that the velocity
q = {(x + lr)i + (y + mr)j + (z + nr)k}/{r(x + r)}, where r = (x2 + y2 + z2)1/2 may satisfy the
equation of continuity for a liquid. [Bhopal 2000; Meerut 1996]

Sol. Let q = ui + vj + wk, then we have

       ,
( )
x lru

r x r



                 ,

( )
y mrv

r x r



                 ,

( )
z nrw

r x r



 ...(1)

Also, given        r = (x2 + y2 + z2)1/2           so that               r2 = x2 + y2 + z2.  ...(2)
From (2), differentiating partially w.r.t. ‘x’, we have

         2 ( / ) 2r r x x                           so that                   / / .r x x r   ...(3)

Similarly, from (2),          / /r y y r      and                / / .r z z r   ...(4)

From (1),  1 1( ) ( )
( ) ( )

u x lr x lr
x r x r x x r x r

   
     

     

          2 2
1 1 11 ( ) 1

( ) ( )
r r rl x lr

r x r x x xr r x r
                       

          2 2
1 1 11 ( ) 1 ,

( ) ( )
x x xl x lr

r x r r r rr r x r
                    

 by (3)

          2 2
( ) 1

( )
r xl x lr x

r x rr x r r
         ...(5)

  Also,   1 1( )
( ) ( )

v y mr y mr
y r x r y y r x r

   
     

     

          2 2
1 1 11 ( ) 0

( ) ( )
r r rm y mr

r x r y y yr r x r
                         

          2 2
1 1 11 ( ) ,

( ) ( )
y y ym y mr

r x r r r rr r x r
               

 by (4)

          2 2 2
( ) .

( ) ( )
r my y mr y y

rr x r r x r
  

   
  

...(6)
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KINEMATICS OF FLUIDS IN MOTION 2.37

Similarly,                  2 2 2
) .

( ) ( )
w r nz z nr z z
z rr x r r x r

             
...(7)

For the given velocity to satisfy the equation of continuity, we must have

                ( / ) ( / ) ( / ) 0u x v y w z         ...(8)

or         2 2 2 2 2
( ) 1 ( )

( ) ( ) ( )
r xl x lr x r my y mr y y

r x r rr x r r r x r r x r
                

2 2 2
) 0

( ) ( )
r nz z nr z z

rr x r r x r
            

, by (5), (6) and (7)

Multiplying both sides by r3 (x + r)2, we have
r (r + xl) (x + r) – (x + lr) (x + r) [x(x + r) + r] + r(r + my) (x + r)

– (y + mr) [y(x + r)2 + yr] + r(r + nz) (x + r) – (z + nr) [z(x + r)2 + zr] = 0
or              r2{r(1– l) + x(1 – l) – my – nz} = 0, on simplification.

This is satisfied by all values of x, y, z, if and only if    l = 1,     m = 0      and     n = 0.
Ex.17. From the law of conservation of mass, show that whether the flow field represented

by u = – 3x + y2 – 1/x and v = x2 + 3y + y log x is a possible velocity field for two-dimenation
incomprenible fluid flow.

Sol. Here 2/ / 3 2 / 3 log 0,u x v y x x          

showing that the equation of continuity is not satsfied Hence the given flow does not represent a
possible two-dimenation fluid flow

Ex. 18. Liquid flows through a pipe whose surface is the surface of revolution of the curve
y = a + (kx2 / a) about the x - axis (– ).a x a  If the liquid enters at the end x = – a of the pipe
with velicity V, show that the time taken by a liquid particle to traverse the entire length of the
pipe from x = – a to x = a is {2a/ V(1 + k)2} {1+ (2k/3) + (k2/5)}. Assume that k is so small that
flow remains apprecially one dimensional thoughtout. [I.A.S. 1999]

Sol. Re-writing the given curve, we have
            y – a = kx2/a        or                (x – 0)2 = (a/k) (y – a), ...(1)

which is a parabola ABC whose vertex is B (0, a). When the given curve (1) revolved about x-
axis, we get surface of revolution. Figure shows a portion of the above mentioned surface bounded
by circular ends ( – )CC x a   and ( )AA x a  .

Y

B

x = a

A
P(x, y)

V

X

A 
B

Y 
C 

D

x = – a

X

C

O Q

dx
dt

P 

Created with Print2PDF. To remove this line, buy a license at: http://www.software602.com/

SuccessClap: Best Coaching for UPSC Mathematics : For Info- 9346856874
Checkout ->22 Weeks Study Plan, Videos, Question Bank Solutions, Test Series

Succ
ess

Clap



2.38 FLUID DYNAMICS

Let P(x, y) be any point on (1). Then from (1), we have
   PQ = y = a + kx2/a. ...(2)

Also C(–a, CD) lies on (1), Hence, we have
      CD – a = k(– a)2/a                so that              CD = a(1 + k) ...(3)

Velocity at section CC   is given to be V. Again, velocity of arbitrary section PQ is dx/dt. If
S1and S2 be areas of sections at C and P respectively, then

    2 2 2
1 (1 )S CD a k                and       2 2 2

2 ( / ) .S y a kx a    
Since the motion is regarded as one-dimensional, by equation of continuity (expressing

equal rates of volumetric flow across the cross-sections at CC   and PP ), we have

          2 2 2[ (1 )} ( / ) ( / )a k V a kx a dx dt    

or       
22

2 2
1 .

(1 )
kxdt a dx
aa V k

 
     

...(4)

Let the required time of travelling from x = – a to x = a be T. Then integrating w.r.t ‘t’ between
t = 0 to t = T and integrating w.r.t ‘x’ between corresponding limits x = – a and x = a, (4) gives

22

2 20

1 .
(1 )

T a

a

kxdt a dx
aa V k 

 
     

 

or   
2 22 2

2 2 2 20

1 21 1
(1 ) (1 )

a a

a

kx kxT dx dx
V k a V k a

   
             

 
[Since the integrand in an even function]

      

22 2 4 3 2 5

2 2 4 2 2 40
0

2 2 2 21
(1 ) (1 ) 3 5

a
a kx k x kx k xdx x

V k a a V k a a
   

             


     = {2a/V (1 + k)2} {1 + (2k/3) + (k2/5)}
Ex. 19. Each particle of a mass of liquid moves in a plane through the axis of z; find the

equation of continuity.

Sol. Let ZOAB be a plane passing of  through the axis of z. Let .XOA    Let ( , , )P r  
be the position of fluid particle of a mass of fluid moving on
the plane ZOAB. We contruct a parallelopiped with edges
PQ , PR and PP  such that ,PQ r  PR r   and

sin .PP r    Clearly, the edges PQ and PR lie on the plane
ZOAB while PP  is perpendicular to the plane. Since the
fluid particle move only on the plane ZOAB, there would be
no motion along PP .

Let u and v be velocity components of the fluid along
PQ and PR respectively, We now use working rule of Art
2.15 for writting the equation continuity

The rate of the excess of flow-in over the flow-out along PQ

   2( sin ) sin ( )r ur r r u r
r r
 

          
 

Z

Y

O

A

X

P 
Q 

S R 
B

P Q

SR


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KINEMATICS OF FLUIDS IN MOTION 2.39

Again, the rate of the excess of flow-in over the flow-out along PR

   ( sin ) ( sin )r v r r r r v
r
 

           
 

Also, the rate of increase in mass of the element

   2( sin ) sinr r r r r
t t
 

         
 

Hence the equation of continuity is given by

    2 2sin sin ( ) ( sin )r r r u r r r v
t r
  

            
  

or        2
2

1 1( ) ( sin ) 0
sin

u r v
t r rr
  
     

   
Ex. 20. In the motion of a homogeneous liquid in two dimensions the velocity at any point

is given by ,v v  along  the directions which pass through the fixed points distant ‘a’ from one
another. Show that the equation of continuity is

      
2 2 2

0,
2

v v r r a v v v v
r r r r r r r r

                      

where r and r  are distances of any point of the liquid from the fixed points.[Osmania 2005]

[In this example ( , )r r   are known as the di-polar co-ordinates of any point of the liquid]

Sol. Let A and B be two given fixed points such that AB
= a. Let r and r  be the distances of any point P of the liquid
from A and B respectively. With A as centre draw two circular
arcs PQ and RS with r and r r   as radii. Similarly, with B

as centre draw two circular arcs PR and QS with r and r r  

as radii. Then, we have  AR r r    and .BQ r r   

Since arcs PQ and PR are very small hence we can
assume that arcs PQ and PR are approximately equal to straight
lines PQ and PR respectively.

Let .APB    Draw PN and PM perpendicular to AR and BQ. Then,

AN = r,         BM r  ,NR r          ,MQ r        NPR        and         MPQ  

From right-angled ,PRN       sin /NR PR                  ( ) / sinPR r  

Similarly, from ,PMQ    sin /QM PQ                    ( ) / sinPQ r  

Since v and v  are velocities along AP and BP respectively so velocity along normal to PR
is cosv v    and velocity along normal to PQ is cos .v v 

Since the liquid is homogeneous, so    = constant.
The rate of mass of the liquid flowing through PQ.

           = (velocity perpendicular to ) ( / sin ) ( cos )PQ PQ r v v        

 the rate of the excess of the flow-in over the flow-out along PQ

Q

S

R

N


P


M

A Ba

r
r 

r
r

+
 r

r




+
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2.40 FLUID DYNAMICS

  
cos( cos )

sin sin
r v vr v v r r

r r
                          

Similarly, the rate of the excess of the flow-in over the flow-out along PR

  
cos( cos )

sin sin
r v vr v v r r

r r
                         

Now, area sin sin( )
sin sin

r rPQSR PQ PR QPR
 

      
 

 the rate of increase of mass of the liquid in PQSR

   sin 0,
sin sin sin

r r r r
t t

                    
 as  = constant.

Hence the equation of continuity is given by

              
cos cos0

sin sin
v v v vr r r r

r r
                       

or                
cos cos 0

sin sin
v v v v

r r
                   

or                 2
1 cos coscos cos

sin sin
v v v vv
r r r r

                  

             2
1 cos coscos cos 0

sin sin
v v v vv
r r r r
                      

               2
cos cos coscos cos

sin
v v v vv
r r r r

                   

             2
cos cos coscos cos 0

sin
v v v vv
r r r r
                        

or                  
cos coscosv v v v v v

r r r r r r
                       

                     2
cos cos cos( cos ) ( cos ) 0
sin

v v v v
r r

                
 ...(1)

Using cosine formula of trigonometry in ,ABP  we have

                   
2 2 2 2

cos
2 2 2 2

r r a r r a
rr r r rr

  
    

  
...(2)


2 2

2 2
(cos ) 1 1 1 1 cos

2 2 2 22 2
r a r r a

r r r r r r rr r rr r r
    

                 

Similarly, from (2), we have                                   
cos 1 cos–

r r r
  


 

Substituting the above values of (cos ) / r   and (cos ) / r    in (1), we have

1 cos 1 coscosv v v v v v
r r r r r r r r

                                 
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KINEMATICS OF FLUIDS IN MOTION 2.41

          2
cos 1 cos 1 cos( cos ) ( cos 0
sin

v v v v
r r r r

                          

or cos cosv v v v v v v v
r r r r r r r r

                             

2 2
2

cos (1 cos ) (1 cos ) 0
sin

v v
r r

           

or       cos cos cos 0v v v v v v v v v v
r r r r r r r r r r

                                        

or                   
2 2 2

0,
2

v v r r a v v v v
r r rr r r r r

                      
 using (2)

EXERCISE 2(C)
1. Determine the equation of continuity by vector apprach for incompressible fluid. Interpret

it physically. [Meerut 2003]
2. A mass of fluid is in motion so that the lines of motion lie on the surface of co-axial

cylinders. Show that the equation of continuity is

1 ( ) ( ) 0,r zq q
t r z
  
    

  
 where qr and qz are velocities perpendicular and parallel to z-axis.

           [Hint. Do as in Ex. 5 of Art 2.16 by taking u = qr, v q ] [Meerut 1999, 2001, 02]
3. Water is flowing through a pipe 10 cm diameter with an average velocity of 10 m/sec.

What is the rate of discharge of the water? Also determine the velocity at the other end of the
pipe, if the diameter of the pipe is gradually changes to 20 cm.

[Ans. Discharge = 0.7854 m3/sec; velocity = 2.5 m/sec.]
4. Homogeneous liquid moves so that the path the any particle P lies in the plane POX,

where OX is fixed axis. Prove that if OP = r and the ,XOP    the equation of continuity may

be written as              
2( ) ( ) 0,u r v r sin

r
 

  
 

where u, v are the component velocities along and perpendicular to OP in the plane POX and
cos .  

[Hint: cos    so that sin .d d     Also  = constant. Proceed as Ex. 19 of Art. 2.16
by taking OX in place of OZ]

5. Does the three-dimensional incompressible flow given by

    2 2 2 3/ 2( , , ) ,
( )

kxu x y z
x y z


  2 2 2 3/ 2( , , ) ,

( )
kyv x y z

x y z


  2 2 2 3/ 2( , , )
( )

kzw x y z
x y z


 

satisfy the equation of continuity? K is an arbitrary constant. Thus show the above motion is
kinematically possible for an incompressible fluid.                    [Purvanchal 2005]

6. Does the two-dimensional incompressible flow given by

       1 2
1( , ) 1 ,rv r c cos
r
     
 

          1 2
1( , ) 1 sin ( 0)v r c r
r
      
 

where c1 is an arbitrary non-zero constant, satisfy the equation of continuity?
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 Boundary conditions (kinematical).
When fluid is in contact with a rigid solid surface (or with another unmixed fluid), the

following boundary condition must be satisfied in order to maintain contact:
The fluid and the surface with which contact is preserved must have the same velocity

normal to the surface.
Let n denote a normal unit vector drawn at the point P of the surface of contact and let q

denote the fluid velocity at P. When the rigid surface of contact is at rest, we must have
q.n = 0 at each point of the surface. This expresses the condition that the normal velocities are
both zero and hence the fluid velocity is tangential to the surface at its each point as shown in
Fig. (i).

Next, let the rigid surface be in motion and let u be its velocity at P (refer Fig (ii)]. Then we
must have

        q  n = u  n             or    (q – u)  n = 0,
which expresses the fact that there must be no normal velocity at P between boundary and fluid,
that is, the velocity of the fluid relative to the boundary is tangential to the boundary at its each
point.

FLUID

BOUNDARY P
q

n
u

n
q

q  u–
FLUID

BOUNDARY P

( )i ( )iiFig. Fig.

Remark. For inviscid fluid the above condition must be satisfied at the boundary. However,
for viscous fluid (in which there is no slip), the fluid and the surface with which contact is
maintained must also have the same tangential velocity at P.

Boundary conditions (physical). The above mentioned kinematical boundary conditions
must hold independently of any particular physical hypothesis. In the case of a non-viscous fluid
in contact with rigid boundaries (fixed or moving), the following additional condition must be
satisfied:

The pressure of the fluid must act normal to the boundary.
Again, let S denote the surface of separation of two fluids (which do not mix). Then the

following additional condition must be satisfied :
The pressure must be continuous at the boundary as we pass from one side of S to the

other.
2.18. Conditions at a boundary surface.

              [Garhwal 1996, Kanpur 2002, 03, Meerut 1997, Rajasthan 2000,
Rohilkhand 2001, 04, Purvanchal 2004]

We propose to derive the differential equation satisfied by a boundary surface of a fluid.
Thus, we discuss the following problem :

To find the condition that the surface F (r, t) = 0 or F (x, y, z, t) = 0 may be a boundary
surface. For figure, refer figure (ii) of Art. 2.17.

Let P be a point on the moving boundary surface              F (r, t) = 0. ...(1)
where the fluid velocity is q and the velocity of the surface is u.
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KINEMATICS OF FLUIDS IN MOTION 2.43

Now in order to preserve contact, the fluid and the surface with which contact is to be
maintained must have the same velocity normal to the surface. Thus, we have

           q  n = u  n                    or            (q – u)  n = 0, ...(2)
where n in the unit normal vector drawn at P on the boundary surface (1). We know that the
direction ratios of n are / ,F x  / ,F y  / .F z   Again,

         ( / ) ( / ) ( / ) ,F F x F y F z         i j k ...(3)

which shows that n and F  are parallel vectors and hence we may write .k F n  With this
value of n, (2) reduces to

      0k F   (q u)           so that             F F  q u ...(4)

Let P (r, t) move to a point ( , )Q t t   r r  in time t. Then Q must satisfy the equation of
the boundary surface (1), at time ,t t   namely

                        ( , ) 0F t t    r r
Expanding by Taylor’s theorem, the above equation gives

  ( , ) 0FF t t
t
        

r r F            or                0,F
t t
 
  

 
r F  using(1)    ...(5)

Proceeding to the limits as 0, r 0t   and noting that

0
lim ,
t

d
t dt 


 


r r u                      (5) gives                        / 0F t    u F ...(6)

or      / 0,F t    q F  using (4) ...(7)

which is the required condition for F(r, t) to be a boundary surface.
Remark 1. Let q = ui + vj + wk. Then (7) may be re-written as

      ( ) 0F F F Fu v w
t x y z

    
           

i j k i j k

or       0F F F Fu v w
t x y z
   
   

   
               or            0,DF

Dt
 ...(8)

where                         / ( / ) ( / ) ( / )D t u x v y w z           
(8) presents the required condition in cartesian coordinates for F (x, y, z, t) = 0 to be a

boundary surface. [Agra 2006, Meerut 1997]
Remark 2. The normal velocity of the boundary

= u  n
F


 


Fu – ( / ) ,
( / ) ( / ) ( / )

F t
F x F y F z

 

       i j k

by (3) and (6)

   2 2 2

( / )

( / ) ( / ) ( / )

F t

F x F y F z

  


        ...(9)

 2 2 2

( / ) ( / ) ( / ) ,
( / ) ( / ) ( / )

u F x v F y w F z

F x F y F z

       


       
 using (8) ...(10)
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2.44 FLUID DYNAMICS

Remark 3. When the boundary surface is at rest, then / 0F t    and hence the condition

(8) reduces to        ( / ) ( / ) ( / ) 0u F x v F y w F z            ...(11)

2.19. Illustrative solved examples.

Ex. 1. Show that the surface
2 2 2

2
2 2 4 2 2 1x y zkt

a k t b c
 

    
 

is a possible form of boundary

surface of a liquid at time t. [I.A.S. 1992; Punjab 2002; Rohilkhand 2001]
Sol. The given surface

          
2 2 2

2
2 2 4 2 2( , , , ) 1 0x y zF x y z t kt

a k t b c
 

      
 

...(1)

can be a possible boundary surface of a liquid, if it satisfies the boundary condition

      / ( / ) ( / ) ( / ) 0F t u F x v F y w F z            ...(2)
and the same values of u, v , w satisfy the equation of continuity

        / / / 0u x v y w z         ...(3)

From (1),
2 2 2

2 2 5 2 2
4 2F x y zkt

t a k t b c
 

       
, 2 2 4

2 ,F x
x a k t





2

2
2 ,F kt y

y b





2

2
2F kt z

z c





With these values, (2) reduces to

  
2 2 2 2 2

2 2 5 2 2 2 2 4 2 2
4 2 2 22 0,x y z xu kt yv kt zwkt

a k t b c a k t b c
 

        
 

or         2 2 4 2 2
2 2 2 2( ) ( ) 0,x x kyt ktzu y vt z wt

ta k t b c
       
 

which is identically satisfied if we take
          u = 2x/t,          v = – y/t,                  w = – z/t ...(4)

From (4),     2 ,u
x t




       1 ,v

y t

 


           1w

z t

 


...(5)

Using (5), we find that (3) is also satisfied by the above values of u, v and w. Hence (1) is
a possible boundary surface with velocity components given by (4).

Ex. 2. (i) Determine the restrictions on f1, f2, f3 if (x
2/a2) f1 (t) + (y2/b2) f2 (t) + (z2/c2) f3 (t) = 1

is a possible boundary surface of a liquid.
[Agra 2005; I.A.S.1995; Kanpur 2011; Meerut 2000]

(ii) Show that 2 2 2 2 2 2( / ) ( ) ( / ) ( ) ( / ) ( ) 1x a f t y b t z c t     is a possible from of the

boundary surface if ( ) ( ) ( ) 1.f t t t  

Sol. (i) The given surface
        F (x, y, z, t) = (x2/a2) f1(t) + (y2/b2) f2 (t) + (z2/c2) f3(t) – 1 = 0 ...(1)

can be a possible boundary surface of a liquid, if it satisfies the boundary condition

     ( / ) ( / ) ( / ) ( / ) 0F t u F x v F y w F z            ....(2)
and the same values of u, v  w satisfy the equation of continuity

               / / / 0u x v y w z         ...(3)
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KINEMATICS OF FLUIDS IN MOTION 2.45

Using dashes for differentiation with respect to t, (1) gives

2 2 2

1 2 32 2 2( ) ( ) ( ),F x y zf t f t f t
t a b c
     
 12

2 ( ),F x f t
x a




     22

2 ( ),F y f t
y b




     32

2 ( )F z f t
z c





With these values, (2) reduces to

      
22 2

3 31 2 1 2
2 2 2 2 2 2

22 2
0

z f zf wx f y f xf u yf v
a b c a b c

 
     

or                3 31 1 2 2
2 2 2

1 2 3

22 2 0
2 2 2

zf zfxf xf yf yfu v w
f f fa b c

                      
which is identically satisfied if we take

           1

1
,

2
xfu

f


           2

2
,

2
yfv

f


        3

32
zfw

f


  ...(4)

From (4),           1

1
;

2
fu

x f


 


    2

2
;

2
fv

y f


 


         3

32
fw

z f


 


 ...(5)

Now the required restriction will be obtained if the above velocity components satisfy (3).
Hence, we get

      31 2

1 2 3
0

2 2 2
ff f

f f f

 
          or               31 2

1 2 3
0ff f

f f f

 
  

Integrating, log f1 + log f2 + log f3 = log c
or    log (f1f2 f3) = log c or f1 f2 f3 = c, where c is an arbitrary constant.

(ii) Proceed as in the above example. There is no loss of generality if c is taken as unity.
Ex. 3. Show that (x2/a2 ) tan2t + (y2/b2)cot2 t = 1 is a possible form for the bounding

surface of a liquid, and find an expression for the normal velocity.
[Garhwal 2005; I.A.S. 1997; Kanpur 1999, 2004, 08; Rajasthan 2004;

Meerut 2003, 05; Rohilkhand 2002; 05; Purvanchel 2004]

Sol. For the present two dimensional motion ( / 0F z    and / 0),w z    the surface
     F (x, y, t) = (x2/a2) tan2 t + (y2/b2) cot2 t – 1 = 0 ...(1)

can be a possible boundary surface of a liquid, if it satisfies the boundary condition

    / ( / ) ( / ) 0F t u F x v F y         ...(2)
and the same values of u and v satisfy the equation of continuity

              / / 0u x v y     ...(3)

From (1),  
2 2

2 2
2 22 tan sec 2cot cosec ,F x yt t t t

t a b

   


2

2
2 tan ,F x t

x a




2

2
2 cotF y t

y b




With these values, (2) reduces to

  2 2
2 2

tan cot( sec tan ) (– y cosec t + cot ) 0,x t y tx t u t v t
a b

  

which is identically satisfied if we take
x sec2 t + u tan t = 0                         and                 – y cosec2 t + v cot t = 0
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2.46 FLUID DYNAMICS

i.e.
sin cos

xu
t t

      and   
sin cos

yv
t t

 ...(4)

From (4),          1
sin cos

u
x t t

 


         and            1

sin cos
v
y t t




...(5)

Using (5), we find that (3) is also satisfied by the above values of u, v. Hence (1) is a possible
bounding surface with velocity components given by (4).

Using remark 2 of Art. 2.18 (with / 0F z    here), the normal velocity

     

2 2

2 2

1/ 22 2 2 22 2

2 2

2 tan 2 cot
( / ) ( / ) sin cos sin cos

( / ) ( / ) 2 tan 2 cot

x x t y y t
u F x v F y t t t ta b

F x F y x t y t
a b

   
    

 
                 
     

       
2 2 2 2 2 2

2 4 4 2 4 4

cot cosec tan sec

( tan cot )

a y t t b x t t

x b t y a t






Ex. 4. (a) Show that the ellipsoid  2 2 2 2 2 2/ {( / ) ( / ) } 1n nx a k t kt y b z c   is a possible
form of the boundary surface of a liquid. Derive also velocity components.

(Kanpur 2009; 2010; Meerut 2007)
(b) Show that the variable ellipsoid  2 2 2 4 2 2 2/ {( / ) ( / ) } 1x a k t kt y b z c    is a possible form

for the boundary surface at any time t. (Kanpur 2007)
Sol. (a) The given surface

   2 2 2 2 2 2( , , , ) / {( / ) ( / ) } 1n nF x y z t x a k t kt y b z c    =0 ... (1)

can be a possible boundary surface of a liquid, if it satisfies the boundary condtion

     / ( / ) ( / ) ( / ) 0F t u F x v F y w F z            ...(2)
and the same values of u, v w stisfy the equation of continuity

               / / / 0.u x v y w z         ...(3)

From (1),                   
2 2 2

1
2 2 2 1 2 2

2 ,n
n

F x n y znkt
t a k t b c




 
        

   2 2 2
2 ,n

F x
t a k t




            2

2 nF kt y
y b




           and            2

2 .
nF kt z

z c





With these values, (2) reducces to

         
2 2 2

1
2 2 2 1 2 2 2 2 2 2 2

2 2 2 2 0
n n

n
n n

x n y z xu kt vy kt zwnkt
a k t b c a k t b c




 
        

 

or               2 2 2 2 2
2 2 2 0,

2 2

n n

n
nx x ny kyt nz kztu v w
t t ta k t b c

               
     

which is identically satisfied if we take
   u – (nx/t) = 0,            v + (ny/2t) = 0          and    w + (nz/2t) = 0

or         u = nx/t,           v = – ny/2t                  and               w = – nz/2t. ...(4)

From (4),      / / ,u x n t         / / 2v y n t          and / / 2w z n t    …(5)
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KINEMATICS OF FLUIDS IN MOTION 2.47

Using (5), we find that (3) is also satisfied by the above values of u, v and w. Hence (1) is a
possible boundary surface with velocity components given by (4)

(b) Proceed as in part (a) by taking n = 2
Ex. 5. Show that the ellipsoid

    
2 2 2

2 2 2 1
cos( / 4) sin ( / 4) sec 2t t

x y z
a e t b e t c t   

   
is a possible form of boundary surface of a liquid for any time t and determine the velocity q of
any particle on this boundary. Also prove that the equation of continuity is satisfied.

Sol. The given surface

F (x, y, z, t) = (x2/a2)et sec ( / 4)t    + (y2 /b2)e–t cosec ( / 4)t    + (z2/c2) cos 2t – 1 = 0 ...(1)
can be a possible boundary surface of a liquid, if it satisfies the boundary condition

     / ( / ) ( / ) ( / ) 0F t u F x v F y w F z            ...(2)
and the same values of u, v, w satisfy the equation of continuity

                             / / / 0.u x v y w z         ...(3)

From (1), 
2 2 2

1
2 2 2sec sec tan cosec

4 4 4 4
t tF x x ye t e t t e t

t a a b
                                

  
2 2

2 2
2cosec cot sin 2

4 4
ty ze t t t

b c
           

   

   2
2 s ec ,

4
tF x e t

x a
      

        2
2 cosec ,

4
tF y e t

y b
      

        2
2 cos 2F z t

z c




With these values, (2) reduces to

2 2sec 2 1 tan cosec 2 1 cot
4 4 4 4

t txe yet u x t t v y t
a b

                                      
             

2(2 / ) ( cos 2 sin 2 ) 0,z c w t z t   

which is identically satisfied if we take
2 {1 tan( / 4)} 0,u x t                  2 {1 cot( / 4)} 0,v y t              cos 2 sin 2 0w t z t 

or        ( / 2) {1 tan( / 4)},u x t             ( / 2) {1 cot( / 4)},v y t            tan 2w z t
Using  these values of u, v, w on the boundary for all t, we have

   
1 11 tan 1 cot tan 2
2 4 2 4

u v w t t t
x y z
                                   

                     
21 tan ( / 4) tan 2 cot 2 tan 2 tan 2 tan 2 0,

2 tan( / 4) 2
t t t t t t

t
                

showing that the equation of continuity is satisfied.

EXERCISE 2 (D)

1. Show that 2 2 2 2( / ) ( ) ( / ) ( ) 1,x a f t y b t    where ( ) ( ) 1f t t   is a possible form of the
boundary surface of a liquid. [Kanpur 2006]

2. Show that 2 2 2 2( / ) ( ) ( / ) ( ) 1x a f t y b f t   is a possible from of the boundary surface of
a liquid.
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2.48 FLUID DYNAMICS

3. Show that 2 2 2 2 2 2( / )cos ( / ) sec 1x a t y b t   is a possible form for the boundary surface.
[I.A.S. 2007]

4. Show that 2 2 2 2 2 2( / ) ( ) / ( / ) ( ) 1x a f t y b z c f t    is a possible form of the boundary
surface of a liquid.

5. A sphere of radius r moves with a steady velocity components (U, V, W) through an
initially stationary fluid. If t be measured from the instant the sphere was at the origin, prove that

         (u – U) (x – Ut) + (v – V) (y – Vt)  + (w – W) (z – Wt) = 0
where (u, v, w) are components of velocity on the sphere at any point.

6. The parabolic profile y = kx1/2 moves in the negative x-direction with a velocity U through
a fluid which was initially stationary. If u and v are the instantaneous velocity components of a
fluid particle on boundary, show that v/(u + U) = k2/2y.
2.20. Streamline or line of flow. [I.A.S. 1995; Kurkshetra 1998; U. P. P. C. S. 2000,

Agra 2004, 2009 Kanpur 2000, 04, Meerut 2001, 02, 05, 12;  G. N. D. U. Amritsar 1999]
A streamline is a curve drawn in the fluid so that its tangent at each point is the direction of

motion (i.e. fluid velocity) at that point.
Let r = xi + yj + zk  be the position vector of a point P on a straight line and let

q = ui + vj + wk be the fluid velocity at P. Then q is parallel to dr at P on the steamline. Thus,
the equation of streamlines is given by

                               q × dr = 0 ...(1)
i.e.,                           (ui + v j + wk) × (dx i + dy j + dzk) = 0
or                   (vdz – wdy) i + (wdx – udz) j + (udy – vdx) k = 0
whence              vdz – wdy = 0,             wdx – udz = 0,             udy – vdx = 0

so that                                  .dx dy dz
u v w
  ...(2)

The equations (2) have a double infinite set of solutions. Through each point of the flow field
where u(x, y, z, t), v(x, y, z, t) and w(x, y, z, t) do not all vanish, there passes one and only one
streamline at a given instant. This fact can be verified by employing the well known existence
theorem for the system of equations (2). If the velocity vanishes at a given point, various
singularities occur there. Such a point is known as a critical point or stagnation point.
2.21. Path line or path of a particle. [Meerut 2012; Kanpur 2000, 02]

A path line is the curve or trajectory along which a particular fluid particle travels during its
motion.

The differential equation of a path line is                                 dr/dt = q ...(1)
so that  dx/dt = u,     dy/dt = v            and            dz/dt = w ...(2)
where   q = ui + vj + wk                and              r = xi + yj + wk.

Remark. Let a fluid particle of fixed identity be at (x0, y0, z0) when t = t0, then the path line is
determined from equations

                     

/ ( , , , )
/ ( , , , )
/ ( , , , )

dx dt u x y z t
dy dt v x y z t
dz dt w x y z t

 
 
 

...(3)

with initial conditions               x(t0) = x0,           y(t0) = y0,            z(t0) = z0 …(4)
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 Streamline or line of flow. [I.A.S. 1995; Kurkshetra 1998; U. P. P. C. S. 2000,
Agra 2004, 2009 Kanpur 2000, 04, Meerut 2001, 02, 05, 12;  G. N. D. U. Amritsar 1999]

A streamline is a curve drawn in the fluid so that its tangent at each point is the direction of
motion (i.e. fluid velocity) at that point.

Let r = xi + yj + zk  be the position vector of a point P on a straight line and let
q = ui + vj + wk be the fluid velocity at P. Then q is parallel to dr at P on the steamline. Thus,
the equation of streamlines is given by

                               q × dr = 0 ...(1)
i.e.,                           (ui + v j + wk) × (dx i + dy j + dzk) = 0
or                   (vdz – wdy) i + (wdx – udz) j + (udy – vdx) k = 0
whence              vdz – wdy = 0,             wdx – udz = 0,             udy – vdx = 0

so that                                  .dx dy dz
u v w
  ...(2)

The equations (2) have a double infinite set of solutions. Through each point of the flow field
where u(x, y, z, t), v(x, y, z, t) and w(x, y, z, t) do not all vanish, there passes one and only one
streamline at a given instant. This fact can be verified by employing the well known existence
theorem for the system of equations (2). If the velocity vanishes at a given point, various
singularities occur there. Such a point is known as a critical point or stagnation point.
2.21. Path line or path of a particle. [Meerut 2012; Kanpur 2000, 02]

A path line is the curve or trajectory along which a particular fluid particle travels during its
motion.

The differential equation of a path line is                                 dr/dt = q ...(1)
so that  dx/dt = u,     dy/dt = v            and            dz/dt = w ...(2)
where   q = ui + vj + wk                and              r = xi + yj + wk.

Remark. Let a fluid particle of fixed identity be at (x0, y0, z0) when t = t0, then the path line is
determined from equations

                     

/ ( , , , )
/ ( , , , )
/ ( , , , )

dx dt u x y z t
dy dt v x y z t
dz dt w x y z t

 
 
 

...(3)

with initial conditions               x(t0) = x0,           y(t0) = y0,            z(t0) = z0 …(4)
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KINEMATICS OF FLUIDS IN MOTION 2.49

2.22. Streak lines or filament lines. [Kanpur 2000; Meerut 2005, 12]
A streak line is a line on which lie all those fluid particles that at some earlier instant passed

through a certain point of space. Thus, a streak line presents the instantaneous pictures of the
position of all fluid particles, which have passed through a given point at some previous time.
When a dye is injected into a moving fluid at some fixed point, the visible lines produced in the
fluid are streak lines which have passed through the injected point.

The equation of the streak line at time t can be derived by Lagragian method, Suppose that
a fluid particle (x0, y0, z0) passes a fixed point (x1, y1, z1) in the course of time. Then by using the
Lagrangian method of description, we have

     f1 (x0, y0, z0, t) = x1,           f2(x0, y0, z0, t) = y1,         f3 (x0, y0, z0, t) = z1 ...(1)
Solving (1) for  x0, y0, z0, we have
   x0 = g1 (x1, y1, z1, t),          y0 = g2 (x1, y1, z1, t),         z0 = g3 (x1, y1, z1, t) ...(2)
Now a streak line is the locus of the positions (x, y, z) of the particles which have passed

through the fixed point (x1, y1, z1). Hence the equation of the streak line at time t is given by
    x = h1 (x0, y0, z0, t),          y = h2 (x0, y0, z0, t),         z = h3 (x0, y0, z0, t) ...(3)
Substituting the values of x0, y0, z0  in (3), the desired equation of streak line passing

through (x1, y1, z1) at time t is given by
    x = h1 (g1, g2, g3, t),           y = h2 (g1, g2, g3, t),         z = h3 (g1, g2, g3, t) ...(4)

2.23. Difference between the streamlines and path lines. [Agra 2005]
It is important to note that streamlines are not, in general, the same as the path lines.

Streamlines show how each particle is moving at a given instant of time while the path lines
present the motion of the particles at each instant. Except in the case of steady motion, u,v, w are
always functions of the time and hence the streamlines go on changing with the time, and the
actual path of any fluid particle will not in general coincide with a streamline. To understand
this, take three consecutive points P, Q, R on a streamline at time t. Then a particle moving
through P at this instant will move along PQ but as soon as it arrives at Q at time ,t t  QR is no
longer the direction of the velocity at Q and the particle will therefore cease to move along QR
and move instead in the direction of the new velocity at Q. However, in the case of steady motion
the streamlines remain unchanged as time progresses and hence they are also the path lines.
2.24. Stream tube (or tube of flow) and stream filament.

If we draw the streamlines from each point of a closed curve in the fluid, we obtain a tube
called the stream tube.

A stream tube of infinitesimal cross-section is known as a stream filament.
Remark 1. Since there is no movement of fluid across a streamline, no fluid can enter or

leave the steam tube except at the ends. So in the case of the steady motion, a stream tube
behaves like an actual solid tube through which the fluid is flowing. Due to steady flow, the walls
of the tube are fixed in space and hence the motion through the stream tube would remain
unchanged on replacing the walls of the tube by a rigid boundary.

Remark 2. Consider a steam filament of liquid in steady motion. Let the cross-sectional
area of the filament be so small that the velocity is the same at each point of this area, which may
be taken perpendicular to the direction of the velocity. Let v1, v2
be the speeds of the flow at places where the cross-sectional
areas are S1, S2. Let the liquid be incompressible. From the law
of conservation of mass, the total quantity of liquid flowing
across each section of the filament must be the same. Thus, we
have                       v1 S1 = v2 S2,
from which we arrive at the following theorem :

S1 S2v1
v2
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2.50 FLUID DYNAMICS

Theorem : The product of the speed and cross sectional area is constant along a stream
filament of a liquid in steady motion.

It follows from the above theorem that a stream filament is widest at places where the speed
is least and is narrowest at places where the speed is greatest. Furthermore, the stream filament
cannot terminate at a point within the liquid unless the velocity is infinite there, which is never
possible. Leaving this exceptional case, it follows that, in general, stream filaments are either
closed or terminate at the boundary of a liquid. The same results are true for stream lines, because
the cross-section of the filament may be considered as small as we please.
2.25. Illustrative solved examples.

Ex. 1. Obtain the streamlines of a flow u = x, v = – y.
OR    If the velocity q is given q = xi - yj, determine the equations of the streamlines.

[Meerut 2012]
Sol. For two-dimensional flow (w = 0), we have

                    q = ui + vj + wk = xi – yj
so that            u = x,                      v = – y,                   w = 0

Streamlines are given by                               (dx)/u = (dy)/v = (dz)/w
i.e.   (dx)/x = (dy)/(–y) = (dz)/0                so that                  (dx)/x + (dy)/y = 0 and dz = 0

Integrating,         log x + log y = log c1      or        xy = c1           and              z = c2
The required straight lines are given by the curves of intersection of
xy = c1 and  z = c2, c1 and c2 being arbitrary constants.
Ex. 2. The velocity components in a three-dimensional flow field for an incompressible fluid

are ( 2x, – y, – z). Is it a possible field? Determine the equations of the streamline passing through
the point (1, 1, 1). Sketch the streamlines.

Sol. Here    u = 2x,                v = – y,                   w = – z
Streamlines are given by

                           
dx dy dz
u v w
                   i.e.             

2 – –
dx dy dz

x y z
  ...(1)

Taking the first two members of (1), we have

                2 –
dx dy

x y
              or                   2 0dx dy

x y
  

Integrating,          log x + 2 log y = log c1             or              xy2 = c1. ...(2)
Again, taking the first and third members of (1) and proceeding as above, we get

                                 xz2 = c2. ...(3)
Here c1 and c2are arbitrary constants. The streamlines are given by the curves of intersection

of (2) and (3). The required streamline passes through (1, 1, 1) so that c1 = 1 and c2 = 1. Thus,
the desired stream line is given by the intersection of            xy2 = 1         and          xz2 = 1.

We also have     / 2,u x               / 1,v y               / 1w z   

so that             / / / 0,u x v y w z        
showing that the equation of continuity is satisfied for the given flow field for an incompressible
fluid. Hence the given velocity components correspond to a possible field.

Ex. 3. The velocity field at a point in fluid is given as q = (x/t, y, 0). Obtain path lines and
streak lines. [Agra 2008; Meerut 2002; 04]

Sol. Here                            q = (u, v, w) = (x/t, y, 0)
so that                       u = x/t,                    v = y,                    w = 0 ...(1)
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KINEMATICS OF FLUIDS IN MOTION 2.51

The equations of path lines are
               dx/dt = u,                     dy/dt = v,                  dz/dt = w

i.e. dx/dt = x/t,            dy/dt = y,         dz/dt = 0 ...(2)
Suppose that (x0, y0, z0) are coordinates of the chosen fluid particle at time t = t0. Then

     x = x0,               y = y0,                 z = z0        when t = t0 ...(3)
From (2),            (1/x)dx = (1/t)dt            giving              log x = log t + log c1

i.e.                                   x = tc1, c1 being an arbitrary constant ...(4)
Using initial conditions (3), (4) gives

 x0 = t0c1             so that                   c1 = x0/t0
  From (4),                           x = (x0 t)/t0 ...(5)
Similarly, integrating         dy/dt = y            i.e.               (1/y) dy = dt, we get

                    log y – log c2 = t                       i.e.             y = c2e
t ...(6)

Using (3), (6) gives               y0 = c2 et0                 i.e.            c2 = y0 e–t0

  From (6),                                 y = y0 e
–t0 ...(7)

Finally, integrating              dz/dt = 0,                  we get                 z = c3 ...(8)
Using (3),                           z0 = c3                  so that                z = z0 ...(9)
Hence the required path lines are given by

            0 0( ) /x x t t                   0
0 ,t ty y e                     0 .z z ...(10)

Let the fluid particle (x0, y0, z0) passes a fixed point (x1, y1, z1) at time t = s where 0 .t s t 
Then (10) gives

          1 0 0( ) / ,x x s t                    0
1 0 ,s ty y e                   1 0z z

so that           0 1 0( ) / ,x x t s                   0
0 1 ,t sy y e                   0 1z z ...(11)

wherein s is the parameter. Substituting equations (11) into (10), we obtain the equation of streak
line passing through (x1, y1, z1) at times t as

           1( ) / ,x x t s                         1 ,t sy y e                     1.z z ...(12)
Remark. It is easily seen from the above example that for a steady flow, streak lines are

identical to path lines, and  hence they coincide with streamlines.
Ex. 4. Find the streamlines and paths of the particles when
        u = x/(1 + t),            v = y/(1 + t),        w = z/(1 + t). [I.A.S. 1994]
Sol. Streamlines are given by

dx dy dz
u v w
             i.e.            /(1 ) /(1 ) /(1 )

dx dy dz
x t y t z t

 
  

i.e.                   ( ) / ( ) / ( ) /dx x dy y dz z  ...(1)
Taking the first two members of (1), we get                   x/y = c1 ...(2)
Taking the last two members of (1), we get                    y/z = c2 ...(3)
The desired streamlines are given by the intersection of (2) and (3).
The paths of the particle are given by
              dx/dt = u,                     dy/dt = v,                    dz/dt = w

i.e.       dx/dt = x/(1 + t),         dy/dt = y/(1 + t),        dz/dt = z/(1 + t)
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2.52 FLUID DYNAMICS

giving     ,
1

dx dt
x t



             ,
1

dy dt
y t



          
1

dz dt
z t



Integrating,            x = c3 (1 + t),       y = c4 (1 + t),   z = c5 (1 + t)
which give the desired paths of the particles, c3, c4 and c5 being arbitrary constants.

Ex. 5. Consider the velocity field given by q = (1 + At)i + xj. Find the equation of the
streamline at t = t0 passing through the point (x0, y0). Also obtain the equation of the path line of
a fluid element which comes to (x0, y0) at t = t0. Show that, if A = 0 (i.e. steady flow), the
streamline and path line coincide.

Sol. Since q = ui + vj, u = 1 + At and v = x. Hence the streamline at t  = t0 is given by

    
dx dy
u v
      or         

01
dx dy
At x


    or        xdx = (1 + At0)dy

Integrating,                    (1 + At0)y = x2/2 + c, c being an arbitrary constant. ...(i)
But y = y0, when x = x0, so we get              (1 + At0)y0 = x2

0/2 + c ...(ii)

Subtracting (ii) from (i) to eliminate c, we get     (1 + At0) (y – y0) = (x2 – 2
0x )/2, ...(1)

which is the required streamline.
We now determine required path line. Consider a fluid element passing through (x0, y0) at t =

t0.Then its coordinates (x, y) at any instant t (which define the path line) may be written as
x = x (x0, y0 , t),                            y = y (x0, y0, t)  ...(2)

Now the path line is given by
                                 dx/dt = u = 1 + At ...(3)

and                                             dy/dt = v = x ...(4)
Integrating (3) and using the condition x = x0 at t = t0, we get

                              x – x0 = (t – t0) + A (t2 – 2
0t )/2 ...(5)

Using (5), (4) may be re-written as

                            dy/dt = x0 + (t – t0) + A (t2 – 2
0t )/2 ...(6)

Integrating (6) and using the condition y = y0 at t = t0, we get

         
3 3 2

0 0 0 0 0 0 0
1 1 1( ) ( ) ( ) ( )
2 6 2

y y t t x t t A t t At t t           
...(7)

Equations (5) and (7) together give the equation of the path line in parametric form with t
as parameter. On elimination of t between (5) and (7), we will get equation of path-line in
cartesian coordinates x, y. The resulting equation so obtained will be different from the equation
(1) of the streamline.

When A = 0, the equation of the streamline (1) gives

              y – y0 = (x2 – 2
0x )/2 ...(8)

and parametric equation of path line given by (5) and (7) reduce to

         0 0 ,x x t t                    0 0 0 0( ) (1/ 2) ( )y y t t x t t      ...(9)

Eliminating t from (9), the equation of path line is

             y – y0 = (x2 – 2
0x )/2.

Thus, the streamline coindes with the path line.
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KINEMATICS OF FLUIDS IN MOTION 2.53

Ex. 6. Prove that if the speed is everywhere the same, the streamlines are straight lines.
Sol. Let u, v, w be the constant speed components of the speed of the fluid particle. Then the

equation of the streamlines are given by                     (dx)/u = (dy)/v = (dz)/w      ...(1)
Taking first and second and then first and third fractions in (1), we get

             vdx – udy = 0                   and     wdx – udz = 0.
Integrating,              vx – uy = c1         and                wx – uz = c2, ...(2)

where c1 and c2 are arbitray constants of integration.
The required streamlines are given by the straight lines of intersection of two planes given

by (2).
Ex. 7. Find the equation of the streamlines for the flow q = – i (3y2) – j (6x) at the point

(1, 1).
Sol. Here q = ui + vj = – i (3y2) – j (6x)         u = – 3y2,         v = – 6x, ...(1)
The equations of streamlines are given by

dx dy
u v
         or              2 63

dx dy
xy


             or          6xdx – 3y2 dy = 0.

Integrating,          3x2 – y3 = c, c being an arbitrary constant. ...(2)
At the point (1, 1), (2) gives 3 – 1  = c           or      c = 2.
Hence, from (2), the required equation of the streamline is      3x2 – y3 = 2.
Ex. 8. The velocity components in a two-dimensonal flow field for an incompressible fluid

are given by u = ex cosh y and v = – ex sinh y. Determine the equation of the streamlines for this
flow. [Agra 2003]

Sol. The equation of the streamlines are given by

dx du
u v
     or      

cosh sinhx x
dx dy

e y e y



or   coth y dy = – dx.

Integrating,           log sinh y – log c = – x              or            sinh y = ce–x,
where c is a constant of integration.

Ex. 9. For an incompressible homogeneous fluid at the point (x, y, z) the velocity distribution
is given by u = – (c2y/r2), v = c2 x/r2, w = 0, where r denotes the distance from the z-axis. Show
that it is a possible motion and determine the surface which is orthogonal to streamlines.

Sol. Since r is distance of point (x, y, z) from the z-axis, we have r = (x2 + y2)1/2. Hence given
velocity distribution becomes

    u = – {c2 y/(x2 + y2)},               v = (c2x)/(x2 + y2),         w = 0 ...(1)

From (1),  2 2 2 2/ {2 /( ) },u x c yx x y          2 2 2 2/ (2 ) /( ) ,v y c xy x y          / 0w z  

 / / / 0,u x v y w z          showing that the equation of continutiy is satisfied and so
the motion specified by (1) is possble.

 The surfaces which are orhogonal to streamlines ( ) / ( ) / ( ) /dx u dy v dz w  are given by*

udx + vdy + wdz = 0  or – {c2 y/(x2 + y2)} dx + {c2 x/ (x2 + y2)}dy = 0
or            – y dx + x dy = 0        or              (1/y)dy = (1/x) dx,

Integrating,    log y = log k + log x   or      y = kx,    k being an arbitrary constant.

* Refer chapter 3 in part II of author’s Ordinary and Partial Differential Equations published by
 S. Chand & Co., New Delhi

0k 

Created with Print2PDF. To remove this line, buy a license at: http://www.software602.com/

SuccessClap: Best Coaching for UPSC Mathematics : For Info- 9346856874
Checkout ->22 Weeks Study Plan, Videos, Question Bank Solutions, Test Series

Succ
ess

Clap



2.54 FLUID DYNAMICS

Ex.10. Determine the streamlines and the path lines of the particle when the components of
the velocity field are given by u = x / (1 + t), v = y/(2 + t) and w = z/(3 + t). Also state the
condition for which the steamlines are identical with path lines.      [I.A.S. 2000]

Sol. Streamlines are given by               dx/u = dy/v = dz/w
or                (1 + t) (1/x)dx = (2 + t) (1/y)dy =  (3 + t) (1/z)dz. ...(1)

Taking the first two members of (1), we have
              (1/x)dx + (t/x)dx = (2/y)dy + (t/y)dy

or                         (1/x)dx – (2/y)dy = t {(1/y)dy – (1/x)dx}.
Integrating,  log x – 2 log y  = t (log y – log x) + log c1, c1 being an arbitrary constant

or     log (x/y2) = log {c (y/x)t}              so that       (y/x)t = x/c1y
2. ...(2)

Similarly, taking the last two members of (1), we have
or      log (y2/z3) = log{ c2 (y/z)t}           or               (y/z)t = y2/c2z

3. ...(3)
The desired stremlines at a given instant t = t0 are given by the intersection of the surfaces

(2) and (3) by substituting t0 for t.
Again, the path lines are given by
           dx/dt = u,                   dy/dt = v                                   dz/dt = w

or       dx/dt = x/(1 + t),             dy/dt = y/(2 + t),                          dz/dt = z/(3 + t),
giving             dx/x = dt/(1 + t),           dy/y = dt/(2 + t),           dz/z = dt/(3 + t).

Integraing, x = c3 (1 + t), y = c4 (2 + t), z = c5 (3 + t), c3, c4, c5 being arbitrary constants
which gives the desired paths of the given particle in terms of the parameter t.

Condition under which the stremlines and path linear are indentical.
In the case of steady motion the steamlines remain unchanged as time progresses and hence

they are identical with the path lines.
Ex. 11. In the steady motion of homogenous liquid if the surfaces f1 = a1, f2 = a2, define the

streamlines prove that the most general values of the velocity components u, v, w are

1 2
1 2

( , )( , ) ,
( , )
f fF f f
y z


   

1 2
1 2

( , )( , ) ,
( , )
f fF f f
z x


   

1 2
1 2

( , )( , ) .
( , )
f fF f f
x y


 (Meerut 2008)

Sol. The motion being steady, the streamlines will be independent of time. It follows that
the functions f1 and f2 will be functions of x, y, z. We have

1 1f a                 1 0df                 1 1 1 0f f fdx dy dz
x y z
  

  
  

...(1)

1 2f a                2 0df                  2 2 2 0.f f fdx dy dz
x y z
  

  
  

...(2)

From (1) and (2), by cross multiplication, we have

   1 2 1 2 1 2 1 2 1 2 1 2

dx dy dz
f f f f f f f f f f f f
y z z y z x x z x y y x

 
           

  
           

or                             
1 2 3

,dx dy dz
J J J
  ...(2)

where        1 2
1

( , ) ,
( , )
f fJ
y z





1 2
2

( , )
( , )
f fJ
z x





     and        1 2
3

( , ) .
( , )
f fJ
x y





...(3)
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KINEMATICS OF FLUIDS IN MOTION 2.55

We know that the equation of streamlines are given by
                      (dx)/u = (dy)/v = (dz)/w.

Comparing (2) and (3),        u = FJ1,            v = FJ2,          w = FJ3, ....(5)
where F is an arbitrary function. We now proceed to find F.

For the given liquid motion to be possible, the equation of continuity must be satisfied, i.e

                / / / 0u x v y w z        

or                               1 2 3( ) ( ) ( ) 0FJ FJ FJ
x y z
  

  
  

...(6)

or               31 2
1 2 3 0.JJ J F F FF J J J

x y z x y z
       

                
...(7)

By the property of Jocabains,                 1 2 3/ / / 0.J x J y J z         ...(8)

Using (8), (7) becomes            1 2 3( / ) ( / ) ( / ) 0J F x J F y J F z        

or                   1 2 1 2 1 2( , ) ( , ) ( , )
0,

( , ) ( , ) ( , )
f f f f f fF F F

x y z y z x z x y
    

  
     

using (3)

or 1 2 1 2 1 2 1 2 1 2 1 2 0
f f f f f f f f f f f fF F F

x y z z y y z x x z z x y y x
                                            

or       1 1 1

2 2 2

/ / /
/ / / 0
/ / /

F x F y F z
f x f y f z
f x f y f x

     
      
     

    or          1 1 2( , , ) 0,
( , , )
F f f

x y z





showing that F, f1 and f2 are not independent and hence F is a function of f1, f2 only. Therefore, F
= F(f1, f2).

Hence, from (2) and (5), the values of the velocity components u, v, w respectively are given
by FJ1, FJ2, FJ3, that is,

   1 2
1 1 2

( , )( , ) ,
( , )
f fF f f
y z




           1 2
1 2

( , )( , ) ,
( , )
f fF f f
z x




           1 2
1 2

( , )( , ) .
( , )
f fF f f
x y




EXERCISE 2 (E)
1. Determine the streamlines and streaklines for the flow whose velocity field is given by
                  u = – x + t + 2,                  v = y – t + 2. [Meerut 2005]
2. Find the streamlines and path lines of the two-dimensional velocity field u = x/(1 + t), v

= y, w = 0. [Agra 2002, 2004]
[Ans. z = c1, y = c2 x1 + t;  x = a1 (1 + t), y = a2e

t, z = a3]
3. Distinguish between path lines and streamlines.
4. Find the streamline and path of the paticle when u = (2xt)/(1 + t2), v = (2yt)/(1+t2),

w = (2zt)/(1 + t2). [Purvanchal 2007]
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The velocity potential or velocity function.
[Meerut 2005, 09; Rohilkhand 2004, 05]

Suppose that the fluid velocity at time t is q = (u, v, w). Further suppose that at the considered
instant t, there exists a scalar function   (x, y, z, t), uniform throughout the entire field of flow and

such that             d u dx v dy w dz         ...(1)

i.e.                   dx dy dz u dx v dy w dz
x y z

   
         

...(2)

Then the expression on the R.H.S. of (1) is an exact differential and we have
      / ,u x                   / ,v y                   /w z  ...(3)

                                        grad .    q ...(4)

  is called the velocity potential. The negative sign in (4) is a convention. It ensures that
the flow takes place from the higher to lower potentials.

The necessary and sufficient condition for (4) to hold is

       0, q                      i.e.                      curl q = 0 ...(5)

or                   
w v u w v u
y z z x x y

                           
i j k 0 ...(6)

Remark 1. The surfaces          (x, y, z, t) = const. ...(7)
are called the equipotenials. The streamlines

                         dx/u = dy/v = dz/w ...(8)
are cut at right angles by the surfaces given by the differential equation

                        udx + vdy + wdz = 0 ...(9)
and the condition for the existence of such orthogonal surfaces is the condition that (9) may
posses a solution of the form (7) at the considered instant t, the analytical condition being

        0w v u w v uu v w
y z z x x y

                           
...(10)

When  the velocity potential exists, (3) holds. Then

        
2 2

0,w v
y z y z z y
     
    

     
              i.e.,              w v

y z
 


 
...(11)

Similarly,         / /u z w x                and           / /v x u y     ...(12)
Using (11) and (12), we find that the condition (10) is satisfied. Hence surfaces exist which

cut the streamlines orthogonallly. We also conclude that at all points of field of flow the
equipotentials are cut orthogonally by the streamlines.

Remark 2. When (5) holds, the flow is known as the potential kind. It is also known as
irrototional. For such flow the field of q is conservative.

Remark 3. The equation of continuity of an incompressible fluid is
         / / / 0u x v y w z         ...(13)

Suppose that the fluid move irrotationally. Then the velocity potential   exists such that

         / ,u x                    / ,v y                   /w z   ...(14)
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KINEMATICS OF FLUIDS IN MOTION 2.57

Using (14), (13) reduces to

                             2 2 2 2 2 2/ / / 0,x y z            ...(15)

showing that   is a harmonic function satisfying the Laplace euation 2 0,    where

                 2 2 2 2 2 2 2/ / / .x y z          ...(16)

2.27. The Vorticity Vector. [Kanpur 2004, Garhwal 2005]
Let q = ui + vi + wk be the fluid velocity such that curl .q 0  Then the vector

                                 curlΩ q ...(1)
is called the vorticity vector.

Let , ,x y zΩ Ω Ω  be the components of Ω  in cartesian coordinates. Then (1) reduces to

x y z
w v u w v u
y z z x x y

                             
Ω i Ω j Ω k i j k

so that              ,x
w v
y z
 
 
 

Ω              ,y
u w
z x
 
 
 

Ω             .z
v u
x y
 
 
 

Ω

Note. Some authors use , , ,    for , ,x y zΩ Ω Ω  and define      Ω i j k (1/ 2) curl q. 
Thus, we have

     
1 ,
2

w v
y z

  
     

            
1 ,
2

u w
z x
       

           
1 v .
2 x

u
y

  
     

Remark 1. In the two-dimensional cartesian coordinates, the vorticity is given by

                          / ( / )z v x u y     Ω
Remark 2. In the two-dimensional polar coordinates the vorticity is given by

               
1 r

z
v v v
r r r
  

   
 

Remark 3. The vorticity components in cylindrical polar coordinates ( , , )r z  are given by

   
1 ,z

r
vv

r z


 
 

Ω            ,r zv v
z r
 
 
 

Ω          
1 r

z
v v v
r r r
  

  
 

Ω

Remark 4. The vortcity components in spherical polar coordinates ( , , )r    are given by

1 1 cot ,
sinr

v vv
r r r

  
   
  

Ω 1 ,
sin

r v vv
r r r

 



  

  
Ω 1 rv v v

r r r
 


 
  
 

Ω

2.28. Vortex line [Agra 2004, 2009; Garhwal 2005]
A vortex line is a curve drawn in the fluid such that the tangent to it at every point is in the

direction of the vorticity vector .Ω

Let x y z  Ω Ω i Ω j Ω k  and let x y z  r i j k  be the position vector of a point P on a

vortex line. Then Ω  is parallel to dr at P on the vortex line. Hence the equation of vortex lines is
given by                  Ω × dr = 0,

i.e. ( ) ( )x y z dx dy dz        i j k i j k 0
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2.58 FLUID DYNAMICS

or                 ( ) ( ) ( )y z z x x ydz dy dx dz dy dx        i j k 0

whence          0,y zdz dy               0,z xdx dz              0x ydy dx  

so that                                  
x y z

dx dy dz
 

  
...(1)

(1) gives the disired equations of vortex lines.
2.29. Vortex tube and vortex filament.

It we draw the vortex lines from each point of a closed curve in the fluid. we obtain a tube
callled the vortex tube.

A vortex tube of infinitesimal cross-section is known as vortex filament or simply a vortex.
Remark. It will be shown that vortex lines and tubes cannot originate or terminate at

internal points in a fluid. They can only form closed curves or terminate on boundaries. [For
proof, refer Art. 11.2 of chapter 11].
2.30. Rotational and irrotationl motion.

[Agra 2011; Garhwal 2005; I.A.S. 2000; G.N.D.U. Amritser 2003; Meerut 2002, 09, 10]
The motion of a fluid is said to be irrotational when the vorticity vector   of every fluid

particle is zero. When the vorticity vector is different from zero, the motion is said to be rotational.

Since        curlΩ q         and       ,w v u w v u
y z z x x y

                           
Ω i j k

we conclude that the motion is irrotation if                         curl q 0

or         / / ,w y v z                     / / ,u z w x                         / / ,v x u y    

When the motion is irrotational i.e. when curl q 0 , then q must be of the form (– grad  ) for

some scalar point function   (say) because curl grad  = 0. Thus velocity potential exists whenever
the fluid motion is irrotational. Again notice that when velocity potential exists, the motion is
irrotational because q = – grad   curl q = – curl grad  = 0.
Thus, the fluid motion is irrotational if and only if the velocity potential exists. (Meerut 2009, 10)

Rotational motion is also said to be vortex motion. Again by definition it follows that there
are no vortex lines in an irrotational fluid motion.
2.31. The angular velocity vector. [Kanpur 2003]

Consider a rectangular element in two-dimensional flow such that AB x   and AD y   as
shown in the figure. Upon rotating about A during a small interval t , let the element assume the
shape indicated by A B C D     in figure, B  and D  approximately lying on BC and CD produced.

Let u, v be the components of velocity at A. Then the components of velocity along BC and
DC are respectively ( / )v v x x     and ( / ) .u u y y   

  velocity of B relative to A along vBC x
x

 


and      velocity of D relative to A along .uDC y
y

 


 vBB x t
x
   


  and   uDD y t
y
    


Y

D

C 

u + u
y y

v + v
x x

C

BuA Xx


v

y

D

B 
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KINEMATICS OF FLUIDS IN MOTION 2.59

Hence, the angular velocity of AB about z-axis i.e. perendicular to the plane through A

                  = 
0 0

tanlim lim
t tt t   

 


 
[ is small tan ]    

0

/lim
t

BB x
t 

 


 0
lim .
t

v x t vx
x t x 


   
  

Again, the angular velocity of AD about z-axis

= 
0 0 0 0

tan /lim lim lim lim .
t t t t

u y t
DD y uy

t t t y t y       

  
        

     

Let z denote the averge of the angular velocities of AB and AD. Then, we have

                         
1 .
2z

v u
x y

  
     

...(1)

The average angular velocity components ,x y   and z   in the case of three-dimensional
flows may be obetained in a similar manner as follows:

     
1 ,
2x

w v
y z

  
     

           
1 ,
2y

u w
z x
       

         
1
2z

v u
x y

  
     

...(2)

Hence the angular velocity vector ω of a fluid element is given by

                         x y z     ω i j k

or                   1
2

w v u w v u
y z z x x y

                              
ω i j k

Thus,             ω = (1/2) × curl q             or        2ω = curl q ...(3)

But the vorticity vector   is given by                     curlΩ q  ...(4)

From (3) and (4), we have                                  2Ω ω
Remark 1. ω  is also called the rotation. The condition for the two dimensional flow to be

irrotational is that the rotation wz is everywhere zero i.e.                 / / .v x u y    

Again, the condition for irrotationality in three-dimendional flow is that,

0x y z       everwhere in the flow, i.e.

   / /w y v z                 / /u z w x                      / /v x u y    
Remark 2. A flow, in which the fluid particle also rotate (i.e. possess some angular velocity)

about their own axes,while flowing, is said to be a rotational flow. Again a flow, in which the
fluid particles do not rotate about their own axes, and retain their original orientations, is said to
be an irrotational flow.
2.32. Illustrative solved examples.

Ex. 1. Give examples of irrotational and rotational flows. [Agra  2011, Garhwal 2005]
Sol. Consider parallel flow with uniform velocity. For example, let there be a fluid motion with

the following velocity components:
                u  = kx,      0k                      v = 0,                    w = 0 ...(1)
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2.60 FLUID DYNAMICS

Then,     / /w y v z                 / /u z w x                      / /v x u y    

Hence the flow is irrotational.
Next, consider a two-dimensional shear flow with the following velocity components;

                 u = ky,                  v = 0,                  w = 0,           ( 0)k  ...(2)

Then                      / / 0z v x u y k         

Hence the rotation z  is non-zero and so the flow is rotational.
Ex. 2. Determine the vorticity components when velocity distribution is given by

        q = i (Ax2yt) + j (By2zt) + k (Czt2) where A, B, and C are constants.
Sol. Let  q = ui + vj + wk. Hence, here we have

          u = Ax2yt,                   v = By2zt,                  w = Czt2 ...(1)

The vorticity components , ,x y zΩ Ω Ω  are given by

2 2/ ( / ) 0x w y v z By t By t         Ω ,       / ( / ) 0 0 0y u z w x        Ω

and        2 2/ ( / ) 0 .z v x u y Ax t Ax t         Ω

Ex. 3. (a) Test whether the motion specified by
2

2 2
( ) ( const),k x y k

x y


 

j iq is a possible

motion for an incompressible fluid. If so, determine the equation of the streamlines. Also test
whether the motion is of the potential kind and if so determine the velocity potential.

[Kanpur 2006; I.A.S. 1996, Rohilkhand 2003, 04]

(b) Determine the velocity potential for the motion specified by 
2

2 2
( – ) ,k x y

x y



j iq (k = const).

[Agra 2007]
Sol. (a) Let q = ui + vj + wk. Then here

             
2

2 2 ,k yu
x y

 


             
2

2 2 ,k xv
x y



             w = 0 ...(1)

The equation of continuity for an incompressible fluid is
                  / / / 0u x v y w z         ...(2)

Form (1),         
2

2 2 2
2 ,

( )
u k xy
x x y



 
       

2

2 2 2
2 ,

( )
v k xy
y x y

 

 
         0w

z




Hence (2) is satisfied and so the motion specified by given q is possible.
The equation of the streamlines are                                dx/u = dy/v = dz/w

i.e.                         2 2 2 2 2 2 0/( ) /( )
dx dy dz

k y x y k x x y
 

  
...(3)

Taking the last fraction,               dz = 0             so that            z = c1. ...(4)
Taking the first two fractions in (3) and simplifying, we get

         dx/(– y) = dy/x                   or                   2xdx + 2ydy = 0
Integrating,                         x2 + y2 = c2, c2 being an arbitrary constant ...(5)
(4) and (5) together give the streamlines. Clearly, the streamlines are circles whose centres are

on the z-axis, their planes being perpendicular to this axis.
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KINEMATICS OF FLUIDS IN MOTION 2.61

Again
2 2 2 2

2
2 2 2 2 2 2

2 2

2 2 2 2

curl / / / .
( ) ( )

0

y x x yx y z k
x y x y

k y k x
x y x y

             
   


 

i j k
q k 0

Hence the flow is of the potential kind and we can find velocity potential   (x, y, z) such that
. q  Thus, we have

                       
2

2 2
k yu

x x y

  

 
...(6)

                       
2

2 2
k xv

y x y

   

 
...(7)

                         / 0z w     ...(8)

Equation (8) shows that the velocity potential   is function of x and y only so that ( , ).x y  

Integrating (6), 2 1( , ) tan ( / ) ( ),x y k x y f y    where f (y) is an arbitrary function, ...(9)

From (9),                             
2

2 2( ) k xf y
y x y
  
 

...(10)

Comparing (7) and (10), we have                       ( ) 0f y                 so that
 f (y) = constant.

Since the constant can be omitted while writting
velocity potential, the required velocity potential can be
taken as [refer equation (9)]

         2 1( , ) tan ( / )x y k x y                ...(11)
The equipotentials are given by

       2 1 2 1tan ( / ) constant tank x y k c  
or          x = cy, c being a constant
which are planes through the z-axis. They are intersected
by the streamlines as shown in the figure. Dotted lines
represent equipotentials and ordinary lines represent
streamlines.

(b) Proceed as in part (a) upto equation (11). Then the required velocity potential is given by (11).
Ex. 4. The velocity in the flow field is given by

q = i (Az – By) + j (Bx – Cz) + k (Cy – Ax)
where A, B, C are non-zero constants. Determine the equation of the votex lines.

Sol. Let q = ui + vj + wk, Then we have
            u = Az – By,          v = Bx – Cz,         w = Cy – Ax ...(1)

Let , ,x y z    be vorticity components. Then

/ ( / ) 2 ,x w y v z C C C        Ω            / ( / ) 2 ,y u z w x A A A        Ω

and         / ( / ) 2 .z v x u y B B B        Ω

y

x  x

y 

O
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2.62 FLUID DYNAMICS

The equation of the vortex lines are / / /x y zdx dy dz    

i.e.                              dx/(2C) = dy/(2A) = dz/(2B) ...(2)
Taking the first two members in (2) and integrating, we get
                              Ax – Cy = C1, C1 being an arbitrary constant ...(3)
Next, taking the last two membes in (2) and integrating, we get
                              By – Az = C2, C2 being an arbitrary constants ...(4)
The required vortex lines are the straight lines of the intersection of (3) and (4).

Ex. 5. At a point in an incomressible fluid having spherical polar co-ordinates ( , , ),r    the

velocity components are 3 3[2 cos , sin ,0],Mr Mr    where M is a constant. Show the velocity is
of the potential kind. Find the velocity potential and the equations of the stream lines.

Sol. Here           32 cos ,rq Mr          3 sin ,q Mr          0q  .

Then, we have             3 32 cos sin 0Mr Mr     r θq e e e          and    hence

  2 2 2 2
3 3

sin sin
1 1curl / / / / / /

sin sin
2 cos sin 0

r r

r

r r r r

r r
r rq q q r r 

 

 

             
 

 

θ θe e e e e e

q

M M

 

        = 0, on simplification
Hence the flow is of the potential kind.

Let ( , , )F r    be the required velocity potential. We have used F for velocity potential to
avoid confusion. Then by definition

32 cos ,r
F q Mr
r


   


31 sin ,F q Mr
r





   


     and      
1 0

sin
F q

r 

 

 

                                .F F FdF dr d d
r
  
   
  

or dF 3 2 2(2 cos ) ( sin ) 0 ( cos )Mr dr Mr d d d Mr           

Integrating, 2 cos .F Mr  omiting constant of integration, for it has no significance in F)
Finally, the streamlines are given by

     sin

r

dr rd r d
q q q 

  
           i.e.,         3 3

sin
02 cos sin

dr rd r d
Mr Mr 

  
 
 

given                  0d               and              2 cot (1/ ) .d r dr  
Integrating, the equation of the streamlines are given by

1C      and    2
2 sin ,r C  C1 and C2 being arbitrary constants.

The equation  = constant shows that the required streamlines lie in a plane which pass
through the axis of symmetry 0. 

Ex. 6. (a) Show that     2 2 2
2 ,

( )
xyzu

x y
 


              

2 2

2 2 2
( ) ,
( )
x y zv
x y



             2 2

yw
x y




are the velocity components of a possible liquid motion. Is this motion irrotational.
[Garhwal 2004; Agra 2004; Kerala 2001; I.A.S. 2000, 2002 Meerut 2002, 04]
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KINEMATICS OF FLUIDS IN MOTION 2.63

(b) Show that a fluid of constant density can have a velocity q given by

         
2 2

2 2 2 2 2 2 2 2
2 ( ), ,

( ) ( )
xyz x y z y

x y x y x y
 
  

   
q

Find the vorticity vector. [Kanpur 2007; I.A.S. 1988, 98, 2000]
Sol. Part (a). Here, we have

2 2 2 2 2 2 2 2 2 2

2 2 4 2 2 3 2 2 3
1 ( ) 2( ) 2 4 32 2 2

( ) ( ) ( )
u x y x x y x x y x y xyz yz yz
x x y x y x y
         
     

   

2 2 2 2 2 2 2 2 2 2 2 2 2

2 2 4 2 2 3 2 2 3
2 ( ) 2( ) 2 ( ) 2( ) 32 2

( ) ( ) ( )
v y x y x y y x y x y x y x yz yz yz
y x y x y x y
          
    

   

and                      / 0w z  

Hence the equation of continuity / / / 0u x v y w z        

is satisfied and so the liquid motion is possible.
Furthermore, we have

       
2 2 2 2

2 2 2 2 2 2 0
( ) ( )x

w v x y x y
y z x y x y
   
    
   

Ω

       2 2 2 2 2 2
2 2 0

( ) ( )y
u w xy xy
z x x y x y
 
     
   

Ω

and        
2 2 2 2

2 2 3 2 2 3
2 (3 ) 2 (3 ) 0

( ) ( )z
v u xz y x xz y x
x y x y x y
   
    
   

Ω

               / / ,w y v z                   / / ,u z w x                 / /v x u y    
and hence the motion is irrotational.

Part (b). Let q = (u, v, w). Then we have the same values of u, v, w as in part (a). By
definition, the vorticity vector Ω  is given by

                        ,x y z   Ω Ω i Ω j Ω k 0  using part (a)

Ex. 7. Show that ( ) ( )x t y t     represents the velocity potential of an incompressible
two dimensional fluid. Show that the streamlines at time ‘t’ are the curves

                (x – t)2 – (y – t)2 = constant,
and that the paths of the fluid particles have the equations

 log (x – y) =  (1/2) × {(x + y) – a (x – y)–1}+ b, where a, b are constants.
Sol. Given ( ) ( )x t y t         ... (1)
From (1), we have

/ ( ), / ( ) and so / 0 /u x y t v y x t u x v y                 

Thus the equation of continuity / / 0u x v y       is satisfied. Hence   given by (1)
represents the velocity potential of an incompressible two-dimensional flow.

Again, the equaiton of streamlines are given by

               dx dv
u v
                    or                    

( ) ( )
dx dy
y t x t


   
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2.64 FLUID DYNAMICS

or (x – t) dx – (y – t) dy = 0
Integrating,                      (x – t)2 – (y – t)2 = constant
Finally, the paths of particles are given by

        u = dx/dt = – (y – t)        and               v = dy/dt = – (x – t)
                                    dx/dt = t – y ...(2)

and                                    dy/dt = t – x ...(3)

From (2) and (3),             / / 2 ( )dx dt dy dt t x y    ...(4)
Let x + y = z               so that                   dx/dt + dy/dt = dz/dt ...(5)
Then (4) gives      dz/dt = 2t – z        or                   dz/dt + z = 2t ...(6)

which is a linear differential equation.

Its integrating factor = .
dt te e  Here solution of (6) is

12t tze te dt c  12 (2)t tt e e dt c    12 2t tte e c  

            12 2 tz t c e               or            12 2 ,tx y t c e     by (5) ...(7)
Again from (2) and (3),    dx/dt – (dy/dt) = x – y

or               dx dy x y
dt


                      or                   
dx dy dt
x y





Integrating,             log (x – y) – log c2 = t          or            x – y = c2 et. ...(8)
Using (7) and (8), we have

          
1

1
2

( ) 2 2 2 2,t tax y a x y t c e e t
c

                  1
2

taking ac
c



                             (1/2) × {(x + y) – a (x – y)–1} = t – 1 ...(9)
But from (8),         et = (x – y) /c2         so that         t = log (x – y) – log c2
                  t – 1 = log (x – y) – (log c2 + 1)
    t – 1 = log (x – y) – b,         taking       b = – (log c2 + 1) ...(10)
Using (10), (9) reduces to the required equations

     (1/2) × {(x + y) – a (x – y)–1} = log (x – y) + b.
Ex. 8(a). If the velocity of an incompressible fluid at the point (x, y, z) is given by

             
2 2

5 5 5
3 3 3, ,xz yz z r
r r r

 
  
 

prove that the liquid motion is possible and that the velcity potential is 2(cos ) / .r  Also determine
the streamlines.

Sol. Here           
5

3
,

xz
u

r
             

5

3
,

yz
v

r
           

2 2 2

5 5 3

3 3 1z r z
w

r r r


   ...(1)

where                                        r2 = x2 + y2 + z2 …(2)

       From (2),     / / , / / , / /r x x r r y y r r z z r         …(3)
From (1), (2) and (3), we have

               
2

6
5 5 7

1 3 153 ( 5 )u r z x zz x r
x xr r r

         
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KINEMATICS OF FLUIDS IN MOTION 2.65

    
2

6
5 5 7
1 3 153 ( 5 )v r z y zz y r

y yr r r
  

       

     
2 3

2 6 4
5 5 6 4 5 7

6 6 15 3 9 1515 3w z r r z z z z z zz r r
z z z r rr r r r r r

   
         

  

     2 2 2 2
5 7 5 7

15 15 15 15( ) 0.u v w z z z zx y z r
x y z r r r r
  

         
  

Since the equation of continuity is satisfied by the given values of u, v and w, the motion is
possible. Let   be the required velocity potential. Then

d dx dy dz
x y z
  

   
  

( ),udx vdy wdz     by definition of 

2 2

5 5 5
3 3 3xz yz z rdx dy dz
r r r

 
    

 

2

5
3 ( )r dz z xdx ydy zdz

r
  



Thus,                  
3 2

3 2 3
3 ,

( )
r dz r zdr zd d

r r
      

   using (2)

Intergrating ,                                3/z r 

   [Omitting constant  of integration, for it has no significance in  ]

In spherical polar coordinates ( , , ),r    we know that z = r cos  . Hence the required

potential is given by 3 2( cos ) / (cos ) /r r r    
We now obtain the streamlines. The equations of streamlines are given by

  
dx dy dz
u v w
              i.e.,             5 5 2 2 53 / 3 / (3 ) /

dx dy dz
xz r yz r z r r

 


or                                   2 23 3 3
dx dy dz
xz yz z r
 


...(4)

Taking the first two members of (4) and simplifying, we get
             dx/x = dy/y                  or                  dx/x – dy/y = 0

Integrating,      log x – log y = log c1         i.e.       x/y = c1, c1 being a constant  ...(5)

Now, each member in (4) 2 2 3 23 3 3
xdx ydy zdz

x z y z z r z
 


   2 2 2 23 ( )

xdx ydy zdz
z x y z r z

 


  

        2 2 2 2 2 23 ( ) ( )
xdx ydy zdz

z x y z z x y z
 


     2 2 22 ( )

xdx ydy zdz
z x y z

 


 
, by (2) ...(6)

Taking the first member in (4) and (6), we get

  2 2 23 2 ( )
dx xdx ydy zdz
xz z x y z

 


 
or            2 2 2

2 1 2 2 2
3 2

dx xdx ydy zdz
x x y z

 


 

Integrating,                 (2/3) × log x = (1/2) × log (x2 + y2 + z2) + log c2
or                x2/3 = c2 (x

2 + y2 + z2)1/2, c2 being an arbitrary constant ...(7)
The required streamlines are the curves of intersction of (5) and (7).
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2.66 FLUID DYNAMICS

Ex. 8(b). If velocity distributon of an incompressible fluid at point (x, y, z) is gives by
{3xz/r5, 3yz/r5 (kz2 – r2)/r5}, determine the parameter k such that it is a possible motion. Hence
find its velocity potential. [I.A.S. 2001]

Sol. Here           
5

3 ,xzu
r

           
5

3 ,yzv
r

          
2 2 2

5 5 3
1 ,kz r kzw

r r r


   ...(1)

where                                        r2 = x2 + y2 + z2 ...(2)
From (2),     / / ,r x x r         / /r y y r            and       / /r z z r   ...(3)
Now proceed as in solved Ex. 8(a) and obtain

                  
2

5 7
3 15 ,u z x z

x r r


 


             
2

5 7
3 15v z y z

y r r


 


...(4)

     and   
2 3

2 6 4
5 5 6 4 5 7

2 2 5 3 (2 3) 15– 5 3w kz r r kz kz z z k z zkz r r
z z z r rr r r r r r

    
        

  
...(5)

Since (1) gives a possible liquid motion, the equation of continuity must be satisfied and so

                    / / / 0u x v y w z        

or     2 2 2
5 7

(2 9) 15 ( ) 0k z z x y z
r r


        or     2
5 7

(2 9) 15 0k z z r
r r


   , using (2),(4) and (5)

or    (2k – 6) z/r5 = 0         so that           2k – 6 = 0        giving         k = 3.
Substituting the above value of k in (1), we have

     u = (3xz)/r5,                 v = (3yz)/r5,               w = (3z2 – r2)/r5. ...(6)
Using (6) and proceeding as in Ex. 8(a), the required velocity potential  is given by = z/r3.
Ex. 9. (a) Show that if the velocity potential of an irroatioanl fluid motion is equal to

                 A (x2 + y2 + z2)–3/2 z tan–1(y/x)
the lines of flow will be on the series of the surfaces x2 + y2 + z2  = c2/3 (x2 + y2)2/3.

[Agra 2004, 06; Kanpur 2002, 11; Meerut 2004]

(b) If the velocity potential of a fluid is 3 –1( / ) tan ( / )z r y x   where r2 = x2 + y2 + z2, then
show that the streamlines lie on the surfaces x2 + y2 + z2 = c (x2 + y2)2/3, c being an arbitrary
constant. [I.A.S. 2008]

Sol. (a) The veloctiy potential   is given by

           2 2 2 3/ 2 1 3 1( , , ) ( ) tan ( / ) tan ( / )x y z A x y z z y x Ar z y x        ...(1)
where                                        r2 = x2 + y2 + z2 ...(2)
so that / / ,r x x r   / / ,r y y r           / /z r z r   ...(3)

                         
3

5 1
2 23 tan y Azyru Azxr

x x x y


 

   
 

             
3

5 1
2 23 tan –y Azxrv Azyr

y x x y


 

  
 

            2 5 1 3 13 tan tany yw Az r Ar
z x x

   
   


The equation of lines of flow are given by dx/u = dy/v = dz/w

i.e.    
3 3 2 5 3 15 1 5 1

2 2 2 2
(3 ) tan3 tan 3 tan

dx dy dz
yy Azyr y Azxr A z r rAzxr Azyr xx xx y x y

       
 

 
 

...(4)
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KINEMATICS OF FLUIDS IN MOTION 2.67

Each member of (4) is 2 2 2 2 2 2 2(3 3 3 ) 1 (3 3 ) /
xdx ydy zdz xdx ydy

x y z r x y r

  
 

   
  (on simplification)

or     
2

2 2
( )

2 3( )
xdx ydy zdz r xdx ydy

x y
  




or                           2 2 2 2 2
2 2 2 2 2 2

3
xdx ydy zdz xdx ydy

x y z x y
  

 
  

...(5)

Integrating (5),     log (x2 + y2 + z2) = (2/3) × log (x2 + y2) + (2/3) × log c
or                x2 + y2 + z2 = c2/3 (x2 + y2)2/3, c being an arbitrary constant ...(6)

(6) gives the required series of the surfaces on which the desired lines of flow will lie.
(b). Proceed like part (a) by taking A = 1. Thus obtain (5). Integrating (5),  log (x2 + y2 + z2) =

(2/3) × log (x2 + y2) + log c giving x2 + y2 + z2 = c (x2 + y2)2/3, c being an arbitrary constant.
Ex. 10. Given u = – Wy, v = Wx, w = 0, show that the surfaces intersecting the streamlines

orthogonally exist and are the planes through z-axis, although the velocity potential does not
exist. Discuss the nature of flow.

Sol. Given                   u = – Wy,                v = Wx,               w = 0 ...(1)

                 / 0,u x                   / 0,v y                  / 0w z  

so that                   / / / 0.u x y y w z         ...(2)
(2) shows that the equation of continuity is satisfied and so the motion specified by (1) is

possible. The equations of the streamlines are

dx dy dw
u v w
    i.e.,              

0
dx dy dz
Wy Wx

 


giving                   xdx + ydy = 0               and                   dz = 0
Integrating,      x2 + y2 = c1    and    z = c2,   c1  and  c2 being arbitrary constants ...(3)
Hence the streamlines are circles given by the intersection of surfaces (3).
The surfaces which cut the stream lines orthogonally are

                        udx + vdy + wdz = 0
i.e.       – Wydx + Wxdy = 0                  or                 dx/x – dy/y = 0

Integrating,           x/y = c        or        x = cy, c being an arbitrary constant, ...(4)
which repressents a plane through z-axis and cuts the stream lines (3) orthogonally

Now                  udx + vdy + wdz = – Wydx + Wxdy ...(5)

Here       ( )Wy W
y


  


             and               ( ) .Wx W
x





..(6)

Hence udx + vdy + wdz is not a perfect differential and so the velocity potential does not
exist. Again, we have

   
curl 2 .

0

W
x y z x y z

u v w Wy Wx

     
  
     



i j k i j k

q k

Since curl q 0 , the motion is rotational. Notice that a rigid body rotating about z-axis
with constant vector angular velocity 2Wk will produce the above type of motion.
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2.68 FLUID DYNAMICS

Ex. 11.  Prove that the liquid motion is possible when velocity at (x, y, z) is given by
         u = (3x2 – r2)/r5,               v = 3xy/r5,               w = 3xz/r5,

where r2 = x2 + y2 + z2, and the streamlines lines are the intersection of the surfaces
(x2 + y2 + z2)3 = c (y2 + z2)2 by the planes passing through OX. State if the motion is irrotational
giving reasons for your answer. [Kanpur 2011; Agra 2008]

Sol. Given           u = (3x2 – r2)/r5,            v = 3xy/r5,           w = 3xz/r5 ...(1)
For the motion to be possible, we must show that the equation of continuity

                  / / / 0u x v y w z         ...(2)
must be satisfied.

From (1),               
5 4 2 2

10
[6 2 ( / )] 5 ( / ) (3 )u x r r x r r r x x r

x r
       




...(3)

But                                r2 = x2 + y2 + z2 ...(4)
From (4),             / / , / / and / /r x x r r y y r r z z r         ...(5)
Using (5), (3) gives

    
5 3 2 2 2 2

10 7
(6 2 ) 5 (3 ) 3 (3 5 )u x x r r x x r x r x

x r r
    

 


Similarly,                
2 2

7
3 ( 5 )v x r y

y r
 



             and               

2 2

7
3 ( 5 ) .w x r z

z r
 




 L.H.S. of (2) 
2 2 2 2

7
3 [5 5( )] 0x r x y z

r
  

  , using (4)

(2) is satisfied. So the liquid motion is possible. The equation of streamlines are

                
2 2or

3 33
dx dy dz dx dy dz
u v w xy xzx r
   


...(6)

Taking the last two members (6), we get
dy/y = dz/z          giving                   y = az, a being an arbitrary constant ...(7)

which is a plane passsing through OX.

Now each member of (6) 2 2 2 2(3 ) 3 ( )
xdx ydy zdz ydy zdz

x r r x y z
  

 
 

Thus,           2 2 2 2 2
3(2 2 2 ) 2 (2 2 )xdx ydy zdz ydy zdz

x y z y z
  


  

Integrating,                   3 log (x2 + y2 + z2) = 2 log (y2 + z2) + log c
or                         (x2 + y2 + z2)3 = c(y2 + z2)2, c being an arbitrary constant ...(8)

The required streamlines are given by the intersection of surfaces (8) by the planes (7)
passing through OX.

Finally, to show that the motion is irrotational, we should verify the conditions:

           0,w v
y z
 

 
                  0,u w

z x
 

 
                  0v u

x y
 
 

  ...(9)

From (11), we have

    
2 2

7
3 (5 )– ,u y x r

y r
 


           

2 2

7
3 (5 )– ,u z x r

z r
 




          
2 2

7
3 ( 5 ) ,v y r x

x r
 



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KINEMATICS OF FLUIDS IN MOTION 2.69

         7
15 ,v xyz

z r


 


             
2 2

7
3 ( 5 ) ,w z r x

x r
 




              7
15– .w xyz

y r





With these values, conditions (9) are all satisfied. Hence the motion is irrotational.
Ex. 12. Show that in the motion of a fluid in two dimensions if the coordinates (x, y) of an

element at any time be expressed in terms of the initial coordinates (a, b) and the time, the

motion is irrotational, if                   
( , ) ( , ) 0.
( , ) ( , )
x x y y
a b a b

 
 

 
 

           [Here dxx
dt

  and 
dyy
dt

 ].

[Agra 2010; G.N.D.U. Amritser 2003, 05; Kanpur 1999, 2007; Meerut 2003]
Sol. Let u and v be the velocity components parallel to x-and y-axes respectively so that

x  = dx/dt = u, y = dy/dt = v. Now, we have

                 

,

,

u u x u y u u x u y
a x a y a b x b y b
v v x v y v v x v y
a x a y a b x b y b

                        


             
          

...(1)

 ( , ) ( , ) ( , ) ( , )
( , ) ( , ) ( , ) ( , )
x x y y u x v y
a b a b a b a b

   
  

   
 

u u v v
u x u x v y v ya b a b

y y a b b a a b b ax x
a ba b

   
               

          
  

x u x u y x u x u y
b x a y a a x b y b
            

                  
,y v x v y y v x v y

b x a y a a x b y b
            

                  
[Using (1)]

u x y x y v x y y x
y b a a b a a b a b

                              

v u x y y x
x y a b a b

                   

/ /
/ /

x a x bv u
y a y bx y
     

        

                             
( , ) ( , ) ( , )
( , ) ( , ) ( , )
x x y y v u x y
a b a b x y a b

     
        

 
...(2)

Lagrangian equation of continuity in two dimensional case is given by

            0 J                        or                    0
( , )
( , )
x y
a b


  


...(3)

From (3), we find that ( , ) / ( , ) 0,x y a b   so (2) shows that

( , ) ( , ) 0
( , ) ( , )
x x y y
a b a b

 
 

 
 

     if and only if     0,v u
x y
 
 

 
    i.e. the motion is irrotational.
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2.70 FLUID DYNAMICS

Ex. 13. Show that all necessary conditions can be satisfied by a velocity potential of the

form 2 2 2 ,x y z       and a bounding surface of the form 4 4 4 ( ) 0,F ax by cz t    

where ( )t  is a given function of the time and , , , , ,a b c    are suitable functions of the time.
[Kanpur 2003; Himachel 1994; Gerhwal 1998; I.A.S. 1998; Kurkshetra 2000]

Sol. The given expressions for velocity potential and bounding surface are respectively

                               2 2 2( , , )x y z x y z      ...(1)

and                          4 4 4( , , , ) ( )F x y z t ax by cz t    ...(2)

The following conditions must be satisfied :

(i)   satisfies the Laplace’s equation, namely,,

                       2 2 2 2 2/ / / 0x y z            ...(3)

(ii) F satisfies the condition for boundary surface, namely,

       / ( / ) ( / ) ( / ) 0F t u F x v F y w F z            ...(4)

From (1),          2 2 2 2/ 2 , / 2 ,x y                      and            2 2/ 2z    

Hence (2) will be satisfied if

         2 2 2 0                       or                   0   ...(5)

for which , ,    must be some suitable functions of time.
Now from (2), we have (by using dots for differentiation with respect to time)

  4 4 4 3 3 3/ , / 4 , / 4 , / 4F t x a y b z c F x ax F y by F z cz                    ...(6)

Remember that if   is the velocity potential function, then u, v, w are given by

   / ,u x             / ,v y              and           /w z   ...(7)

Using (1) and (7), we have

       2 ,u x                2 ,v y                 and              2w z   ...(8)
Using (6) and (8), (4) reduces to

        4 4 4( 8 ) ( 8 ) ( 8 ) 0x a a y b b z c c            ...(9)

Since all the points on the surface (2) must also simultaneously satisfy (9), we have

              
8 8 8a a b b c c
a b c
      

  


  
...(10)

Taking first and the fourth members of (10), we get

                               / 8 /a a     

Integrating,                         log 8 l ga dt o    ...(11)

Simlarly,                             log 8 l gb dt o    ...(12)

and                          log 8 l gc dt o    ...(13)
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KINEMATICS OF FLUIDS IN MOTION 2.71

In view of (5), ,   and   are known. Hence equations (11) to (13) determine a, b and c as
functions of t.

Thus, velocity potential  given by (1) and the bounding surface F = 0 given by (2) satisfy
the necessary conditions if a, b, c, ,   and   are some suitable functions of time.

Ex. 14. Show that the velocity poremtial 2 2 2( / 2) ( 2 )a x y z     satisfies the Laplace
equation. Also determine the streamlines. [Nagpur 2003, I.A.S. 2002]

Sol. We know that the velocity q of the fluid is given by

             
2 2 2( 2 )

2
a x y z

x y z
                   

q i j k

or                             q = – (a/2) × (2xi + 2yj – 4zk). ...(1)
But                                    q = ui + vj + wk. ...(2)
Comparing (1) and (2),            u = – ax,           v = – ay,           w = 2az.
The equaitons of streamlines are given by             dx/u = dy/v = dz/w

        
2

dx dy dz
ax ay az

 
 

              or                 
2 2 .dx dy dz

x y z
 


...(3)

Taking the first two fractions of (3),          (1/x)dx = (1/y) dy.
Integrating,            log x = log y + log c1            or                x = c1y. ...(4)
Taking the last two fractions of (3),                        (2/y)dy + (1/z)dz = 0
Integrating,             2 log y + log z = log c2         or             y2z = c2. ...(5)
(4) and (5) together give the equations of streamlines, c1 and c2 being arbitrary constants of

integration.

Now, given that                2 2 2( / 2) ( 2 ).a x y z     ...(6)

From (6),           / ,x ax            / y ay           and         / 2z az   

           2 2/ ,x a            2 2/ y a               and         2 2/ 2z a    

 2 2 2 2 2 2/ / / 2x y z a a a                           or              2 0,  

showing that   satisfies the Laplace equation.

Ex. 15. Show that ( )x f r   is a possible form for the velocity potential of an

incompressible liquid motion. Given that the liquid speed 0q   as ,r   deduce that the
surfaces of constant speed are (r2 + 3x2)r–8 = constant.

Sol. Given                                     ( ).xf r  ...(1)

                        [ ( )] [ ( ) ( )].xf r f r x x f r        q ...(2)

Now,       2 2 2 2r x y z             2 ( / ) 2r r x x              / / .r x x r   ...(3)

Similarly,             / /r y y r                 and             / / .r z z r   ...(4)

Also,                             [ ( / ) ( / ) ( / )]x x y z x          i j k i

and                                     ( ) [ ( / ) ( / ) ( / )] ( )f r x y z f r         i j k
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2.72 FLUID DYNAMICS

                           ( ) ( / ) ( ) ( / ) ( ) ( / )f r r x f r r y f r r z          i j k

                           ( ) ( / ) ( ) ( / ) ( ) ( / ),f r x r f r y r f r z r    i j k  by (3) and (4)

                           (1/ ) ( ) ( ) (1/ ) ( )r f r x y z r f r    i j k r.

      (2)                                 ( ) ( / ) ( )f r x r f r  q i r. ...(5)
For a possible motion of an incompressible fluid, we have

    0 q            or           ( ) 0                or           2 0  

or               2 2 2 2 2( / / / )[ ( )] 0,x y z x f r          using (1) ...(6)

Now,               
2

2
( )[ ( )] { ( )} ( ) f rx f r x f r f r x

x x x xx
                   

                                 = 
2 2

2 22f f f f fx x
x x xx x
    
   

   

Also   
2 2

2 2[ ( )] fx f r x
y y
 


 

       and    
2 2

2 2[ ( )] fx f r x
z z
 


 

  (6) becomes                      
2 2 2

2 2 22 0.f f f fx
x x y z

    
         

...(7)

Now,                        ,f df r xf
x dr x r
   
 

 using (3). ...(8)

and                      
2

2
f f x f ff x

x x x r r x rx
                           

                2 .f d f r f rf f xx x
r dr r x r rr
               

                          
2 2 2

2 2 3
f f x xf f

rx r r
    


...(9)

Similarly,                          
2 2 2

2 2 3
f f y yf f

ry r r
    


...(10)

and                          
2 2 2

2 2 3
f f z zf f

rz r r
    


...(11)

Adding (9), (10) and (11), we get

          
2 2 2 2 2 2 2 2 2

2 2 2 2 3
3f f f f x y z x y zf f
rx y z r r
           

  

                      3 f ff
r r
 

   , as 2 2 2 2.x y z r  

                     2 2 2 2 2 2/ / / 2 /f x f y f z f r f           ...(12)
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KINEMATICS OF FLUIDS IN MOTION 2.73

Using (8) and (12), (7) reduces to

       
2 2 0f x fx f

r r
     

 
               or                

4 0ff
r


  

or                                              / 4 / 0.f f r   

Integrating          1log 4 log logf r c             so that         4
1 ,f c r  ...(13)

Integrating (13),              f = –(c1/3) × r–3 + c2, c2 being an arbitrary constant ...(14)

Substituting the values of f   and f from (13) and (14) in (5), we get

                         q = – {(c1/3r2) – c2}i – (c1x/r5) r ...(15)

Given that 0q  as ,r   hence (15) shows that c2 = 0.

 from (15),                       1
3 2

3
3
c x
r r
   
 

rq i ...(16)

Now,           
2

2 1
6 2 2

3 3
9
c x xq
r r r
           
   

r rq q i i
2 2
1

6 2 4
6 9

9
c x x
r r r

 
      

 
i i r i r r

                    
2 2 2 2
1

6 2 4
6 91 ,

9
c x x r
r r r
 

    
 

         as      2r r r      and         x r i

                    
2 22

2 21 1
6 2 8

31 ( 3 ).
9 9
c cx r x
r r r
 

     
 

Hence the required surfaces of constant speed are

q2 = constant     or    2 8 2 2
1( / 9 ) ( 3 ) constantc r r x      or    2 2 8( 3 ) constant .r x r 

Ex. 16. What is the irrotional velocity field associated with the velocity potential
2 2 23 3 3 16 12 .x x y t zt       Does the flow field satisfy the incompressible continuty equation?

Sol. The velocity field is given by

                2 2 2(3 3 3 16 12 ) 6 3u x x y t zt x
x x
 

          
 

...(1)

and                 
2 2 2(3 3 3 16 12 ) 6 .v x x y t zt y

y y
 

         
  ...(2)

Here         / 6u x                      and               / 6.v x    ...(3)
The continuity equation for an incompressible fluid is

                                            ( / ) ( / ) 0.u x v y      ...(4)
Using (3) in (4) we find – 6 – 6 = 0, which is absurd. Hence the velocity field given by (1) and

(2) does not satisfy the continuity equation (4).

Ex. 17. The velocity potential function   is given by   = – (xy3/3) – x2 + (x3y/3) + y2.

Determine the velocity components in x and y directions and show that  represents a possible
case of flow.
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2.74 FLUID DYNAMICS

Sol. Here  3 2/ ( / 3) 2 ,u x y x x y                      2 3– / ( / 3) 2 .v y xy x y     

               / 2 2u x xy                   and              / 2 2.v y xy   

Hence / / 0,u x v y       showing that the continuity equation is satisfied so   represents
a possible case of flow.

Ex. 18. Prove that the velocity potentials 2 2
1 = –x y  and  1/ 2

2 cos( / 2)r   are solutions
of the Laplace equation and the velocity potential 2 2 1/ 2

3 ( ) cos( / 2)x y r     satisfies
2

3 0.  

Sol. The Laplace’s equation in cartesian and cylindrical polar coordinates are given by
2 2

2 1 1
1 2 2 0

x y
   

    
 

         and         
2 2

2 2 2 2
2 2 2 2

1 1 0,
r rr r

    
     

 

Here      2 2
1 / 2x           and       2 2

1 / 2.y            So 2
1 2 2 0.     ...(1)

Next,       1/ 22 1 cos ,
2 2

r
r

 



      

2
3/ 22

2
1 cos ,
4 2

r
r

  
 


      

2 1/ 2
2

2 cos
4 2

r  
 



                  2
2 3 / 2 3/ 2 3/ 2

1 1 1cos cos cos 0.
2 2 24 4 2r r r
  

       ...(2)

(1) and (2) show that 1  and 2  satisfy Laplace’s equation.

Now,                          2 2 1/ 2
3 1 2( ) cos ( / 2)x y r        

     2 2 2 2
3 1 2 1 2( ) 0 0 0,                by (1) and (2).

Hence 3  satisfies 2
3 0.  

Ex. 19. Find the vorticity of the fluid motion for the given velocity components :
(i) u = A (x + y), v = – A (x + y),              (ii) u = 2Axz, v = A (c2 + x2 – z2),
(iii) u = Ay2 + By + c, v = 0, Here A, B, C as constants.

Sol. The vorticity vector Ω  is given by

( / / ) ( / / ) ( / / )w y v z u z w x v x u y               Ω i j k ...(1)

(i)   Using (1),                  (0) (0) ( ) 2A A A      Ω i j k k.

(ii) Using (1),                   (0 2 ) (2 0) (2 0) 2 ( )Az Ax Ax A z x x         Ω i j k i j k .

(iii) Using (1),                  (0) (0) [0 (2 )] (2 )Ay B Ay B       Ω i j k k.
Ex. 20. Find the vorticity in the spherical coordinates for the velocity components

3(1 / )cos ,rv A r   3(1 / 2 )sin ,v A r     0.v  Here A is a constant. Find the nature of
the fluid motion.

Sol. Refer remark 4 of Art. 2.27. Let ( , , )r    Ω  be the vorticity vector in the spherical

polar coordinates ( , , )r   . Then, we have

  1 1 cot 0,
sinr

v vv
r r r

  
     

  
                        1 0,

sin
r v vv

r r r
 




    
  
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KINEMATICS OF FLUIDS IN MOTION 2.75

and 1 rvv v
r r r

 
   

 

3 3 3
1 11 sin 1 sin 1

2 2
A A A cos

r r rr r r
                             

   4 3 3
3 sin 1 11 sin 1 sin

2 2
A A A

r rr r r
            

    4 4 4
3 1 1 sin 0.
2 2

A A A
r rr r r

        
 

Since 0,r         the motion is irrotational.

Ex. 21. If the fluid be in motion with a velocity potential log ,z r   and if the density at a
point fixed in space be independent of the time, show that the surfaces of equal density are of the

forms 2 2{log (1/ 2)} ( , ),r r z f      where   is the density at ( , , )z r 

Sol. The surfaces of equal density are given by                    ( , , ) constantz r  

or              0D
Dt

                   or                       ( ) 0

t


   


q

or       
2

1 0
r r z zr
     

  
     

               and             . q ...(1)

Also, given                                   log .z r  ...(2)

Then, using (2), (1) reduces to               ( / ) log ( / ) 0.z r r r z      ...(3)
(3) is of the form of *Lagrange’s equation Pp + Qq = R and so here Lagrange’s subsidiary

equations are

                                    .
log 0

dr dz d
r r r


  ...(4)

Third fraction of (4) gives          0d              so that           1,c  ...(5)
where c1 is an arbitary constant.

Taking the first and the second fractions in (4), we have             2r log r dr – 2z dz = 0.

Integrating, 2
22 logr r dr z c    or    2 2 2

2
1(log ) ,r r r dr z c
r

     integrating by parts

or             r2 log r – (r2/2) – z2 = c2, c2 being an arbitrary constant. ...(6)
From (5) and (6), the solution of (3) is given by

      2 2{log (1/ 2)} ( , ),r r z f     f being an arbitrary function

which are the surfaces of equal density.

EXERCISE 2(F)
1. Show that the following velocity field is a possible case of irrotational flow of an

incompressible flow u = yzt, v = zxt, w = xyt.
2. Show that the equation of an incompressible fluid moving irrotationally is given by

2 2 2 2/ / / 0x y z             , where   is the velocity potential.

3.  denoting a variable parameter, and f a given function, find the condition that

* Refer chapter 2 of part III in author’s ‘‘Ordinary and partial differential equations’’ published by S. Chand
  & Co., New Delhi.
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2.76 FLUID DYNAMICS

f ( , , ) 0x y   should be a possible system of streamlines for steady irrotational motion in two
dimensions.

4. Find the vorticity in polar coordinates for the following velocity components:
(i) sin , 2 cosrv r v r         (ii) ( / ) cos , 0rv A r v        (iii) / , , 0rv A r v 

(iv)    2 21 / cos , 1 / sin ( / ).rv A r v A r B r      

5. If 2 2 ,ax byu
x y



 2 2 ,ay bxv

x y





w = 0, investigate the nature of the motion of the liquid.

[Ans. Irrotational]
6. Establish the relation 2   connecting the angular velocity   and the vorticity vector  .

(Meerut 2000, 2010)
7. Show that the equation of continuity reduces to Laplace’s equation when the liquid is

incompressible and irrotational.
[Hint. Since the motion is irrotational, there exists velocity potential   such that .  q

Further / 0t    as the liquid is incompressible. Hence the equation of continuity

/ 0dt   q  reduces to                 0 ( )     = 0                or                2 0  

i.e.,          2 2 2 2 2 2/ / / 0,x y z             which is Laplace’s equation as required]

8. Prove that a surface of the form 4 4 4 ( ) 0ax by cz t      is a possible form of a boundary
surface of a homogeneous liquid at time t, the velocity potential of the liquid being

                            2 2 2( ) ( ) ( )x y z          

where , , ,     are given functions of time and a, b, c are suitable functions of time.
OBJECTIVE QUESTIONS ON CHAPTER 2

Multiple choice questions
Choose the correct alternative from the following questions

1. If the motion is irrotational, we have
(i) (1/ 2) curl  w q 0 (ii) curl w q 0

(iii) div w q 0 (iv) None of these. [Agra 2012; Kanpur 2003]
2. The condition that the surface F (x, y, z, t) = 0 may be bounding surface is

(i) / 1DF Dt  (ii) / 0DF Dt 
(iii) / 2DF Dt  (iv) None of these [Kanpur 2002, 2003]

3. With usual notations
(i)   q (ii)   q

(iii) 2  | q | (iv) None of these [Kanpur 2003]
4. Differential equations of the path lines are

(i) / / /dx u dy dz w v (ii) / , /dx dt u dy dt  v , dz/dt = w
(iii) / / /dx dy dz     (iv) None of these [Kanpur 2002]

5. Velocity potential   satisfies the following equation
(i) Bernoulli           (ii) Cauchy              (iii) Laplace         (iv) None of these

6. In usual notations, 0
( , , )
( , , )
x y z
a b c


  


, is the equation of continuity in

(i) Cartesian coordinates (ii) Euler’s form

Created with Print2PDF. To remove this line, buy a license at: http://www.software602.com/

SuccessClap: Best Coaching for UPSC Mathematics : For Info- 9346856874
Checkout ->22 Weeks Study Plan, Videos, Question Bank Solutions, Test Series

Succ
ess

Clap



Euler’s equations of motion.
[Meerut 2012; Kanpur 1999; 02, 04; Agra 2005; Garhwal 2001, 05;

G.N.D.U. Amritsar 1999; Rohilkhand 2001; Rajasthan 1997, 98;
U.P.P.C.S. 1998, Purvanchel 2004; Kurukshetra 1997]

Let p be the pressure and   be density at a point P (x, y, z) in an inviscid (perfect) fluid.
Consider an elementary parallelepiped with edges of lengths , ,x y z    parallel to their respective
coordinate axes having P at its centre as shown in figure. Let (u, v, w) be the components of
velocity and (X, Y, Z) be the components of external force per unit mass at time t at P. Then if
p = f (x, y, z), we have

D D 
 Z

 O  X

Y

B B 

( –           )  p y z 
p
x

x
2

(            )  p + y z 
p
x

x
2

A 

z
C 

C

y
A P x,y,z( )

w

u x
v

Force on the plane through P parallel to .ABCD p y z  

  Force on the face ABCD = 
1– , ,
2

f x x y z y z    
 

            1– ,
2

ff x y z
x

       
 expanding by Taylor’s theorem

and       force on the face 1 1, ,
2 2

fA B C D f x x y z y z f x y z
x

                       
 The net force in x-direction due to forces on ABCD and A B C D   

    
1 1– –
2 2

f ff x y z f x y z
x z

                    
    – ( / ) ,f x x y z       to first order of approximation

    – ( / )p x x y z      ,           as          p = f (x, y, z)

Equations of Motion of
Inviscid Fluids
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3.2 FLUID DYNAMICS

The mass of the element is .x y z    Hence the external force on the element in x-direction
is X .x y z    Also we know that Du/Dt is the total acceleration of the element in x-direction.

By Newton’s second law of motion, the equation of motion in x-direction is
Mass × (acceleration in x-direction) = Sum of the components of external forces in x-direction.

i.e. –Du px y z X x y z x y z
Dt x


         



or 1– .Du pX
Dt x




 
…(1)

Similarly, the equations of motion in y and z-directions are, respectively
1–Dv pY

Dt y



 

…(2)

and
1–Dw pZ

Dt z



 

…(3)

Re-writing (1), (2) and (3), the so called Euler’s dynamical equations of motion in cartesian
coordinates are

1–u u u u pu v w X
t x y z x

    
   

      …(4)

1–v v v v pu v w Y
t x y z y

    
   

      …(5)

           
1–w w w w pu v w Z

t x y z z
    

   
      …(6)

Alternativ form (Vector method). [Delhi 1997, Punjab 2003, Kurukshetra 2000]
Let q = ui + vj + wk and F = Xi + Yj + Zk. Then, since

   ( / ) ( / ) ( / ) ,p x p y p z p         i j k

(1), (2) and (3) may be combined to yield                          
1– ,D p

Dt
 


q F …(7)

which is called the Euler’s equation of motion.

But      ( )D
Dt t


  


q q q q …(8)

Using (8), (7) may be re-written as

             1( ) – p
t


   

 
q q q F …(9)

Again, ( ) 2[ curl ( ) ]     q q q q q q

so that 2( ) (1/ 2) – curl   q q q q q …(10)
Using (10), (9) takes the form

21 1– curl –
2

p
t

         

q q q q F

or     
21 1– curl – – .

2
p q

t


   
 
q q q F …(11)

Created with Print2PDF. To remove this line, buy a license at: http://www.software602.com/

SuccessClap: Best Coaching for UPSC Mathematics : For Info- 9346856874
Checkout ->22 Weeks Study Plan, Videos, Question Bank Solutions, Test Series

Succ
ess

Clap



EQUATIONS OF MOTION OF INVISCID FLUIDS 3.3

3.1A. The equation of motion of an inviscid fluid (Vector method)
Consider any arbitrary closed surface S drawn in the region

occupied by the incompressible fluid and moving with it, so that it
contains the same fluid particles at every instant.

By Newton’s second law of motion,
the total force acting on this mass of fluid

                 = the rate of change in linear momentum …(1)
The mass of fluid under consideration is subjected to the following

two forces : (i) The normal pressure thrusts on the boundary.
    (ii) The external force F (say) per unit mass.

Let  be the density of the fluid particle P within the closed surface
and let dV be the volume enclosing P. The mass of element dV  will always remain constant. Let
q be the velocity of fluid particle P, then the momentum M of the volume V is given by

        ,
V

dV M q …(2)

where the integral has been taken over the entire volume V.
The time rate of change of linear momentum is given by differentiating (2) w.r.t. ‘t’ as

     ( )
V V V

D D D DdV dV dV
Dt Dt Dt Dt

       
M qq q

or     ,
V

D D dV
Dt Dt

 
M q

…(3)

noting that the second integral vanishes because the mass dV  remains constant for all time.
Here D/Dt is the well known material derivative (or differentiation following the motion

of the fluid) and is given by    .D
Dt t


  


q ... (4)

If F be the external force per unit mass acting on fluid particle P, then the total force on

the volume V is given by                                         . F
V

dV …(5)

Finally, if p be the normal pressure thrust at a point of the surface element dS, the total
force on the surface S

ˆ( ) ,
S

p dS  n  (negative sign is taken because surface force acts inwards and n̂  is unit

  vector along the outward normal)

,
V

p dV    by Gauss theorem

     The total force acting on the volume V ( ) .
V V V

dV p dV p dV        F F    …(6)

By Newton’s second law as stated in (1), we have

( )
V V

Dp dV dV
Dt

   
qF or 0.

V

D p dV
Dt

     
 

q F …(7)

V

pn
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3.4 FLUID DYNAMICS

Since the volume V enclosed by surface S is arbitrary, (7) holds if

         D p
Dt

   
q F 0               or                  1 ,D p

Dt
  


q F …(8)

which is known as Euler’s equation of motion. It is also known as the equation of motion by flux
method.
Deduction of Lamb’s hydrodynamical equations.

Using (4), (8) may be rewritten as

1( ) .p
t


    

 
q q q F …(9)

But        ( ) 2 [ curl ( ) ]     q q q q q q

so that        ( ) (1/ 2) ( ) curl     q q q q q q

or        2( ) ( / 2) curl .    q q q q q …(10)
Using (10), (9) reduces to

2 1( / 2) (curl ) .p
t


     

 
q q q q F …(11)

Now, the vorticity vector   is given by            = curl q. …(12)
Using (12), (11) may be rewritten as

2 1( / 2) ,
     

 
q q q F p
t

 …(13)

which is known as Lamb’s hydrodynamical equation. The main advantage of it lies in the fact
that it is invariant under a change of co-ordinate system.
3.1B. Conservative field of force.

In a conservative field of force, the work done by the force F of the field in taking a unit
mass from one point to the other is independent of the path of motion.

Thus, if F = Xi + Yj + Zk, then a scalar point function V(x, y, z) exists such that
Xdx + Ydy + Zdz = – dV        or       – V F

so that – / ,X V x               – / ,Y V y         – / .Z V z  
V is said to be force potential and it measures the potential energy of the field.

3.2A. Euler’s equations of motion in cylindrical coordinates.

Euler’s equation of motion is                 
1–D p

Dt
 


q F …(1)

Let ( , , )r zq q q  be the velocity components and ( , , )r zF F F  be the components of external
force in r, ,  z directions. Then we know that

2
– , , ,q rr zq Dq q qDq DqD

Dt Dt r Dt r Dt
   

   
 

            ( , , ),r zF F FF           
1, , .         

p p pp
r r z

Substituting in (1), and equating the coefficients of i, j, k, we obtain Euler’s equations of
motion in cylindrical coordinates as:
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EQUATIONS OF MOTION OF INVISCID FLUIDS 3.5

2 1– –

1– ,

1–

r
r

r

z
z

qDq pF
Dt r r

Dq q q pF
Dt r r

Dq pF
Dt z



 



 

  
   

 


 
  

…(2)

where      .r z
qD q q

Dt t t r z
   

   
   

…(3)

3.2B. Euler’s equations of motion in spherical coordinates. [Garhwal 2005]

Euler’s equation of motion is       
1–D p

Dt
 


q F …(1)

Let ( , , )rq q q   be the velocity components and ( , , )rF F F  be the components of external
force in r, ,   directions. Then we know that

         
2 2 2 cot cot

– , – ,rr q q q Dq q qDq q qDqD
Dt Dt r Dt r r Dt r

      
   
   
 
 

q

1 1(F , F , F ), and , , .
sin 

   
        

F r
p p pp
r r r r

Substituting in (1) and equating the coefficients of i, j, k we obtain Euler’s equations of
motion in spherical polar coordinates as :

2 2

2

1– –

cot 1– – ,

cot 1–
sin

 

 


  


 
 

  
    

 
 
 

   

r
r

r

q qDq pF
Dt r r

qDq q q pF
Dt r r r

Dq q q pF
Dt r r

…(2)

where
sinr
qqD q

Dt t r r r
   

   
    

…(3)

3.2C. An important theorem.
If the motion of an ideal fluid, for which density is a function of pressure p only, is steady

and the external forces are conservative, then there exists a family of surfaces which contain the
streamlines and vortex lines.

Proof. Euler’s equation in vector form is given by (Refer equation (11), Art. 3.1)

21 1– curl – –
2

p q
t


   

 
q q q F …(i)

For steady flow,         / t  q 0.

Since the external forces are conservative, there exists force potential V such that – .V F
Further, density being a function of pressure p only, there must be a function P such that

(1/ ) .P p     Using these facts, (i) reduces to
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3.6 FLUID DYNAMICS

                  2( / 2) curlV P q    q q …(ii)

Let                    curl = vorticity vector. q

Then            2( / 2)V P q    q  …(iii)

Let                  2( / 2)V P q   n …(iv)

Then (iii) reduces to           n q  …(v)

From (v), we get               ( ) ( ) 0       n q q q q q 

and            ( ) ( ) 0.       n q q    

These results show that n is perpendicular to both q and  .
Since f  is perpendicular everywhere to the surface f = constant, (iv) shows that n is

perpendicular to the family of surfaces

              2 / 2 .V P q C   …(vi)

Thus q and   are both tangential to the surfaces (vi). Hence (vi) contains the streamlines
and vortex lines.

Another Form : Prove that for steady motion of an inviscid isotropic fluid

21( ), .
2

dpp f q const     
 over a surface containing the streamlines and vortex lines.

Comment on the nature of this constant.
3.3. Working rule for solving problems.

(i) Read and remember all equations of motion given in Art. 3.1, 3.1A, 3.2A and 3.2B. Use
an appropriate one in the given problem.

(ii) Read and remember all equations of continuity given in Art. 2.8 to 2.14 of chapter 2.
Use an appropriate one in the given problem.

(iii) Physical relations connecting p and   may be used. If the given fluid is at constant
temperature, then use ,p k   where k is a constant. When the change is adiabatic, the relation

p k    is used.
(iv) Given initial and boundary conditions are used.

3.4. Illustrative solved examples.
Ex. 1. A sphere of radius R, whose centre is at rest, vibrates radically in an infinite

incompressible fluid of density  , which is at rest at infinity. If the pressure at infinity is  ,
show that the pressure at the surface of the sphere at time t is

  
22 2

2
1 .
2

d R dR
dtdt

        
   

     [Kanpur 2008; Meerut 2007; Bombay 2000; I.A.S. 1996]

If R = a (2 + cos nt), show that, to prevent cavitation in the fluid,   must not be less than
2 23 .a n

Sol. Here the motion of the fluid will take place in such a manner so that each element of
the fluid moves towards the centre. Hence the free surface would be spherical. Thus the fluid
velocity v  will be radial and hence v  will be function of r  (the radial distance from the centre
of the sphere which is taken as origin), and time t only. Let p be pressure at a distance r . Let P
be the pressure on the surface of the sphere of radius R and V be the velocity there. Then the
equation of continuity is
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EQUATIONS OF MOTION OF INVISCID FLUIDS 3.7

       2 2 ( )r R V F t   v …(1)

From (1),            
2
( )F t

t r
 


 
v …(2)

Again equation of motion is                              1– p
t r r
    

    
v v

v

or   2
2
( ) 1 1– ,

2
F t p

r rr
          

v  using (2) …(3)

Integrating with respect to ,r  (3) reduces to

                       
2( ) 1– –

2
F t pv C

r


  
  , C being an arbitrary constant

When ,r     then 0 v  and p    so that /C    . Then, we get

     2( ) 1 ––
2

F t p
r
  
 

v         or        21 ( )2 – .
2

F tp
r
      

v …(4)

But p = P and V v  when R .r   Hence (4) gives

         21 2P ( ) – V
2 R r RF t  

       
…(5)

Also V = dR/dt. Hence using (1), we have

      
2

2 2 R( ) ( )
2r R

d d d d R dRF t R V R
dt dt dt dt dt 

             

         
22 2 2 2 2

2 2
1

2 2 2
R d R dR dR R d R dRR

dt dt dtdt dt
      
 

Using the above values of V and { ( )} ,r RF t    (5) reduces to

2 22 2

2
1 2 –
2 2

R d R dR dRP R
R dt dtdt

               
       

or               
22 2

2
1 .
2

d R dRP
dtdt

        
   

…(6)

Second Part: From 2r   v  constant, we conclude that v  is maximum when r  is minimum

i.e. .r R   So pressure is minimum on r R   by using Bernoulli’s theorem [Refer Chapter 4].
Given          R = a (2 + cos nt) …(7)
    dR/dt = – an sin nt

and   dR2/dt = 2a2 (2 + cos nt) (– n sin nt)
  d2R2/dt2 = – 2a2n2 (2 + cos nt) cos nt + 2a2n2 sin2nt
With the above values, (6) reduces to

2 2 2 2 2 2(3/ 2) sin – (2cos cos )P a n nt a n nt nt      …(8)
From (7), R varies from 3a to a. Thus the sphere has the greatest radius 3a when nt = 0 or

2 .m  Clearly as the sphere shrinks from R = 3a, there is a possibility of a cavitation there
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3.8 FLUID DYNAMICS

because pressure would be minimum there. Hence the minimum value of pressure P  (say) on the
surface of the sphere is given by replacing t = 0 or 2nt m   in (8). We thus obtain

       2 2– 3 .P a n    …(9)

To prevent cavitation in the fluid. P  given by (9) must be positive i.e.  must not be less

than 2 23 .a n
Ex. 2. An infinite mass of homogeneous incompressible fluid is at rest subject to a uniform

pressure   and contains a spherical cavity of radius a, filled with a gas at pressure ;m  prove
that if the inertia of the gas be neglected, and Boyle's law be supposed to hold throughout the
ensuing motion, the radius of the sphere will oscillate between the values a and na, where n is
determined by the equation    1 + 3m log n – n3 = 0. (Kanpur 2010)

If m be nearly equal to 1, the time of an oscillation will be 22 ( / 3 ),a     being the
density of the fluid.          [Kanpur 2008; Agra 1998; I.A.S. 1994; Meerut 1999]

Sol. As in Ex. 1, let at any time t, v  be the velocity at a distance t  and p  the pressure
there. Also let v be the velocity at a distance r and p the pressure there. Then the equation of

continuity is           2 2( )r F t r   v v     …(1)

From (1),
2
( )F t

t r
 


 
v …(2)

The equation of motion is                                 1– p
t r r
     

    
v v

v

i.e.       2
2
( ) 1 1– ,

2
F t p

r rr
          

v using (2) …(3)

Integrating with respect to ,r  (3) gives

  2( ) 1– –
2

F t pC
r
 

 
 

v , C being an arbitrary constant

When ,r    then 0, p   v  so that /C    . Hence, the above equation yields

 2( ) 1 ––
2

F t p
r
  
 

v …(4)

Since gas inside cavity obeys Boyle’s law, we get

    3 3(4 / 3) (4 / 3)a m r p                        so that             3 3( ) /p a m r 

When r r   then 3 3, ( ) / .p p a m r    v v  So (4) gives

  
3

2
3

( ) 1 1– –
2

F t a m
r r
  

  
 

v …(5)

From (1),          2 2 2( ) 2 2 , as       
dr d d dr drF t r r r r
dt dt dr dt dt

v v
v v v

or                     F (t) = 2rv2 + r2v (dv/dr)
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EQUATIONS OF MOTION OF INVISCID FLUIDS 3.9

Hence (5) reduces to

       
3

2 2 2
3

1 1 1– 2 –
2

         

d a mr r
r dr r

v
v v v

or   
3

2
3

3 –
2

d a mr
dr r

 
  

 
v

v v …(6)

Multiplying both sides of (6) by 2r2dr, we get
2 3

3 2 2 2 22 3 – r a mr d r dr dr
r

  
      

v v v     or     
2 3

3 2 2 2( ) – r a md r dr
r

  
     

v

Integrating,
3

3 2 32 2– log
3

a mr r r C    
 

v , C being an arbitrary constant …(7)

Initially, when r = a, then     v = 0 . Hence (7)          
3 32 2= – log

3
a a mC a 
 

  From (7),
3

3 3 3 32 2( – ) log
3

a m rr a r
a

         
v …(8)

Since the radius of the sphere oscillates between a and na, we have v = 0, when r = a and
r = na. Putting v = 0 and r = na in (8), we have

3 3 3 320 – 3 log
3

naa n a ma
a

         
so that 1 + 3m log n – n3 = 0,           as         a  0

Second Part. Let m be nearly equal to 1. Then, we take r = a + x where x is small. Again,
v = dr/dt = dx/dt = x . Hence, taking m = 1, (8) reduces to

 
3

3 2 3 32 2( ) – ( ) log
3

a a xa x x a a x
a

           


or             
3 33 3

3 2 2 21 1 – 1 log 1
3

x a x a xa x
a a a

                          


or               
3 2 3 2

2
2 2

2 3 3 2 11 1– 1 –
3 2

x x x a x xx
a a aa a

                               


or
–3 2

2
2

2 91 –
3 2

           
 x xx

a a

2 2

2 2
2 3 6 91– – –
3 2

x x x
a a a

   
           

or     2 2 2–[3 / ],  x x a  neglecting higher powers of x
Differentiating the above relation with respect to t, we get

             32 – 2x x x x
a


 


          or                    
2

3– ,x x
a







which represents the standard equation of simple harmonic motion and hence the required time
of oscillation (i.e. periodic time) is given by

22 / (3 / )a            i.e.       22 ( / 3 ).a  
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3.10 FLUID DYNAMICS

Ex. 3. A mass of gravitating fluid is at rest under its own attraction only, the free surface
being a sphere of radius b and the inner surface a rigid concentric shell of radius a. Show that
if the shell suddenly disappears, the initial pressure at any point of the fluid at distance r from

the centre is        22 ( – ) ( – ) 1 .
3

a bb a r a
r
   

 
  [Bombay 1998]

Sol. As in Ex. 1, let at time t, v be the velocity at a distance r  from the centre and let the
radius of the inner spherical cavity be r. Let p be the pressure at a distance .r  Then the equation

of continuity is 2 ( )r F t  v     …(1)

From (1), 2
( )d F t

dt r
 



v …(2)

                    Attraction at distance 
3 3

2
(4 / 3) ( – )r rr

r
  


,

where  is the usual constant of gravitation.
Hence the equation of motion is

3

2
4 1– – –
3

r pr
t r rr

              

v v
v

i.e.             
3

2
2 2
( ) 1 4 1– – –

2 3
F t r pr

r rr r
                   

v , using (2)

Integrating with respect to ,r  we obtain

    
2 3

2( ) 1 4– – –
2 3 2

F t r r p C
r r

  
          

v , C being an arbitrary constant …(3)

Initially, when t = 0, then 0, v r = a and p = P (say). Hence (3) yields

    
2 3(0) 4– – –

3 2
F r a P C

a r
  

        
…(4)

But, P = 0 when r a   and .r b   So (4) gives

     
2

2(0) 4– –
3 2

F a a C
a

 
      

 
…(5)

and      
2 3(0) 4– –

3 2
F b a C

b b
 

      
 

…(6)

Subtracting (6) from (5), we have

         
2 2

21 1 4 –(0) – – 1
3 2

b a aF a
b a b

            
     


2– 4 ( – ) ( ) ( – )(0)

3 2
a b b a b a a a bF
ab b

       
  
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EQUATIONS OF MOTION OF INVISCID FLUIDS 3.11

or    3(0) – (2 / 3) ( ) (4 / 3)       F ab a b a …(7)

Multiplying (5) by a and (6) by b and then subtracting, we get

        
3 340 – ( – )

3 2 2
b a C a b

 
    

 

or 2 2( – ) (2 / 3) ( – ) ( )C b a b a b a ba   

or          2 2(2 / 3) ( )C a b ab    …(8)

Putting the values of (0)F   and C in (4), we get

2 3
3 2 21 2 4 4 P 2– – ( ) – – ( )

3 3 3 2 3
r aab a b a a b ab

r r
                         


2 2 2 22 ( )– –

3
ab a bP a b ab r

r
       

or 22 ( – ) ( – ) 1 .
3

a bP r a b r
r
       

…(9)

For the required result, replace r  by r in (9).
Ex. 4. Liquid is contained between two parallel planes, the free surface is a circular cylinder

of radius a whose axis is perpendicular to the planes. All the liquid within a concentric circular
cylinder of radius b is suddenly annihilated ; prove that if   be the pressure at the outer
surface, the initial pressure at any point on the liquid distant r from the centre is

     log – log .
log – log

r b
a b

 [Kanpur 2000; Meerut 2000; Agra 1995; I.A.S. 2006]

Sol. Here the motion of the liquid will take place in such a manner so that each element of
the liquid moves towards the axis of the cylinder | z | = b. Hence the free surface would be
cylindrical. Thus the liquid velocity v  will be radial and v  will be function of r  (the radial
distance from the centre of the cylinder | z | = b which is taken as origin) and time t only. Let p
be the pressure at a distance .r  Then the equation of continuity is

( )r F t  v …(1)

From (1),      / ( ) /t F t r     v …(2)

The equation of motion is        
1– p

t r r
    

    
v v

v

or     2( ) 1 1– ,
2

F t p
r r r
         

v  using (2)

Integrating,          21( ) log –
2

    

pF t r Cv , C being an arbitrary constant …(3)

Initially when t = 0, 0, v p = P. So     (3)       (0) log – ( / )F r P C     …(4)

Again, P    when r a   and P = 0 when r b  . So (3) yields
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3.12 FLUID DYNAMICS

          (0) log – ( / ) and (0) logF a C F b C      …(5)

Solving (5) for (0)F   and C, we have

– log ,
log ( / )

C b
a b




       (0) – .
log ( / )

F
a b

 


Putting these values in (4), we get

log –
log ( / ) log ( / )

P r
a b a b

 
  

 log b

or
log – log log – log .

log ( / ) log – log
r b r bP

a b a b
 

    …(6)

For the required result, replace r  by r in (6).
Ex. 5. A mass of liquid of density   whose external surface is a long circular cylinder of

radius a which is subject to a constant pressure ,  surrounds a coaxial long circular cylinder
of radius b. The internal cylinder is suddenly destroyed; show that if v is the velocity at the
internal surface, when the radius is r, then

 
2 2

2
2 2 2 2 2

2 ( – ) .
log ( ) /

b r
r r a b r



  

v   [Garhwal 2000, Meerut 2006, Kanpur 2011]

Sol. When the inner cylinder is suddenly destroyed, the motion of the liquid will take place
along the radii of the normal sections of the cylinder. Hence the velocity will be function of
r (the radial distance from the centre of the cylinder | z | = a which is taken as origin) and time
t only. Let p be the pressure at a distance .r  Then the equation of continuity is

( )r F t  v …(1)

From (1),         / ( ) /t F t r    v …(2)

The equation of motion is   
1– p

t r r
    

    
v v

v

or    2( ) 1 1– ,
2

F t p
r r r
         

v  using (2)

Integrating,          21( ) log –
2

pF t r C    


v , being an arbitrary constant …(3)

Let r and R be the radii of the internal and external surfaces of the cylinder and let v and
V be the velocities there at any time t. Hence, we have

        When          ,r r          , v v  p = 0 …(4)

and          when         ,r R          ,V v            p   …(5)
Using (4) and (5), (2) reduces to

2( ) log / 2  F t r Cv …(6)

and           2( ) log / 2 – /     F t R V C …(7)
Subtracting (7) from (6), we have

  2 2( ) (log – log ) ( – ) / 2 /F t r R V    v     …(8)
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EQUATIONS OF MOTION OF INVISCID FLUIDS 3.13

From (1),   rv = RV = F (t) …(9)
But v = dr/dt and V = dR/dt. So (9) becomes

      2rdr = 2RdR = 2F(t)dt …(10)
Also R2 – r2 = a2 – b2 …(11)

From (9), ( ) ( ) ( ) ( ),d d dr dF t r r r
dt dr dt dr

    v v v v  as dr
dt

v

Putting the values of ( )F t  and V, (8) gives
2 2

2
2

1( ) log –
2

d r rr
dr R R

  
      

v
v v v       or     

2
2

2
1( ) log 1–
2

d r r rr r r
dr R R

  
      

v v v

or     2 2 2
2

1 1 1( ) log –
2 2

      

d r r rr r
dr R r R

v v       or      2 21 log ,
2

d r rr
dr R

     
v …(12)

where we have used (10) i.e. RdR = rdr.

Integrating (12),       
2

2 21
log ,

2 2
r r

r C
R


  


v C  being an arbitrary contant …(13)

But   v = 0   when  r = b.    So              2– / 2 .C b   

 From (13),         2 2 2 2log ( – )rr r b
R





v

or    
2

2 2 2 22log ( – )     

rr r b
R

v

or
2 2 2 2 2 2 2 2

2
2 2 2 2 2 2 –1 2 2 2 2 2 2

2 ( – ) 2 ( – ) 2 ( – ) 2 ( – )
log ( / ) log ( / ) log ( / ) log ( / )
   

    
   

r b r b r b b r
r r R r R r r R r r R r

v

       Thus,    v2

 
2 2

2 2 2 2 2

2 ( – ) ,
log ( ) /



  

b r
r r a b r

 using (11)

Ex. 6. A centre of force attracting inversely as the square of the distance is at the centre of
a spherical cavity within an infinite mass of incompressible fluid, the pressure on which at an
infinite distance is   and is such that the work done by this pressure on a unit area through a
unit of length is one-half the work done by the attractive force on a unit volume of the fluid from
infinity to the initial boundary of the cavity; prove that the time filling up the cavity will be

 1/ 2 3/ 2( / ) 2 (3 / 2) ,a     a being the initial radius of the cavity, and   the density of the fluid.

                         [Meerut 1999]
Sol. At any time t, let v  be the velocity at a distance r  and p be the pressure there. Let r

be the radius of the cavity at that time and v be the velocity there. Then equation of continuity is

     2 2F( )r t r   v v …(1)

From (1),    2/ ( ) /t F t r    v …(2)

The equation of motion is       2
1– – p

t r rr
     

    
v v

v

or 2
2 2
( ) 1 1– – ,

2
F t p

r rr r
           

v  using (2)
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3.14 FLUID DYNAMICS

Integrating,                  2( ) 1– – ,
2

F t p C
r r
   
  

v C beings an arbitrary constant

But 0 v  and p    when .r    So / .C     Hence the above equation yields

2( ) 1 ––
2

F t p
r r
    
  

v …(3)

Also  v v  and p = 0 when .r r   So from (3), we get

2( ) 1–
2

F t
r r
  

  


v …(4)

From (1), 2 2 2( ) ( ) 2 2      
d dr d dr d drF t r r r r r
dt dt dt dt dr dt

v v
v v v

                   2 22 , 
dr r
dr

v
v v      as    

d
dt
r

v

Using the above value of F ( ),t  (4) gives

2 2 21 1– 2
2

        

dr r
r dr r

v
v v v                or        22 3 – 2  

    
r d dr dr

r
v v v

or      3 2 2 22 3 – 2   
    

r d r dr r dr
r

v v v             or    3 2 2( ) – 2d r r r dr 
    

v

Integrating,            
3 2 2 32–

3
r r r C       

v , C  being an arbitrary constant …(5)

Initially, when r = a, v = 0. So 2 3(2 / 3 ) .C a a     

 From (5),        3 2 2 2 3 32( – ) ( – ).
3

r a r a r
  


v …(6)

Since the work done by   is half the work done by the attractive force, we have

          2
11 1 –
2 

      
 

a
dr

r
          so that 2 .a

 


Putting this value of µ in (6), we get

    
3 3 2 2 3 32 2( – ) ( – )

3
ar a a r 

  
 

v

or        3 2 2 2 3 32 {3 ( – ) – }
3

r a a r a r
 


v         or       

2 2 3 3
2

3
2 {3 ( – ) – }
3

a a r a r
r

 



v

or
1/ 2 2 2 3 3 1/ 2

3/ 2
2 {3 ( – ) – }–
3

dr a a r a r
dt r

  
   

…(7)

wherein negative sign is taken as r decreases when t increases.
Let T be the time of filling the cavity. Then we have, r = a when t = 0 and r = 0 when t = T.

Hence (7) gives on integration
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EQUATIONS OF MOTION OF INVISCID FLUIDS 3.15

1/ 2 3/ 20

2 2 3 3 1/ 2
0

3–
2 {3 ( – ) – }
      

T

a

r drdt
a a r a r

    
1/ 2 3 / 2

0

3
2 ( 2 ) ( – )
      

a r drT
r a a r …(8)

Put 2sinr a   so that 2 sin cos .dr a    Then (8) reduces to

    
1/ 2 1/ 23/ 2 3 4/ 2 / 2

2 1/ 2 20 0

3 sin 2 sin cos 3 sin2
2 2(2 sin ) cos 2 sin

                          
a a d dT a

a a

   
1/ 2 / 2 2

20

3 42 sin – 2
2 2 sin

               
a d

1/ 2 1/ 2 2/ 2 / 2

2 2 20 0

3 3 3 sec2 – 4 2 – 4
2 4 2 42 sin 2sec tan

                                
 

d da a

1/ 2 1/ 22/ 2

2 20 0

3 3 sec 3 3 42 – 4 2 –
2 4 2 4 32 3tan (2 / 3)

                              
 

d dta a
t

[Putting tan t   and 2sec d dt   ]

1/ 2
–1

0

3 3 4 3 32 – tan
2 4 3 2 2

                       

a t
1/2 1/23 3 4 3 12 –

2 4 3 2 2
a

                 

1/2 1/23 3 4 3
2 2 3 2

a
                    

1/2 3/232 – .
2

a
               

Ex. 7. A spherical hollow of radius a initially exists in an infinite fluid, subject to constant
pressure at infinity. Show that the pressure at distance r  from the centre when the radius of the

cavity is r is to the pressure at infinity as     2 4 3 3 3 3 3 3 2 43 ( – 4 ) – ( – ) : 3r r a r r a r r r r  
[Garhwal 2000]

Sol. Let v  be the velocity at a distance r  at any time t and p be the pressure there. Again,
let v be the velocity of the inner surface of radius r. Then the equation of continuity is

       2 2( )r F t r   v v …(1)

From (1),        2/ ( ) /t F t r    v …(2)

The equation of motion is                           1– p
t r r
    

    
v v

v

or                2
2
( ) 1 1– ,

2
F t p

r rr
          

v  using (2)
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3.16 FLUID DYNAMICS

Integrating,               2( ) 1– – ,
2

F t p C
r


  
 

v C being an arbitrary constant …(3)

Let   be the pressue at infinity. Thus 0 v  and p    when .r    So (3) gives

/ .C     Then (3) reduces to

          
2( ) 1 ––

2
F t p

r
  
 

v …(4)

But p = 0 and  v v  when .r r   Then (4) gives

              
2( ) 1–

2
F t

r
 

 


v …(5)

From (1),            2 2 2( ) ( ) 2 2d dr d dr d drF t r r r r r
dt dt dt dt dr dt

     
v v

v v v

                   2 22 dr r
dr

 
v

v v
dr
dt

   
 v

Using the above value of ( ) ,F t  (5) gives

    
2 2 21 1– 2

2
dr r

r dr
      

v
v v v           or       23– –

2
dr
dr





v
v v …(6)

Multiplying both sides by (– 2r2 dr), (6) gives

3 2 2 222 3 –r d r dr r dr
 


v v v            or         3 2 22( ) –d r r dr




v

Integrating,    
3

3 2 2– ,
3

rr C  


v C  being an arbitrary constant. …(7)

But when r = a, v = 0. Hence 3= (2 ) /(3 )C a  

 From (7),          3 2 3 32 ( – )
3

r a r



v …(8)

Putting the value of v from (8) in (5), we get
3 3

2
3

1 –( ) – –
2 3

a rF t r r
r

              
v

or   
3 3

2
– 4( ) .

3
a rF t

r
 


…(9)

From (1),               2 2( ) /r r v v …(10)
Using (9) and (10), (4) reduces to

3 3 2 4 3 3 3 3

2 4 2 4
– 1 – 4 1 – 4 ( – )– – ,

3 2 3 3
p a r r a r r a r

r r r r r r
   

       
     

v  using (8)


3 3 3 3

2 4
– 4 ( – )–

3 3
p a r r a r

r r r
  

   
    
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EQUATIONS OF MOTION OF INVISCID FLUIDS 3.17

or
2 4 3 3 3 3 3 3

2 4
3 ( – 4 ) – ( – ) ,

3
p r r a r r a r r

r r
 


 

which gives the required ratio of two pressures under consideration
Ex. 8. A solid sphere of radius a is surrounded by a mass of liquid whose volume is 3(4 ) / 3c

and its centre is a centre of attractive force varying directly as the square of the distance. If the
solid sphere be suddenly annihilated, show that the velocity of the inner surface, when its radius

is x, is given by      
3

2 3 3 3 1/3 3 3 3 3 1/32 2[( ) – ] ( – ) ( ) ,
3 9

cx x x c x a x c x
  

      


where  is the density,  the external pressure, µ the absolute force and / .x dx dt
[Agra 2000; Himanchal 1999]

Sol. Let v  be the velocity at a distance r  at any time t and p be the pressure there. Let r
and R be the radii and v and V the velocities of the inner and outer surfaces at time t. Then the
equation of continuity is

2 2 2( )r F t r R V    v v …(1)

From (1),                  2/ ( ) /t F t r    v …(2)
The equation of motion is

2 1– – pr
dt r r
      

   
v v

v , where here 2r  is the attractive force

or    2 2
2
( ) 1 1– –

2
F t pr

r rr
            

v

Integrating,            
3

2( ) 1– – –
2 3

F t r p C
r
   
 

v , C being an arbitrary constant …(3)

Now, when       ,r r         v v        and      p = 0

and     when       ,r R        V v        and     p  

 (3) yields
3

2( ) 1– – C
2 3

F t r
r
 

  v …(4)

and
3

2( ) 1– – –
2 3

F t RV C
R
  

  


…(5)

Subtracting (4) from (5), we have

2 2 3 31 1 1( ) – – ( – ) ( – ) –
2 3

F t V r R
r R

      
v

But      3 3 3(4 / 3) R – (4 / 3) (4 / 3)   r c    so that      r3 – R3 = – c3.

   
3

2 21 1 1( ) – – ( – ) – –
R 2 3

cF t V
r

      
v …(6)

From (1), 2 2( ) ( ) ( )d d drF t r r
dt dr dt

   v v       or        2( ) ( )dF t r
dr

  v v …(7)
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3.18 FLUID DYNAMICS

Again from (1), we get                   V = (r2v)/R2 …(8)
Using (7) and (8), (6) gives

4 2 3
2 2

4
1 1 1 3( ) – – – –

2 3
d r cr
dr r R R

              

v
v v v

Multiplying both sides by r2, we get

2 3
2 2 2 4 2

2 4
1 1 1 32 ( ) – – – –

3
d r cr r r r
dr r R r R

              
v v v

or    
2 3

2 2 2 2 2
2 4

1 1 1 3( ) – – ( ) –
3

d r cr r r
dr r R r R

                
v v …(9)

From (1), r2v = R2V or 2 2dr dRr R
dt dt



i.e.            r2dr = R2dR …(10)
Integrating (9) and using (10), we have

3 3
4 2 2 32 ( 3 ) 2 ( 3 )1 1– – = –

3 9
c cr r dr C r C

r R
                 v

When         r = a, v = 0          so that         
3

32( 3 )
9

cC a    


      
3

4 2 3 31 1 2( 3 )– ( – )
9

cr a r
r R

        
v

i.e.      
3

4 2 3 3
3 3 1/3

1 1 2 2– ( – )
9 3( )
cr a r

r r c
    

        
v

Now, for the inner surface, r = x, .x v  Hence, the above relation reduces to

3
2 3 3 3 1/3 3 3 3 3 1/32 2[( ) – ] ( – ) ( ) .

9 3
cx x x c x a x x c

  
      



Ex. 9. A sphere is at rest in an infinite mass of homogenous liquid of density ,  the pressure
at infinity being P. If the radius R of the sphere varies in such a way that R = a
+ b cos nt, where b > a, show that pressure at the surface of the sphere at any time is

       
2

( – 4 cos – 5 cos 2 ).
4

bnP b a nt b nt
 [Agra 2003, Himachal 2000]

Sol. Let v  be the velocity at a distance r  at any time t and p  be the pressure there.
Again, let v be the velocity on the surface of sphere of radius R, where

          R = a + b cos nt …(1)

Then the equation of continuity is                       2 2( )r F t R   v v …(2)

From (2),                2/ ( ) /t F t r    v …(3)
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EQUATIONS OF MOTION OF INVISCID FLUIDS 3.19

The equation of motion is

1– p
t r r
     

    
v v

v   or       2( ) 1 1– ,
2

F t p
r r r
          

v  using (3)

Integrating,                   2( ) 1– – ,
2

F t p C
r
 

  
 

v  C being an arbitrary constant

Given: when ,r    v = 0, .p P   So / .C P   So the above equation gives

                 2( ) 1 ––
2

F t P p
r
 

 


v …(4)

Let p p   when .r R   Also,  v v  when .r R   Then, (4) yields

        2( ) 1 ––
2

F t P p
R


 


v               or            2( ) 1–
2

F tp P
R
     

v …(5)

From (2),      2 2( ) ( ) 2d dR dF t R R R
dt dt dt

    
v

v v

2 2
2

22 dR d RR R
dt dt

   
 

dR
dt

   
 v

Using the above value of ( )F t  and noting v = dR/dt, we have

2 2 22 2
2

2 2
( ) 1 1 3– 2 –

2 2 2
F t dR d R dR dR d RR R

R dt dt dtdt dt
              

     
v

   = (3/2) × (– bn sin nt)2 + (a + b cos nt) (– bn2 cos nt), using (1)
   = (bn2/2) × (3b sin2nt – 2b cos2 nt – 2a cos nt)
   = (bn2/4) × [3b (1 – cos 2nt) – 2b (1 + cos 2nt) – 4a cos nt]
   = (bn2/4) × (b – 4a cos nt – 5b cos 2nt)

Hence (5) reduces to                   
2

( – 4 cos – 5 cos 2 ).
4

bnp P b a nt b nt
 

Ex. 10. For an inviscid, incompressible, steady flow with negligible body forces, velocity
components in spherical polar coordinates are given by

3 3(1 – / )cos ,ru V R r  3 3– (1 / 2 )sin ,u V R r        0.u 

Show that it is a possible solution of momentum equations (i.e. equations of motion). R and
V are constants.

Sol. Here equations of motion in spherical polar coordinates are (refer Art. 14.12)
2 2 1– –

sin
r r r r

r r
u u uuu u u u pu F

t r r r r r
       

   
      

…(1)

       
2 cot 1– –

sin
r

r
u uu u u u u u u pu F

t r r r r r r
      


    

    
      

…(2)

      
cot 1–

sin sin
r

r
u u u u u u u u uu pu F
t r r r r r r
       


     

     
       

…(3)
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3.20 FLUID DYNAMICS

For steady flow ( / 0)t    with negligible body forces ( 0),rF F F     the above
equations reduces to

    
2 1– –r r

r
u uu u pu

r r r r
   

 
   

…(4)

1–r
r

u u u u u pu
r r r r
     
  

    …(5)

  
10 –
sin




  
p

r …(6)

Equation (6) shows that p is function of r and   only..

Given :          
3

31 – cos ,r
Ru V
r

 
   

 
       

3

3– 1 sin
2
Ru V
r

 
    

 
…(7)

From (7),
3

4
3 cos ,ru VR

r r


 


       
3

3– 1 – sinru RV
r

 
     

…(8)

Using (7) and (8), (4) reduces to

23 3 3 3 3
2 2

3 4 3 3 3
3 1 11 – cos cos – 1 sin – 1 – sin – 1 sin –

2 2
R VR V R R R pV V V

r r rr r r r r

                                               

or
2 3 3 2 3 3

2 2
4 3 4 3

3 3 11 cos 1 sin
2 2

V R R V R R
rr r r r

    
        

    
... (9)

From (7),        
3 3

4 3
3 sin , and 1 cos

2 2
    
     

   

u uVR RV
r r r

  ... (10)

Using (7) and (10), (5) reduces to

3 3 3 3

3 4 3 3
3 11 cos sin 1 sin 1 cos
2 2 2

R VR R RV V V
rr r r r

        
                 

        

                     
3 3

3 3
1 11 cos 1 sin

2
R R pV V

r rr r

       
             

       

or
2 3 3 2 3 3

3 3 3 3
3 3 11 sin cos 1 sin cos

2 2 2
V R R V R R p

r r r r

    
          

    

Differentiating (9) with respect to ,  we get

  
2 2 3 3 2 3 3

4 3 4 4
1 3 31 2cos ( sin ) 1 2sin cos

2 2
p V R R V R R
r r r r r

   
              
      

or
2 2 3 2 6

4 7
1 9 9 sin cos

2
p V R V R
r r r

 
      
   

... (12)
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EQUATIONS OF MOTION OF INVISCID FLUIDS 3.21

Next, differentiating (11) with respect to r, we get
2 2 3 3 2 3 3

4 7 4 7
1 3 3 6 3 3 6sin cos sin cos

2 2 2
p V R R V R R

r r r r r
   

             
      

or
2 2 3 2 6

4 7
1 9 9 sin cos

2
p V R V R

r r r
 

      
    

... (13)

Since (12) and (13) are identical, the equations of motion (i.e., monemtum equations) are
satisfied.

Ex. 11. The velocity components    
2 2

2 2( , ) 1 cos , ( , ) 1 sinr
a au r V u r u
r r

   
           

   

satisfy the equations of motion for a two-dimensional inviscid incompressible flow. Find the
pressure associated with this velocity field. u and a are constants.

Sol. The equations of motion for inviscid incompressible fluid in cylindrical polar coordinates
are given by (Refer Art. 14.11)

   
2 1r r r r

r z r
u uu u u u pu u F

t r r z r r
     

     
     

    ... (1)

   
1r

r z
u u u u u u u pu u F
t r r z r r
     


    

     
      ... (2)

       
1z z z z

r z z
uu u u u pu u F

t r r z z
    

    
      ... (3)

For steady ( / 0)t    and two dimensional flow ( / 0, 0)zz u     with negligible body

forces ( 0),r zF F F    the above equations (1) to (3) reduces to

2 1r r
r

u uu u pu
r r r r

   
   

   
... (4)

1r
r

u u u u u pu
r r r r
     
   

    ... (5)

and                      10 p
z


 

 
, which implies that p is function of r and   only..

Given        
2

21 cos ,r
au U
r

 
    

 
              

2

21 sinau U
r

 
   

 
... (6)

Using (6), (4) reduces to
2 2 2 2

2 3 2 2
2 11 cos cos 1 sin 1 ( sin )a a U a aU U U

rr r r r

          
                     

          

22
2 2

2
1 11 sina pU
r rr

  
      

  

or
22 2 2 2 4 2

2 2
3 2 4 2

2 11 cos sin 1 1U a a U a a p
r rr r r r

                    
         
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3.22 FLUID DYNAMICS

or
2 2 2 2 2 2

2 2
3 2 3 2

2 2 11 cos 1 sinU a a U a a p
rr r r r

    
         

    
... (7)

Again using (6), (5) reduces to

    
2 2 2 2

2 3 2 2
21 cos sin 1 sin 1 cosa a U a aU U U

rr r r r

       
               

       

2 2

2 2
1 11 cos 1 sin

    
         

    

a a pU U
r rr r

or
2 2 2 2 2 2

3 2 3 2
2 2 11 sin cos 1 sin cosa U a U a a p

rr r r r

    
          

    

or
2 2 2 2 2 2

2 2 2 2
2 2 11 sin cos 1 sin cosa U a a U a p

r r r r

    
          

    

or         
2 2

2
4 1sin cosU a p

r


   
 

... (8)

Differentiating (7) with respect to ,  we have

          
2 2 2 2 2 2 2

3 2 3 2
1 4 41 sin cos 1 sin cosp U a a U a a

r r r r r

   
           
     

or
2 2 2

3
1 8 sin cosp U a

r r


  
   ... (9)

Differentiating (8) with respect to r, we have

           
2 2 2

3
1 8 sin cosp U a

r r


  
  

... (10)

Since (9) and (10) are identical, it follows that the given velocity components satisfy the
equations of motion.

Since p is function of r and , we have
   ( / ) ( / )      dp p r dr p d

Substituting the values of / and /p r p     given by (7) and (8) respectively in the above
equation, we obtain


2 2 2 2

2 2 2 2
3 5 3 5 2

1 1 42 sin cos sin cosa a U adp U a dr d
r r r r r

      
             

     
   ... (11)

Let dp = Mdr + Nd. Then, by comparison, we have

  M =  2 2 3 2 5 2 3 2 5 22 (1/ / ) sin (1/ / ) cos    U a r a r r a r

and   N = – 2 2 2(4 / ) sin cos   U a r

       
2 2

2 2 2 2
3 5 3 5

1 12 sin cosM a aU a
r r r r

       
          

         

 2 2 3 2 5 3 2 52 (1/ / ) 2sin cos (1/ / ) 2sin cos          U a r a r r a r

3 2 2(8 / ) sin cosr U a    
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EQUATIONS OF MOTION OF INVISCID FLUIDS 3.23

and       
2 2 2 2

2 3
4 8 sin cossin cosN U a U a

r r r r

      
     

   

Thus,   / / .M N r    
Hence (11) must be exact and so its solution by the usual rule of an exact equation is

2 2
2 2 2 2

2 4 2 4
1 12 sin cos

2 4 2 4
a ap U a C

r r r r

    
            

    

or                            
2

2 2
2 4

cos 22 ,
2 4

ap U a C
r r

 
    

 
C being an arbitrary constant

Ex. 12(a). A steady inviscid incompressible fluid flow has a velocity field u = fx, v = –fy,
w = 0, where if is a constant. Derive an expression for the pressure field p(x, y, z) if the pressure
p(0, 0, 0) = p0 and F = – g i z. [I.A.S. 2006]

Sol.  Given          u = f x,    v = – f y,           w = 0,         f being a constant ... (1)
Also, given that     p = p0,       when x = 0,      y = 0, z = 0 ... (2)
Again, F = – giz  X = 0, Y = 0 and Z = – gz ... (3)

Equations of motion for steady motion ( / ) 0t    of an incompressible fluid flow (see Art
3.1) are given by

( / ) ( / ) ( / ) (1/ ) ( / )             u u x v u y w u z X p x ... (4)

( / ) ( / ) ( / ) (1/ ) ( / )             u v x v v y w v z Y p y ... (5)

( / ) ( / ) ( / ) (1/ ) ( / )u w x v w y w w z Z p z              ... (6)

Using (1) and (3), (4), (5) and (6) reduce to
2 (1/ ) ( / ),     f x p x 2 (1/ ) ( / ),      f y p y 0 (1/ ) ( / )gz p z      

 2/ ,p x f x     2/p y f y    and /p z gz    ... (7)

Now, ( / ) ( / ) ( / )dp p x dx p y dy p z dz        

 2 2( ) ( ) ( ) ,      dp f x dx f y dy g z dz  using (7)

Integrating, 2 2 2 2 2( ) / 2 ( ) / 2 ( ) / 2 ,       p f x f y g z C C being a constant ... (8)

Putting x = y = z = 0 and p = p0 (see condition (2)), in (8), we get C = p0
Thus, the required expression for the pressure field is given by

2 2 2 2 2
0( , , ) ( ) / 2p x y z p f x f y g z   

Ex. 12(b). For a steady motion of inviscid incompressible fluid of uniform density under
conservative forces, show that the vorticity w and velocity q satisfies

( ) ( ) .  q w w q [I.A.S. 1989]
Sol. Vector equation of motion for invicid incompressible fluid is (refer Art. 3.1A)

2/ ( / 2) (1/ )t curl p        q q q q F ... (1)

Since the motion is steady,                                / t   0q ... (2)
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3.24 FLUID DYNAMICS

Since   is uniform, (1/ ) ( / )p p     ... (3)

Since F is conservative,      F ,     where   is some scalar function. ... (4)
Again, by definition, vorticity vector = w = curl q.
Using (2), (3), (4) and (5) in (1), we obtain

2( / 2) ( / )p     q q w           or 2( / 2 / )p    q w q
Taking the curl of both sides of the above equation and using the vector identity

curl gral ,  0  we have

curl (q × w) = 0              or        ( ) ( ) ( ) ( )        0w q q w w q q w   

or        ( ) ( )       0q w w q           or       ( ) ( ) .   q w w q
where we have used the following two results

0   w q      and 0 q  (continuity equation).
Ex. 13. Show that if the velocity field

  
2 2

2 2 2
( )( , ) ,

( )
B x yu x y
x y




          2 2 2
2( , ) ,

( )
Bxyx y

x y



v                w(x, y) = 0

satisfies the equations of motion for inviscid incompressible flow, then determine the pressure
associated with this velocity field, B being a constant.

[Kanpur 2002, 03, 05; Rohilkhand 2000, 05]
Sol. The equations of motion for steady inviscid incompressible flow are given by

     ( / ) ( / ) ( / ) (1/ ) ( / ),u u x u y w u z p x            v ... (1)

     ( / ) ( / ) ( / ) (1/ ) ( / )u x y w z p y            v v v v ... (2)

and      ( / ) ( / ) ( / ) (1/ ) ( / ).u w x w y w w z p z            v ... (3)
From the given values of u, v and w, we have

2 2 2 2 2 2 2 2

2 4 2 2 3
2 ( ) 4 ( ) ( ) 2 (3 ) ,

( ) ( )
u x x y x x y x y Bx y xB
x x y x y




     

 
  

2 2 2 2 2 2 2 2

2 4 2 2 3
2 ( ) 4 ( ) ( ) 2 (3 )

( ) ( )
u y x y y x y x y By x yB
y x y x y




      

  
   ,        0u

z





2 2 2 2 2 2 2 2

2 2 4 2 2 3
( ) 4 ( ) 2 ( 3 )2 ,

( ) ( )
y x y x y x y By y xB

x x y x y
    

 
  
v

2 2 2 2 2 2 2 2

2 2 4 2 2 3
( ) 4 ( ) 2 ( 3 )2 ,

( ) ( )
x x y xy x y Bx x yB

y x y x y
    

 
  
v

                   0,
z





v

     / 0,w x                 / 0w y                   and              / 0.w z  
Substituting the given values of u, v and w and also using the above relations, (1), (2) and (3)

reduce to

        
2 2 2 2 2 2

2 2 2 2 2 3 2 2 2 2 2 3
( ) 2 (3 ) 2 2 (3 ) 1 ,

( ) ( ) ( ) ( )
B x y Bx y x Bxy By x y p

xx y x y x y x y
   

    
    
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EQUATIONS OF MOTION OF INVISCID FLUIDS 3.25

           
2 2 2 2 2 2

2 2 2 2 2 3 2 2 2 2 2 3
( – ) 2 ( – 3 ) 2 2 ( – 3 ) 1– .

( ) ( ) ( ) ( )
B x y By y x Bxy Bx x y p

yx y x y x y x y


   
    

and                                     0 – (1/ ) ( / )p z   
Simplifying the above equations, we have

            
2

2 2 2 2 2 2 2
2 2 5
2 1[( – ) (3 – ) – 2 (3 – )] – ,

( )
B x px y y x y x y

xx y



 

            
2

2 2 2 2 2 2 2
2 2 5
2 1[( – ) ( – 3 ) 2 ( – 3 )] –

( )
B y px y y x x x y

yx y


 
 

and                                         0 /p z  
Again simplifying the above equations, we have

or
2

4 2 2 4
2 2 5
2 1(– – 2 – ) –

( )
B x px x y y

xx y



 

        i.e.,        
2

2 2 3
2

( )
B x p

xx y
 




…(1)

2
4 2 2 4

2 2 5
2 1(– – 2 – ) –

( )
B y px x y y

zx y



 

         i.e.,        
2

2 2 3
2

( )
B y p

yx y
 




…(2)

and                                          0 / .p dz  …(3)
Relation (3) shows that the pressure p is independent of z, i.e., p = p (x, y). Hence, we have
                                ( / ) ( / )dp p x dx p y dy     

or         
2 2

2 2 2 –3
2 2 3 2 2 3
2 2 ( ) (2 2 )

( ) ( )
B x B ydp dx dy B x y xdx ydy

x y x y
 

     
 

or                          2 2 2 –3 2 2( ) ( ).dp B x y d x y   

Integrating,            2 2 2 –2 2 2 2 2– (1/ 2) ( ) –{ / 2( ) },p C B x y C B x y      
where C is a constant of integratioon. It gives the required pressure distribution.

Ex. 14. The particle velocity for a fluid motion referred to rectangular axes is given by the
components      u = A cos (x/2a) cos (z/2a), v = 0,        w = A sin (x/2a) sin (z/2a),
where A is a constant. Show that this is a possible motion of an incompressible fluid under no
body forces in an infinite fixed rigid tube, -a  x  a, 0  z  2a.  Also, find the pressure
associated with this velocity field.         [I.A.S. 1994; Meerut 2003]

Sol. Given  u = A cos (x/2a) cos (z/2a), v = 0,   w = A sin (x/2a) sin (z/2a). ...(1)
From (1),           / ( / 2 ) sin ( / 2 ) cos( / 2 ), / 0u x A a x a z a y         v

and                      w z A a x a z a/ ( / ) sin ( / ) cos( / ).  2 2 2
                                    u/x + v/y + w/z = 0,

showing that the given velocity components represent a physically possible flow.
The equations of motion for steady inviscid incompressible flow under no body forces are

            u(u/x) + v(u/y) + w(u/z) = (1/) (p/x), ...(3)
            u(v/x) + v(v/y) + w(v/z) = (1/) (p/y) ...(4)

and             u(w/x) + v(w/y) + w(w/z) = (1/) (p/z). ...(5)

and    

From (1) / 0, / ( / 2 ) cos ( / 2 ) sin ( / 2 )
/ / 0, / ( / 2 ) cos ( / 2 ) sin ( / 2 )

/ 0.

u y u z A a x a z a
x z w x A a x a z a

w y

          
            
   

v v ...(6)

(2)




Created with Print2PDF. To remove this line, buy a license at: http://www.software602.com/

SuccessClap: Best Coaching for UPSC Mathematics : For Info- 9346856874
Checkout ->22 Weeks Study Plan, Videos, Question Bank Solutions, Test Series

Succ
ess

Clap



3.26 FLUID DYNAMICS

Using (1), (2) and (6), the equations of motion (3), (4) and (5) become

   
1cos cos sin cos sin sin cos sin

2 2 2 2 2 2 2 2 2 2
          

     
 

x z A x z x z A x z pA A
a a a a a a a a a a x

      0 =  (1/) (p/y)

     
1cos cos cos sin sin sin sin cos

2 2 2 2 2 2 2 2 2 2
          

    
 

x z A x z x z A x z pA A
a a a a a a a a a a z

Simplifying the above equations, we have

                 p x A a x a x a/ ( / )cos( / ) sin ( / ),  2 2 2 2       ...(7)
p/y = 0 ...(8)

and                   p z A a z a z a/ ( / )cos( / ) sin ( / )  2 2 2 2 . ...(9)

Equation (8) shows that the pressure p is independent of y so that p = p(x, z).  Then
dp  = (p/x)dx + (p/z)dz

or dp =  (A2/2a) [cos (x/2a) sin (x/2a) dx  cos (z/2a) sin (z/2a)dz], using (7) and (9)
Integrating,            p 2 2 2( / 2 ) [( / )sin ( / 2 ) ( / )sin ( / 2 )]A a a x a a z a C       
or   p   ( / ) [ sin ( / ) sin ( / )] ,  A x a z a C2 2 22 2 2 C being a constant of integration.  ...(10)

 (10) gives the required pressure associated with the velocity field given by (1).

Ex. 15. Prove that if  = ( / ) ( / / )u t x u y      v v + w(u/z  w/x) and µ,  are two
similar expressions, then  dx + µ dy +  dz is a perfect differential, if the external forces are
conservative and the density is constant.       [Agra 2006]

Sol. Let (X, Y, Z) be the components of external forces. Since the external forces are
conservative, there exists force potential V(x, y, z) such that

/ , / and / .X V x Y V y Z V z        ...(1)
Euler’s dynamical equations of motion are

               Du Dt X p x/ ( / ) ( / ),   1  ...(2)

                 / (1/ ) ( / )D Dt Y p y    v ...(3)

and                 Dw Dt Z p z/ ( / ) ( / ),   1  ...(4)
where p(x, y, z) is the pressure at any point (x, y, z).

Using (1), (2), (3) and (4) can be rewritten as
   Du Dt V x p x/ / ( / ) ( / ),      1  ...(5)

    / / (1/ ) ( / )D Dt V y p y      v ...(6)

and     Dw Dt V z p z/ / ( / ) ( / ).      1  ...(7)
Multiplying (5), (6) and (7) by dx, dy and dz and then adding, we have

                
1Du d dw V V V p p pdx dy dz dx dy dz dx dy dz

Dt Dt x y z x y z
        

                    

v
Dt

or                     1 .Du D Dwdx dy dz dV dp
Dt Dt Dt

   


v ...(8)

Re-writing the given value of , we have

 = 
u u u ww w
t x y z x

    
   

    
v

v v
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EQUATIONS OF MOTION OF INVISCID FLUIDS 3.27

  = 
u u u u u wu w u w
t x y z x x x

                        

v
v v

  = 
2

2 2 21 1( )
2 2

Du Du qu w
Dt x Dt x

 
     

 
v ...(9)

2 2 2 2   and    D u w q u w
Dt t x y z

    
           

 v v

Similarly,       µ = 
21

2
D q
Dt y





v

        and            
21

2
Dw q
Dt z


   


...(10)

 Using (9) and (10), we have,

 dx + µ dy +  dz  = 
2 2 21

2
Du D Dw q q qdx dy dz dx dy dz
Dt Dt Dt x y z

   
        

v

              = dV  ( / )1  dp  (1/2) × dq2 = d [V + ( / )p  + (1/2) × q2],
which is a perfect differential which is what we wished to prove.

Ex. 16. A sphere whose radius at time t is b + a cos nt, is surrounded by liquid extending
to infinity under no forces. Prove that  the pressure at distance r from the centre is less than the
pressure  at infinity by

     n a
r
2

(b + a cos nt) {a(1  3sin2 nt) + b cos nt + a nt
r

3 2

32
sin (b + a cos nt)3}.

Prove also that least pressure at the surface of the sphere during the motion is

  n a a b2 b g.
Sol.  Let v be the velocity of the fluid at a distance r from the origin at any time t and p

be the pressure there. Let r = b + a cos nt and let r be the radius of any concentric sphere and
v be the velocity there. Then the equation continuity is

             2 2( ) .r F t r   v v ...(1)

From (1),                     2/ ( ) /t F t r  v ...(2)

The equation of motion is

    
1 p

t r r
  

  
   
v v

v         or           2
2
( ) 1 1 ,

2
F t p

r rr
         

v  using (2)

Integrating it with respect to r, we have

                 2( ) 1
2

F t
r


  v  = ,p C 


C being an arbitrary constant ...(3)

When r = , v = 0, p = . So (3) gives C = . Hence (3) reduces to

          2( ) 1
2

F t p
r
  

   


v ...(4)

Now,            r = b + a cos nt             v = dr/ dt  =  an sin nt.
Then,              (1)          F(t) = r2v = (b + a cos nt)2 (an sin nt)
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3.28 FLUID DYNAMICS

or                     F(t) = an (b + a cos nt)2 sin nt. ...(5)
Defferentiating (5) with respect to ‘t’, we have
            F (t) = 2a2n2 (b + a cos nt) sin2 nt an2(b + a cos nt)2 cos nt

or         F (t) = an2(b + a cos nt) [2a sin2 nt  (b + a cos nt) cos nt] ...(6)
Now,          (4)= (/r) F (t) + (1/2)×v2. ...(7)

or  = (/r)F (t) + (/2) {F(t)/r2}2, using (1)
Using (5) and (6), the above equation becomes
 = (/r) × an2(b + a cos nt) [2a sin2 nt  (b + a cos nt) cos nt]

+ (/2r4) × a2n2(b + a cos nt)4 sin2 nt
    = (an2/r) × (b + a cos nt) {a(1  3 sin2 nt) + b cos nt + (a/2r3) × sin2 nt (b + a cos nt)3}

Second part : At surface r = r = b + a cos nt, v = v = = dr/dt = an sin t.
Also, using (6), (4) reduces to

   
  p
  = 2( ) 1

2
F t

r


 


v  = 


1 22 2
b a nt an b a nt a ntcos . ( cos ) [ sin

 ( cos ) cos ]b a nt nt  + (1/2) × a2n2 sin2 nt
    = n2a [a(1  3sin2 nt) + b cos nt + (1/2) × a sin2 nt]. ...(8)

For the maximum or minimum of p, we must have

                
d
dt

p F
HG

I
KJ  = 0

i.e.         n2a [6an sin nt cos nt  bn sin nt + na sin nt cos nt] = 0,
giving        sin nt = 0      or     cos nt = – (b/5a)    i.e.  nt = 0      or     nt = cos1 (– b/5a).

Now,         d
dt

p2

2
 F

HG
I
KJ = d

dt [n2a {– 3an sin 2nt  bnsin nt + (1/2) × an sin 2nt}

        = n2a [6an2 cos 2nt  bn2 cos nt + an2 cos 2nt]
        = n2a [6an2  bn2 + an2], when nt = 0

 d
dt

p2

2
 F

HG
I
KJ  is negative when nt = 0    

2

2

d p
dt

 is positive when nt = 0.

Putting nt = 0 in (8), the least pressure p is given by              ( p)/ = n2a(a + b)
and hence                     the required least pressure = p =  n2a(a + b).

Ex. 17. A sphere of radius a is alone in an unbounded liquid which is at rest at a great
distance from the sphere and is subject to no external force. The sphere is forced to vibrate
radially keeping its spherical shape, the radius r at any time being given by r = a + b cos nt.
Show that if  is the pressure in the liquid at a great distance from the sphere, the least
pressure (assumed positive) at the surface of the sphere during the motion is n2b(a + b).

Hint. Refer Ex. 16.
Ex. 18. A volume (4/3)× c3 of gravitating liquid, of density  is initially in the form of

a spherical shell of infinitely great radius. If the liquid shell contract under the influence of its
own attraction, there being no external or internal pressure, show that when the radius of the
inner spherical surface is r, its velocity will be given by

          V2 = (4R/15r3) (2R4 + 2R3r + 2R2r2  3Rr3  3r4),
where  is the constant of gravitation, and R3 = r3 + c3.
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EQUATIONS OF MOTION OF INVISCID FLUIDS 3.29

Sol. Let r be the radius of the inner surface and r be the distance of the point from the
centre of the spherical shell, where at time t, p is the pressure and v is the velocity.

Here attraction F at the point of which distance from the centre is r is given by

       F = 
3 3

2

(4 3) ( )r r
r

  


 = 





F
HG

I
KJ 3

3

2 r r
r

...(1)

The equation of continuity is                         r2v = F(t) = r2v. ...(2)

From (2),           2/ ( ) /     t F t rv ...(3)

The equation of motion is                  
t r
  

 
v v

v  = 1 pF
r


 
 

or           2
2
( ) 1

2
F t

rr
        

v  =  


F
HG

I
KJ 


 

4
3

13

2


r r
r

p
r

,  by (1) and (3)

Integrating this with respect to r, we have
2 3

2
2
( ) 1 4 ,

2 3 2
  

             

F t r r p C
rr

v C being an arbitrary constant ...(4)

Initially, at the inner surface, r = r, v = v and p = 0.

 (4)            – 2 2( ) 1 4 3 .
2 3 2

F t r C
r


    v ...(5)

Also, initially, at the outer surface,      r = R, v = v1 (say)      and       p = 0.

 (4)           –
2 3

2
1

( ) 1 4 .
2 3 2

F t R r C
R R

 
       

 
v ...(6)

Subtracting (6) from (5), we have

F (t)
2 2 3

2 2
1

1 1 1 4 3( )
2 3 2 2

r R r
r R R

                 
v v ...(7)

From equation of continuity, we have           r2v = R2v1 = F(t). ...(8)
From (8), v = F(t)/r2         and v1 = F(t)/R2. Then (7) becomes

F (t)
2 2 2 2 3

4 4
1 1 1 { ( )} { ( )} 4 3

2 3 2 2
F t F t r R r

r R Rr R
                      

...(9)

Now, (8)     r2(dr/dt) = R2(dR/dt) = F(t)      r2dr = R2dR = F(t) dt ...(10)
Multiplying each term of (9) by 2r2 dr or 2R2dR or 2F(t) dt (all being equal by virtue of (10)),

we have
2 2 2

4 4
1 1 { ( )} 2 22 ( ) ( )

2
         

   

F t r dr R dRF t F t dt
r R r R

= 
3

4 4 24 [3 2 ]
3

    
rr dr R dR R dR
R

or      
1 1 1 12 2
r R d F t F t d r RFH IK  FH IK{ ( )} { ( )}  = 

4
3

3 24 4 3 3[ ( ) ]r dr R dR R R c dR  

[ Given that R3  r3 = c3]
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3.30 FLUID DYNAMICS

Integrating ,              1 1 4
3

3
5 5

2
5

2
5 5 5

3 2
r R F t r R R c RFH IK    

L
NM

O
QP{ ( )} ,

where we have chosen the constant of integration to be zero

or       1 1
r RFH IK {F(t)}2 = 4

15 {3(r5  R5) + 5c3R2}. ...(11)

Given that when r = r, v = V. So from (8),             r2V = F(t).

 (11) gives     1 1 4
15

4 2
r R r VFH IK  {3(r5  R5) + 5R2(R3  r3)], as R3 = r3 + c3

or           V2 = 
5 5 2 3 3

3
4 3( ) 5 ( )

15
R r R R R r

R rr

     
 

  

or       V2 = 4
15 3
R

r
{3(r4 + r3R + r2R2 + rR3 + R4) + 5R2(R2 + Rr + r2)}

        V2 = (4R/15r3) (2R4 + 2R3r + 2R2r2  3Rr3  3r4).
Ex. 19. A homogeneous liquid is contained between two concentric spherical surfaces, the

radius of the inner being a and that of the outer indefinitely great. The fluid is attracted to the
centre of these surfaces by a force (r) and a constant pressure  is exerted at the outer
surface. Suppose (r) dr = (r) and (r) vanishes when r is infinite, show that if the inner
surface is removed, the pressure at the distance r is suddenly diminished by

(a/r)  (a/r)(a).
Find (r) so that the pressure immediately after the inner surface is removed may be the

same as it would be if no attractive force existed. Also with this value of (r), find the velocity
of the inner boundary of the fluid at any period of the motion.

Sol. Let v be the velocity and p the pressure at a distance r from the centre at any time t.
Then the equation of continuity is                             r2v = F(t).     ...(1)

From (1),                                            v/t = F (t)/r2. ...(2)
The equation of motion is

       v/t + v(v/r) =  (r)  (1/) p/r

or         2
2
( ) 1 1( ) ,  by (2)

2
F t pr

r rr
             

v

Integrating it with respect to r, we have

         2( ) 1
2

F t
r


 


v  =  ( ) ,pr dr C   
 C being an arbitrary constant

or 2( ) 1
2

F t
r


 


v  = (r)  p C

 . ...(3)

( given that (r) dr =  (r)]
When     r = ,   v = 0,     p =      and      () = 0. So (3)    C = .

 (3) becomes                    2( ) 1 ( )
2

F t pr
r
        
 

v ...(4)

Given, initially when t = 0, v = 0 and p = p0 (say). Then (4) gives

     



   



F

r
r p( ) ( )0 0




...(5)
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EQUATIONS OF MOTION OF INVISCID FLUIDS 3.31

Again, when r = a, p0 = 0. So (5) reduces to
(1/a) F (0) = (a) + (). ...(6)

Dividing (5) by (6) and re-writting, we have
  p0  (r) = (1/r)a  (1/r)a (a). ...(7)

Initially the liquid was at rest. Then hydrostatic pressure is given by
       dp = (r) dr                so that               p = C  (r). ...(8)

[(r) dr = (r)]
But, when r = () = 0 and p = . So (8) gives C =  and hence (8) reduces to

                p = (r). ...(9)
Then decrease in pressure
= p  p0 = (r)  [(r)  (1/r )́a  (1/r) a(a)], using (7) and (9)
 The required decrease in pressure at distance r = (a/r)  (a/r)(a).
Second Part :  In presence of attractive forces, (7) gives

        p0 = (r)  (1/r)a + (1/r)a(a). ...(10)
In absence of attractive forces, the terms containing  are zero and hence the corresponding

pressure p0 is given by (10) as
               p0 =  (1/r)a. ...(11)

But, by the condition of the problem, p0 = p0. Hence, using (10) and (11),  we get
                  (r)  (1/r)a + (1/r)a(a) =  (1/r)a.
 (r) = (a/r)(a), ...(12)

Given (r) dr = (r)             so that        (r) =
d

dr  (r).

                          (r) = 
d

dr
a
r

a a a
r 

F
HG

I
KJ  




( ) ( )
2

Substituting the above value of (r) in (4), we have

     2( ) 1 ( )
2

F t a a p
r r
        
  

v ...(13)

When r = r, v = v, p = 0. Then (13) becomes

     2( ) 1 ( ) .
2

  
    


F t a a

r r
v ...(14)

The equation of continuity is                                 F(t) = r2v.

 F(t) 2 2 2( ) ( ) ( ),d d dr d drr r r as
dt dr dt dr dt

    v v v v v

         = 2 2 22 2 .d dr r r r
dr dr

     

v v
v v v v

 Subtituting the above value of F (t) in (14), we have

   
2 2 21 1 ( )2

2
d a ar r

r r
          

v
v v v

dr

or
2 21 ( )2

2
d a ar
dr r

 
   


v

v v v

or   3 2 2 22 3 [2 ( ) (2 / ) ]     r d r dr ra a r drv v v

Created with Print2PDF. To remove this line, buy a license at: http://www.software602.com/

SuccessClap: Best Coaching for UPSC Mathematics : For Info- 9346856874
Checkout ->22 Weeks Study Plan, Videos, Question Bank Solutions, Test Series

Succ
ess

Clap



3.32 FLUID DYNAMICS

or      3 2 2( ) [2 ( ) (2 / ) ] .    d r ra a r drv

Integrating, 3 2 2 3( ) (2 / 3 )r a a r r C      v , C  being an arbitrary constant   ... (15)
When r = a, v = 0. So (15) gives                  C  = (2/3)a3 – (a)a3.
Putting this value of C  in (15), the required velocity is given by

    r3v2 = a(a)r2 + (2/3) (a3 – r3).
Ex. 20. A mass of uniform liquid is in the form of a thick spherical shell bounded by

concentric spheres of radii a and b (a < b). The cavity is filled with gas the pressure of which
varies according to Boyle’s law and is initially equal to atmospheric pressure  and the mass of
which may be neglected. The outer surface of the shell is exposed to atmospheric pressure.
Prove that if the system is symmetrically disturbed, so that particle moves along a line joining it to
the centre, the time of small oscillation is

     
1/ 2

2 ,
3
b aa

b
    

 where  is the density of the fluid.

Sol. Here the motion of the fluid will take place in such a manner so that each element of the
fluid moves towards the centre. Hence the free surface would be spherical. Thus the fluid velocity
v will be radial and v will be function of x (the radial distance from the centre of the spherical shell
which is taken as origin) and t only. Let p be pressure at a distance x. Then the equation of
continuity is

        x2v = F(t)                 so that v/t = F(t)/x2 ...(1)
The equation of motion is

   1 p
t x x

  
  

   
v v

v            or           2
2
( ) 1 1 ,

2
F t p

x xx
         

v  using (1).

Integrating it w.r.t. ‘x’, we get  2( ) 1 .
2

F t p C
x


   


v ...(2)

Let r and R be internal and external radii of the shell at any time t. Since the given shell
contains gas, it follows that there will be pressure on the inner surface. Let p = p1 when x = r.

Since the total mass of the liquid is constant, we have

            
3 3 3 34 4 4 4

3 3 3 3
R r b a              

   
          or          3 3 3 3.R r b a   ...(3)

Since the initial pressure of the gas is equal to atmospheric pressure , Boyle’s law gives
        (4/3)×r3 × p1 = (4/3)×a3 ×         so that       p1 = (a3)/r3. ...(4)
Since the outer surface is exposed to atmospheric pressure , we have

          when  x = R, v = dR/dt = U,  (say)        and         p = . So (2) gives

       
    F t
R U C( ) .1

2
2 

 ...(5)

Again, when         x = r,   v = dr/dt = u(say),         p = p1 = (a3)/r3,  by (4)

So by  (2),       
3

2
3

( ) 1 ,
2

F t au C
r r
 

    


C being an arbitrary constant. ...(6)

Subtracting (6) from (5), we have

       
1 1 1

2 12 2
3

3r R F t U u a
r

FH IK     
F
HG

I
KJ( ) ( ) 

 . ...(7)
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EQUATIONS OF MOTION OF INVISCID FLUIDS 3.33

Since we are to consider small oscillation, so U2 and u2 are small quantities and hence we
neglect them. Then (7) reduces to

         F (t) = 
3 3

2

a r R
R rr

 
  

 
...(8)

By continuity equation (1),                           F(t) = r2u.

                F (t) = 
2

2 2 2
22 2 ,dr du d rr u r ru r

dt dt dt
       as 

dru
dt

or           F (t) = r2(d2r/dt2), neglecting u2 as before

Then (8) becomes                r2 
2 3 3

2 2 .d r a r R
R rdt r

 
  

  ...(9)

Since the displacement is small. We choose small quantities x and x such that
    r = a + x                       and                  R = b + x. ...(10)

Then (10)         d r
dt

d
dt

a x
2

2

2

2 ( )          or          d r
dt

d x
dt

x
2

2

2

2   .  (say)

 (9) becomes                   (a + x)2 x  = 
3 3

2

( )
( )( )

a a x b x
b x a xa x

   
 

   

or     x  = 
3 3 3

4
(1 )

( )
    

 
   

a a x a b x
b a x xa x

      or    x  = 
3

4
1 (1 )

(1 )
    

 
    

x a b x
x x b ax a

or           x  = 
1 (1 3 )

(1 4 )
    

 
     

x a b x
a x a x x b a

, to first order of approximation ...(11)

Using (10), (3) reduces to
(b + x)3  (a + x)3 = b3  a3               or           b3(1 + x/b)3  a3(1 + x/a)3 = b3  a3

or      b3(1 + 3x/b)  a3(1 + 3x/a) = b3  a3, to first order of approximation
or 3xb2  3a2x = 0                    or                  x = a2x/b2. ...(12)

Using (12), (11) reduces to

x  = 


   

a

x a b a x b
x a a x b x b a
( / )( )

( ) [( ) ]
3

1 4

2 2

2 2   = 2 2
(3 / )

( / ) (4 / ) 4
xb a

a a x b x b a xb a x



     

[To first order approximation]

= 
   


a

xb a
x a b b a b a

( / )
( / / )

3
5 42 2  = 




 


L
NMM

O
QPP


3 1 5 4
2

2 2 1
b x

a b a
a b b a

b a x
( )

( / ) ( / )

= 



 



L
NMM

O
QPP

3 1
5 4

2

2b x
a b a

a b b a
b a x

( )
( / ) ( / )

....

          x  = 


3
2

b
a b a

x
( )

, to first order of approximation

which represents simple harmonic motion of time period

      2 1/ 2
2

[3 / ( )]b a b a


  
               or                 

1/ 2( )2 .
3
b aa

b
     
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3.34 FLUID DYNAMICS

EXERCISE 3 (A)
1. Obtain Euler’s equation of motion in cartesian form. [Kanpur 2002; 2004]
2. Prove that the equation of motion of a homogeneous inviscid liquid moving under

conservative forces may be written in the form            21– curl – grad
2

p q
t

 
       

q q q

[Hint. From Art. 3.1, we have          21 1– curl – –
2

p q
t


   

 
q q q F     …(1)

Since the forces form a conservative system, there exists a force potential   such that
– . F  Moreover, the fluid being homogeneous, we may write            (1/ ) ( / ).    p p

Hence (1) reduces to

21– curl – – –
2

p q
t

              

q q q    or   2p 1– curl – grad
2

q
t

 
       

q q q

3. A mass of fluid of density   and volume 3(4 ) / 3c  is in the form of a speherical shell.
There is a constant pressure p on the external surface, and zero pressure on the internal surface.
Initially the fluid is at rest and the external radius 2nc. Show that when the external radius
becomes nc the velocity U of the external surface is given by

        
3 1/3

2
3 1/3

14 ( –1)
3 – ( –1)

p nU
n n




Ex. 4. The particle velocity for a fluid motion referred to rectangular axes is given by
( cos( / 2 ) cos( / 2 ),A x a z a  0, sin ( / 2 ) sin( / 2 ))A x a z a  , where A, a are constants. Show that
this is a possible motion of an inconpressible fluid under no body forces in an infinite fixed rigid
tube ,a x a   0 2 .z a   Also find the pressure associated with this velocity field.

Sol. Let u, v, w be the components of velocity referred to rectangular axes OX, OY, OZ. Then
we have    cos( / 2 )cos( / 2 ),u A x a z a              v = 0,          sin( / 2 )sin( / 2 ).w A x a z a  

Now do as in solved example 14 of Art 3.4
Ex. 5. A sphere is at rest in an infinite mass of homogeneous liquid of density .  The

pressure at infinity being .w  Show that, if the radius R of the sphere varies in any manner, the

pressure at the surface of the sphere at any time is 2 2 2 2( / 2){ ( ) / ( / ) }.w d R dt dR dt  

Sol. Refer solved Ex. 1 of Art 3.4 by taking .w  [I.A.S. 1996]

3.5. Impulsive action.
Let sudden velocity changes be produced at the boundaries of an incompressible fluid or

that impulsive forces be made to act to its interior. Then it is known that the impulsive pressure
at any point is the same in every direction. Moreover the dstrubances produced in both cases are
propagated instantaneously throughout the fluid.
3.6. Equation of motion under Impulsive forces (Vector form).

[Meerut 2007; Kanpur 2000, 03, 05, 09; Rohilkhand 2000, 05]
Let S be an arbitrary small closed surface drawn in the incompressible fluid enclosing a

volume V. Let I be the impulsive body force per unit mass. Let this impulse change the velocity at
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EQUATIONS OF MOTION OF INVISCID FLUIDS 3.35

P (r, t) of V instantaneously from q1 to q2 and let it produce impulsive
pressure on the boundary S. Let   denote the inpulsive pressure on
the element S  of S. Let n be the unit outward drawn normal at .S
Let   be density of the fluid.

We now apply Newton’s second law for inpulsive motion to
the fluid enclosed by S, namely,

          Total impulse applied = Change of momentum

            2 1( )
V S V

dV dS dV       I n q q ...(1)

But                     
S V

dS dV   n   (by Gauss divergence theorem)

  From (1),                     2 1[ ( )] 0
V

dV   I q q ...(2)

Since V is an arbitrary small volume, (2) gives

        2 1( ) 0  I q q              or            2 1 (1/ )    q q I  ...(3)
Cor. 1. Let I = 0 (i.e. external impulsive body forces are absent) whereas impulsive pressures

be present. Then (3) reduces to

2 1 (1/ )   q q  ...(4)

From (4), 2 1( ) [ (1/ ) ]     q q 

or 2
2 1 (1/ ) ,      q q  ...(5)

For the incompressible fluid, the equation of continuity gives

      2 1 0   q q ...(6)
Making use of (6), (5) reduces to

       2 0.              (Laplace’s equation) ...(7)
Cor. 2. Let q1 = 0 and I = 0 so that the motion is started from rest by the application of

impulsive pressure at the boundaries but without use of external impulsive body forces. Then,
writing q2 = q, (3) reduces to

      ( / ),   q  ...(8)

showing that there exists a velocity potential /     and that the motion is irrotational.

Cor. 3. Let I = 0 i.e. let there be no extraneous impulses. Further, let 1  and 2  denote the
velocity potential just before and just after the impulsive action. Then

1 1 q and 2 2 q ...(9)
Then (3) reduces to

        2 1 (1/ )             or              2 1( )     

Integrating, when   is constant        2 1( ) .C      
The constant C may be omitted by regarding as an extra pressure and constant throughout

the fluid.

     2 1.    ...(10)

I

n

S

q1

q2

  P

  S

V
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3.36 FLUID DYNAMICS

Cor. 4. Physical meaning of velocity potential.

Take 1 0   and 1   in cor. 3. Then we find that any actual motion, for which a single
valued velocity potential exists, could be produced instantaneously from rest by applying appropriate
impulses. We then also note that the velocity potential is the impulsive pressure at any point.

It is also easily seen that when a state of rotational motion exists in a fluid, the motion
could neither be created nor destroyed by impulsive pressures.
3.7. Equations of motion under Impulsive Force (Cartesian form). [Kanpur 2002, 05]

Let there by a fluid particle at P(x, y, z) and let  be the density of the incompressible fluid.
Let u1, v1, w1 and u2, v2, w2 be the velocity components at the point P just before and just after the
impulsive action. Let Ix, Iy, Iz be the components of the external impulsive forces per unit mass of
the fluid. Construct a small parallelepiped with edges of lengths ,x ,y z parallel to their
respective co-ordinate axes, having P at one of the angular points as shown in figure. Let 
denote the impulsive pressure at P. Then, we have

Q Q 

z

R 

P 

R

Z

O
S S

X

Y

    y z~
x

P x y z( , , )

(  +      )     x y z

x

~
~

y

   Force on the face PQRS = ( , , )y z f x y z   say ...(1)

   Force on the face P Q R S     = f (x + x, y, z) ( , , ) ( , , )
   


f x y z x f x y z

x
   ...(2)

(expanding by Taylor’s theorem)

 The net force on the opposite faces PQRS and P Q R S   

                 ( , , ) [ ( , , ) ( , , ) ]
    


f x y z f x y z x f x y z

x

                 ( , , ),
  


x f x y z

x
 to the first order of approximation

      ( ),
    


x y z

x
 using (1)

    ,
    




x y z
x

which will act along the x-axis. ...(3)

Again, the impulse on the elementary parallelepiped along the x-axis due to external impulsive
body force Ix                                .xx y z I                                         ...(4)

Finally, the change in momentum along x-axis 2 1( )x y z u u     ...(5)
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EQUATIONS OF MOTION OF INVISCID FLUIDS 3.37

We now apply Newton’s second law for impulsive motion to the fluid enclosed by the
parallelopiped, namely,

Total impulse applied along x-axis = Change of momentum along x-axis

           2 1( )xx y z x y z I x y z u u
x


           




or                     2 1( ) ( / )xu u I x       ...(6)

Similarly                      2 1( ) ( / )yv v I y       ...(7)

and                     2 1( ) ( / ).zw w I z       ...(8)
Equations (6), (7) and (8) are the required equations of motion of an incompressible fluid

under impulsive forces.
3.8. Illustrative solved examples.

Ex. 1. A sphere of radius a is surrounded by infinite liquid of density ,  the pressure at
infinity being .  The sphere is suddenly annihilated. Show that the pressure at a distance r from

the centre immediately falls to (1 / ).a r  [Purvanchel 2004, I.A.S. 1996]
Show further that if the liquid is brought to rest by impinging on a concentric sphere of

radius a/2, the impulsive pressure sustained by the surface of this sphere is 2 1/ 2(7 / 6) .

Sol. Let v  be the velocity at a distance r  from the centre of the sphere at any time t and
p the pressure there. Then the equation of continuity is

        2 ( )r F t  v ...(1)

From (1),                              2/ ( ) /t F t r    v ...(2)
The equation of motion is

      1 P
t r r
     

    
v v

v               or          2
2
( ) 1 1 ,

2
F t P

r rr
           

v  using (2)

Integrating,                 2( ) 1 ,
2


    

 
F t p C

r r
v C being an arbitrary constant.

When ,r   then  p  and 0 v  so that / .C   

              2( ) 1
2

    
 

F t p
r

v ...(3)

When the sphere is suddenly annihilated, we have

        t = 0,              ,r a               0 v               and             p = 0

  From (3),                (0)– F
a
 




            so that           (0) aF   


Hence immediately after the annihilation of the sphere (with t = 0, 0 v ), (3) reduces to

            0a p
r
  

 
 

                 or                1 ap
r

 
    

...(4)

Thus at the time of annihilation, when ,r r   the pressure is given by

      1 / .p a r    ...(5)
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3.38 FLUID DYNAMICS

Second Part. If   be the impulsive pressure at distance ,r  then we have

               d dr    v ...(6)
Let r be the radius of the inner surface and v the velocity there. Then by the equation of

continuity, we have

          2 2( )F t r r   v v                  so that               2 2( ) /r r v v ...(7)

 (6) gives                              2 2( / )d v r r dr    

Integrating with respect to ,r  we get                     2( / )      r r Cv ...(8)

When                ,r                 0                so that            0.C  

                      2( / ),r r    v ...(9)

which gives the impulsive pressure   at a distance .r   Since r = a/2, (9) reduces to

         21 1
4

a
r

   


 v ...(10)

We now determine velocity v at the inner surface of the sphere. Setting ,r r  ' v v and

p = 0 in (3), we get        
2( ) 1

2
F t

r
 

  


v    ... (11)

From (7),            2 2( ) ( ) 2d dr dF t r r r
dt dt dt

   
v

v v 22 dr d drr r
dt dt dr

 
v

v

Thus, F (t) 2 22 dr r
dr

 
v

v v ,              as dr
dt

v

 (11) gives   
2 2 21 12

2
dr r

r dr
       

v
v v v

Multiplying both sides by (– 2r2 dr), we get

      
2

3 2 2 22 3 rr d r dr dr
  


v v v             or           

2
3 2 2( ) rd r dr

 


v

Integrating,         
3

3 2 2 ,
3

rr C   


v C   being an arbitrary constant

When               r = a, v = 0             so that           
32 .

3
  

aC

                         3 2 3 32 ( )
3

r a r
 


v ...(12)

The velocity v on the surface of the sphere of radius a/2 (which would be the inner surface
on which the liquid impinges) is given by (12) by replacing r by a/2

                                
3 3

2
3

2 / 8 14
3 3/ 8

a a
a

  
   

 
v
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EQUATIONS OF MOTION OF INVISCID FLUIDS 3.39

Putting this value of v in (10), the impulsive pressure at a distance r  is given by

           
1/ 2 214

4 3
a
r

  
     
 ...(13)

Hence the desired impulsive pressure on the surface of the sphere of radius a/2 is given by
setting / 2r a   in (13).

                           
1/ 21/ 2 2 214 7

4 3 ( / 2) 6
a a

a
    

            


Ex. 2. A portion of homogeneous fluid is contained between two concentric spheres of radii
A and a, and is attracted towards their centre by a force varying inversely as the square of the
distance. The inner spherical surface is suddenly annihilated and when the radii of the inner and
outer surfaces of the fluid are r and R the fluid impinges on a solid ball concentric with these
surfaces, prove that the impulsive pressure at any point of the ball for different values of R and
r varies as

 1/ 22 2 2 2( ) (1/ 1/ )   a r A R r R          [Agra 1996; Kanpur 1998]

Sol. Let v  be the velocity at a distance r  from the centre of the sphere at any time t and p the
pressure there. Then the equation of continuity is

                   2 ( )r F t v ...(1)

From (1),                              2/ ( ) /t F t r    v ...(2)

Taking 2/ r   as the force towards the centre of the sphere, the equation of motion is

2
1 p

t r rr
       

    
v v

v       or      2
2 2
( ) 1 1 ,

2
F t p

r rr r
             

v using (2)

Integrating,            2( ) 1 ,
2

F t p C
r r
     
  

v C being an arbitrary constant ...(3)

Let r and R be the internal and external radii of the fluid at any time t and v and V be the
velocities there. Thus, we have

       When     ,r R        ,V v       p = 0      and also when      0,r       , v v     p = 0

 (3) yields       2( ) 1
2

F t V C
R R
 

    ...(4)

and                                             2( ) 1
2

F t C
r r
 

   v ...(5)

Subtracting (4) from (5), we have

                    2 21 1 1 1 1( ) ( )
2

F t V
r R r R

              
v ...(6)

From the equation of continuity (1), we have
     r2v = R2V = F(t) ...(7)

From (7),                            2 2 ( )dr dRr R F t
dt dt

 
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3.40 FLUID DYNAMICS

                                     r2 dr = R2 dR = F(t) dt ...(8)
Using (7), (6) reduces to

                  
2

4 4
1 1 1 1 1 1 1( ) { ( )}

2
F t F t

r R r Rr R
                     

Multiplying both sides by 2F(t) dt, we get

    
2

4 4
2 ( ) 2 ( ) 2 ( ) 2 ( )1 1 12 ( ) ( ) { ( )}

2
F t F t F t F tF t F t dt F t dt dt

r R r Rr R
                    

or         
2

2 2
1 1 1 2 22 ( ) ( ) { ( )}

2
dr dRF t F t dt F t

r R r R
           

(2 2 ),  rdr RdR using (8)

Integrating,          
2 2 21 1{ ( )} ( ) ,F t r R C

r R
         

 being arbitrary constant ...(9)

Since velocity is zero when r = a and R = A, it follows that F(t) = 0. Then (9) reduces to

        2 20 ( )a A C                      i.e.                2 2( )C a A   

     (9) becommes         
2 2 2 2 21 1{ ( )} ( )F t r R a A

r R
         

...(10)

If   be the impulsive pressure at a distance ,r  then we have

                              
2

( )F td dr dr
r

      


 v ,  using (1)

Integrating,                
2
( )F t C

r
   


 ,  C being an arbitrary constant

But when, ,r R  0   so that [ ( )] / .C F t R    So the above equation gives

                                      ( ) (1/ 1/ )F t r R    

Hence the impulsive pressure at any point of the ball where r r   is given by

    ( ) (1/ 1/ )F t r R    ...(11)

From (10),                       
1/ 22 2 2 2( )( )

(1/ 1/ )
a r A RF t

r R
       

  

                            1/ 22 2 2 2( ) (1/ 1/ ) ,        a r A R r R

showing that the required impulsive pressure varies as  1/ 22 2 2 2( )(1/ 1/ )a r A R r R   

EXERCISE 3(B)
1. If a bomb shell explodes at a great depth beneath the surface of the sea, prove that the

impulsive pressure at any point varies inversely as the distance from the centre of the shell.
2. Prove that if   be the impulsive pressure, ,   the velocity potentials immediately

before and after an impulse acts, V the potential of the impulses, then ( ) const.V       
3. Find the equations of motion of a perfect fluid under extraneous impulses and impulsive

pressure. Deduce that any actual irrotational motion of a liquid can be produced instantaneously
from rest by a set of impulses properly applied.
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 The energy equation.
[Kanpue 2007; Agra 2005; Banglore 2006; Patna 2003, 06; Garhwal 2005]

Statement : The rate of change of total energy (kinetic, potential and intrinsic) of any
portion of a compressible inviscid fluid as it moves about is equal to the rate at which work is
being done by the pressure on the boundary. The potential due to the extraneous forces is supposed
to be independent of time.

Proof. Consider any arbitrary closed surface S drawn in the region occupied by the inviscid
fluid and let V be the volume of the fluid within S. Let   be the density of the fluid particle P
within S and dV be the volume element surrounding P. Let q (r, t) be the velocity of P. Then, the

Euler’s equation of motion is                               / (1/ ) .d dt p    q F     ... (1)

Let the external forces be conservative so that there exists a force potential   which is
independent of time. Thus              F                  and                  / 0.t  

Using the above results and then multiplying both sides of (1) scalarly by q, we get

[ ]d p
dt

        
 

qq q q      or           21 ( )
2

d q p
dt

             
q q     ... (2)

But                       ( ) ( ) ,d
dt t
 

       


q q                 since        0
t






Hence, equation (2) becomes        21
2

d q p
dt

      
 

q    ... (3)

Since the elementary mass remains invariant throughout the motion, so ( ) / 0d V dt  ...(4)
Integrating both sides of (3) over V, we have

21 q ( ) ( )
2V V V

d ddV dV p dV
dt dt

       
    q .

or     
2 21 1 ( ) ( ) ( )

2 2V V V

d d dq dV q dV dV p dV
dt dt dt

            
     q .

[Noting that , (4) 2( / 2) { ( ) / )} 0q d dV dt    ]

Thus,         
21 ( ) ( )

2V V V

d dq dV dV p dV
dt dt

      
    q. ... (5)

Let T, W and I denote the kinetic, potential and intrinsic (internal) energies respectively. Then,
by definitions

*  Here, we write d/dt for D/Dt so that    / / /d dt D Dt t     q  (Refer note of Art. 2.4)
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3.42 FLUID DYNAMICS

        21 ,
2V

T q dV                ,
V

W dV                ,
V

E dV I ...(6)

where E is the intrinsic energy per unit mass,

Since   ( ) ,p p p     q q q  we have                    ( )p p p     q q q

 R.H.S. of (4) ( )
V V

p dV p dV      q q ,
S S

p dS p dV     q n q ...(7)

[By Gauss divergence theorem]
where n is unit inward normal and dS is the element of the fluid surface S. We now prove that

                                    
V

dp dV
dt

 
Iq ...(8)

Now, E is defined as the work done by the unit mass of the fluid against external pressure p
(assuming that there exists a relation between pressure and density) from its actual state to some
standard state in which p0 and 0  are the values of pressure and density respectively..

         
0

,
V

V
E pdV              where 1,V            i.e.,           1/V  

or                                
0 0

0
2 2

1 p pE p d d d
  

  

 
            ...(9)

From (9), 2 2and sodE p dE dE d p d
d dt d dt dt

 
  

  

Multiplying both sides by d V  and then integrating over a volume V, we have

V V

dE p ddV dV
dt dt


 

  ...(10)

But            ( ) ( )d dE dE d V dV E dV
dt dt dt

    

                            ( ) ,d dEE d V dV
dt dt

    using (4) ...(11)

Also from the equation of continuity,                  /d dt   q ...(12)
Using (11) and (12), (10) reduces to

       
V V

d E d V p dV
dt

      q            or          ,
V

d p dV
dt

   
I q  by (6)

which proves (8).

Again the rate of work done by the fluid pressure on an element S  of S is p S n . q.
Hence the net rate at which work is being done by the fluid pressure is

                                   ,
S

p dS R  q n  (say) ...(13)

Using (8) and (13), (7) reduces to
                                R.H.S. of (4)  = R – dI /dt ...(14)

Hence using (6) and (14), (4) reduces to ( ) ,d T W I R
dt

      ...(15)
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EQUATIONS OF MOTION OF INVISCID FLUIDS 3.43

which is the desired energy equation. It is also known as “the Volume integral form of Bernoulli’s
equation”.

Re-writing (15),          ( )
S V

d dT W R p dS p dV
dt dt

        
I q n q …(15)´

[on putting values of R and dI/dt]
Corollary. Energy equation for incompressible fluids.
Since I = 0 for incompressible fluids, (15) reduces to

      ( ) .d T W R
dt

  ...(16)

Remark. Many problems solved so far in this chapter may also be solved by using the
energy equation. This principle is used to shorten the solution. In what follows, we will give two
methods to solve many problems.

The energy equation is stated as follows : The rate of increase of energy in the system is
equal to the rate at which work is done on the system.
3.10. Illustrative solved examples.

Ex. 1. An infinite mass of fluid is acted on by a force 3/ 2/ r per unit mass directed to the
origin. If initially the fluid is at rest and there is a cavity in the form of the sphere r = c in it,
show that the cavity will be filled up after an interval of time 1/ 2 5/ 4(2 / 5 ) .c

[Kanpur 1999, 2009; Meerut 2005; I.A.S. 2003]

Sol.  Method I At any time t, let v  be the velocity at distance r from the centre. Again, let r
be the radius of the cavity and v its velocity. Then the equation of continuity yields

                   2 2r r  v v ...(1)
When the radius of the cavity is r, then

Kinetic energy 2 21 (4 )
2r

r dr


      v
21Kinetic energy × mass × (velocity)

2
   


   4 2
22

 
 

r
drr
r

v ,  using (1)

    3 22 .r  v
The initial kinetic energy is zero.
Let V be the work function (or force potential) due to external forces. Then, we have

          
3/ 2

V
r r

 
 

 
                 so that                   

1/2
2V

r





 the work done ,
c

r
V dm  dm being the elementary mass

                       
2 3/ 2 5/ 2 5/ 2

1/ 2
2 164 8 ( )

5
                

c c

r r
r dr r dr c r

r
We now use energy equation, namely,                 Increase in kinetic energy = work done

This                           3 2 5/ 2 522 0 (16 / 5) ( )    r c rv

         
1/ 2 5/ 2 5/ 2 1/ 2

3/ 2
8 ( )
5
      

 

dr c r
dt r

v ...(2)

wherein negative sign is taken because r decreases as t increases.
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3.44 FLUID DYNAMICS

Let T be the time of filling up the cavity. Then (2) gives

1/ 2 3/ 20

5 / 2 5/ 20

5
8 ( )

T

c

r drdt
c r

 
            or          

1/ 2 3 / 2

5/ 2 5/ 20

5
8 ( )

c r drT
c r

 
     

Put         5/ 2 5/ 2 2sinr c           so that        3 /2 5 /2(5 / 2) 2 sin cos .r dr c d    

                       
1/ 2 1/ 2/ 2 5 / 4 5 / 4

0

5 4 2sin .
8 5 5

   
          T c d c

Second Method. Here the motion of the fluid will take place in such a manner so that each
element of the fluid moves towards the centre. Hence the free surface would be spherical. Thus the
fluid velocity v  will be radial and hence v  will  be function of r  (the radial distance from the
centre of the sphere which is taken as origin) and time t. Also, let v be the velocity at a distance r.

Then the equation of continuity is
       r2 v = F(t) = r2 v. ...(1)

From (1),                   2
( )F t

t r
  

 
 
v

...(2)

The equation of motion is

             3 2
1 p

t r rr
     

    
     
v v

v

or                2
2 3/ 2
( ) 1 1 ,

2
F t p

r rr r
               

v  using (2) ...(3)

Integrating (3) with respect to r, we have

                  
2

1 2
( ) 1 2 ,

2
F t p C

r r
 

     
 

v C being an arbitrary constant ...(4)

When r = , v = 0, p = 0. So from (4), C = 0. Then (4) becomes

              2
1 2

( ) 1 2
2

F t p
r r
 

     
 

v ...(5)

Now when r = r, v = v and p = 0. So (5) reduces to

                     2
1 2

( ) 1 2
2

F t
r r
    v ...(6)

Now,        (1)       F(t) = r2 v        F (t) = 2rv (dr/dt) + r2(dv/dt)

or F (t) = 2rv 2 2 22 ,  as .   
dr d dr d drr r r
dt dr dt dr dt

v v
v v v

Hence (6) gives

  
2

2 2
1/ 2

1 22
2

dr r
r dr r

      

v v
v v           or          2

1/ 2
3 2
2

dr
dr r


   

v
v v

Multiplying both sides by 2r2, the above equation can be written as
      2r3v dv + 3r2v2 dr = 4µr3/2 dr           or            d (r3v2) = 4µr3/2 dr.
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EQUATIONS OF MOTION OF INVISCID FLUIDS 3.45

Integrating,                 r3v2 = (8µ/5)r5/2 + D, D being an arbitrary constant ...(7)
When  r = c, v = 0.  So (7) gives D = (8µ/5)c5/2. Hence (7) reduces to

 r3v2 = (8µ/5) × (c5/2  r5/2)

or                      v = dr
dt

c r
r

 
F

HG
I
KJ

F
HG

I
KJ

8
5

1 2 5 2 5 2

3

1 2/ / / /

,

taking negative sign for dr/dt since velocity increases as r decreases.
Let T be the time of filling up the cavity, then

                         
1/ 2 0 3/ 2

5/ 2 5/ 2 1/ 2
5

8 ( )
 

      c

r drT
c r ...(8)

Let         r5/2 = c5/2 sin2          so that         (5/2) × r3/2 dr = c5/2 sin  cos  d

           T = 
1/ 2 1/ 25 / 2 5 / 42 2

5/ 40 0

4 5 sin cos 4 5 sin
5 8 5 8cos

c cd d
c

     
           

or                                       T = (2/5µ)1/2 × c5/4.
Ex. 4.  An infinite fluid in which a spherical hollow of radius a is initially at rest under the

action of no forces. If a constant pressure  is applied at infinity, show that the time of filling up

the cavity is
1/ 2 (5 / 6)

6 (4 / 3)
a   
   

 [Agra 2004, 05]

and show that it is equivalent to   35 / 6 2 22 ( / ) (1/ 3)a        [Meerut 2008, 11; Kanpur 2002]

Sol. At any time t, let v  be the velocity at distance r  from the centre. Again, let r be the
radius of the cavity and v its velocity. Then the equation of continuity yields

      2r  2r v v …(1)
When the radius of the cavity is r, then

 Kinetic energy  2 21 (4 )
2


     r

r dr v 4 2
22 ,

r
r

drv
r


 


  using (1)

       3 22 .r  v
The initial kinetic energy is zero.

Again, the work done by the outer pressure = 2 3 344 (– ) ( – ).
3

r

a
r dr a r   

Then, by the energy equation, we get                      3 2 3 32 – 0 (4 / 3) ( – )r a r   v

            
1/ 2 3 3

3
2 ––
3

dr a r
dt r


 

   
v …(2)

where negative sign is taken because r decreases as t increases.
Let T be the time of filling up the cavity. Then (2) gives

1/ 2 3/ 20

3 30

3–
2 ( – )

     
T

a

r drdt
a r

        or          
1/ 2 3 / 2

3 30

3
2 ( – )

a
T

r dr

a r


 
   

Put    3 3 2sinr a      i.e.   2 / 3sinr a     and   –1/ 3(2 / 3) (sin ) cosdr a d    
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3.46 FLUID DYNAMICS


1/ 2 3 /2/ 2 –1/3

3/ 20

3 sin 2 (sin ) cos
2 3cos

T
a a d
a




          
1/ 2 / 2 2/3

0

2 3 sin
3 2
a d




      

   
1/ 22 3 (5 / 6) (1/ 2)

3 2 2 (4 / 3)
a        

1/ 2 (5 / 6) ,
6 (4 / 3)

a
  

   
as (1/ 2)       …(3)

which is the required first part of the result.
From advanced Integral Calculus, we know that

  2 –1( ) ( 1/ 2)
(2 )

2 nn n
n

   
          (Duplication Formula) …(4)

and                               ( ) (1 – ) / sinn n n     …(5)

Replacing n by 1/3 in (4), we get                1/3(1/ 3) (5 / 6) 2 (2 / 3)    

 2 1/3{ (1/ 3)} (5 / 6) 2 (1/ 3) (2 / 3)      1/32 (1/ 3) (1–1/ 3)   

         1/32 { / sin ( / 3)},      by (5)

Thus,           2 1/3(1/ 3) (5 / 6) 2 (2 / 3)     

      1/3 – 2(5 / 6) 2 (2 / 3) { (1/ 3)}        …(6)

Also           (4 / 3) (1 1/ 3) (1/ 3) (1/ 3)       …(7)
Using (6) and (7), (3) reduces to

                  
1/ 2 1/3 – 22 (2 / 3) [ (1/ 3)]

(1/ 3) (1/ 3)
T a

              

or        5/6 2 1/ 2 –32 ( / ) [ (1/3)] .T a    

Second Method. Here the motion of the fluid will take place in such a manner so that each
element of the fluid moves towards the centre.  Hence the free surface would be spherical.  Thus
the fluid velocity v will be radial and v will be function of r (the radial distance from the centre
of the spherical shell which is taken as origin). and time t only.  Let p be pressure at a distance r.
Then from the continuity equation, we have

           r2 v = F(t) = r2 v. ...(1)

From (1),                      2
( )F t

t r
 
 

 
v ...(2)

The equation of motion is                     1 p
t r r
   
    

     
v v

v

or                      2
( ) 1 1 ,

2
F t p

r rr
             

2v  using (2) ...(3)

Integrating (3) with respect to r, we have

                   ( ) 1 ,
2

F t pC
r


    
 

2v  where C is an arbitrary constant. ...(4)

Initially, when      r = , v = 0     and     p =     so (4)  C = .
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EQUATIONS OF MOTION OF INVISCID FLUIDS 3.47

 (4) becomes                       2( ) 1
2

F t p
r
  

    
 

v ...(5)

Let v be the velocity and r be the radius of spherical cavity at any time t so that v = v,
r = r and  p = 0 (being hollow part of cavity).  Then (5) reduces to

                    2( ) 1
2

F t
r
 

   


v ...(6)

Now, from (1) ,                      F (t) = r2 v. ...(7)
Differentiating (7) with respect to t, we have

    F (t) = r2 22 2d dr d dr drr r r
dt dt dr dt dt

  
v v

v v

or          F (t) = r2v (dv/dr) + 2rv2,            as            dr/dt = v.
Substituting the above value of F (t) in (6), we have

 2 2 21 12
2

dr r
r dr

       

v
v v v             or            

23
2

dr
dr


  


v v

v

Multiplying both sides by 2r2dr,  we have
           2r3 v dv + 3r2v2 dr =  (2/) r2dr.

Integrating,         r3 v2 =  (2/3) × r3 + D, where D is an arbitrary constant.   ...(8)
Initially, when radius of cavity r = 0, then v = 0.  Hence (8) gives D  = 2/3and so (8)

reduces to

    r3v2 = 3 32 ( )
3

a r



          or          dr

dt
v  = FHG

I
KJ

F
HG

I
KJ

2
3

1 2 3 3

3

1 3



/ /

,a r
r

taking negative sign since v increases as r decreases.
Let T be the required time of filling up the cavity, then

   T = 
3
2

1 2 3

3 3

1 20


F
HG

I
KJ 

F
HG

I
KJz/ /

r
a r

dr
a

. ...(9)

Putting r = a sin2/3  so that dr = (2a/3) × sin1/3  cos  d, (9) gives

     T = 
1/ 2 3/ 20 1/3

3/ 2/ 2

3 sin 2. sin cos
2 3cos

a a d
a





         

       = 2
3

3
2

2
3

3
2

5 6 1 2
2 4 3

1 2
2 3

1 2

0

2
a d a

 


 
 


F
HG

I
KJ  F

HG
I
KJz

/
/

//

sin ( / ) ( / )
( / )

       = 
1/ 23 (5 / 6) 4 1 1 1, as 1

3 2 (1/ 3) (1/ 3) 3 3 3 3
                             

a

                         T = a 3
2

5 6
1 3

1 2 





F
HG

I
KJ

/ ( / )
( / ) . ...(10)
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3.48 FLUID DYNAMICS

From integral calculus, we know that

      2 1
(2 )( ) ( 1/ 2)

2 n
nn n 

 
    ...(11)

and           ( ) / sin .n n n1  b g   ...(12)

Putting n = 1/3 in (11),              ( / ) ( / ) ( / )./1 3 5 6 2 2 31 3  ...(13)

Multiplying both sides of (13)  by (1/3), we get

       ( / ) ( / ) ( / ) ( / )/1 3 5 6 2 1 3 2 32 1 3 

or        ( / ) ( / ) ( / ) ( / )/1 3 5 6 2 1 3 1 1 32 1 3 

or      ( / ) ( / ) .{ / sin ( / )},/1 3 5 6 2 32 1 3     using (12)

                                
( / )

( / ) [ ( / )]

/
5 6 2

3 2 1 3

1 3

2 
 

Substituting the above value of  ( / )5 6 in (10), we have

   T = a
   

1/ 2 1/3

2
3 2
2 (1/ 3) 3 / 2 (1/ 3)

          

or               T =  2 1 2 5 6 32 1 3a ( / ) ( / ) ./ / l q

Ex. 3. A mass of fluid of density   and volume (4/3) × 3c is in the form of a spherical shell.
A constant pressure   is exerted on the external surface of the shell. There is no pressure on the
internal surface and no other forces act on the liquid. Initially the liquid is at rest and the internal
radius of the shell is 2c. Prove that the velocity of the internal surface when its radius is c, is

                 
1/ 21/3

1/3
14 2
3 2 –1

 
   

[Kanpur 1997]

Sol. At any time t, let v  be the velocity at distance r  from the centre. Let r and R be the
radii and v and V the velocities of the internal and external surfaces of the shell. Then the

equation of continuity yields 2r  2r v v     …(1)

Again from conservation of mass, we have

   3 3 34 4 4– constant
3 3 3

R r c       

      R3 – r3 = c3                so that                R3 = r3 + c3. …(2)
Now, the initial kinetic energy is zero. Again the final kinetic energy

                             2 21 (4 )
2

R

r
r dr    v 4 2

22 ,
R

r
r

dr
r

 


v   using (1)

       
4 2 4 2

3 3 1/32
1 1(1/ –1/ ) 2 – ,

( )
 

 
   

 
r r R r

r r c
v v   using (2)
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EQUATIONS OF MOTION OF INVISCID FLUIDS 3.49

Again, the work done by the external pressure   in decreasing the shell from radius r to 2c

          2 3 3

2

44 (– ) (8 – ).
3

r

c
r dr c r


  

Then the energy equation yields

      4 2 3 3
3 3 1/32

1 1 4– (8 – )
3( )

r c r
r r c


 

  
 

v …(3)

The required value of velocity is given by setting r = c in (3). Thus, we get

    4 2 3
1/3

1 1 2– (7 )
32


       

c c
c c

v        or      
1/ 21/3

1/3
14 2
3 2 –1


 
   

v  as required.

Second Method. Let r and R be the internal and external radii of the shell, r be any radius,
where the velocity is v and the pressure p at any time t.

Volume of liquid  = 4
3 R3  4

3 r3  = 4
3 c3 (given)

and  so              R3 = r3 + c3. …(1)
The equation of continuity is r2v = F(t) = r2v = R2V …(2)

From (2),                2
( )F t

t r
 
 

 
v …(3)

The equation of motion is

  
1 p

t r r
     

    
v v

v          or         2
2
( ) 1 1 ,

2
F t p

r rr
           

v   by (3)

Integrating it with respect to r, we have

2( ) 1
2

F t
r


 


v =  
p C
 , C being an arbitrary constant ...(4)

Initially, when r = R, v = V, p =  and when r = r, v = v, p = 0 (as there is no pressure on
internal surface). Then (4) reduces to

                        F t
R V( ) 1

2
2 =  


C ...(5)

and       2( ) 1
2

F t
r


  v  = C. ...(6)

Subtracting (5) from (6), we have

F (t) 2 21 1 1 ( )
2

V
r R

       
v         orF (t) 1 1 1

2

2

4

2

4r R
F t

r
F t

R
FH IK  

L
N
MM

O
Q
PP 

( ) ( )l q l q 


or  F (t)
1 1

2
1 12

4 4r R
F t

r R
F

HG
I
KJ  L

NM
O
QP  

( )l q 


...(7)

From (2),       r2v = R2V = F(t)
         r2(dr/dt) = R2(dR/dt) = F(t)           r2dr = R2dR = F(t) dt. ..(8)
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3.50 FLUID DYNAMICS

Multiplying both sides of (7) by 2r2dr, we get

2F (t) r2  2 2 2 2

4 4

( )1 1 2 2 2
2

             

F t r dr r dr r drdr
r R r R

...(9)

Using relations (8), (9) may be rewritten as

             F
HG

I
KJ  

L
NMM

O
QPP
2 1 1

2
2 2 22 2

4

2

4

2
F t F t

r R
dt

F t r dr
r

R dR
R

r dr( ) ( )
( )l q 



or    1 1 1 1 22 2
2

r R
d F t F t d

r R
r dr

F
HG

I
KJ  F

HG
I
KJ   { ( )} { ( )} 


...(10)

Integrating,         {F(t)}2 
31 1 2 ,

3
r D

r R
       

D being an arbitrary constant

Initially, when r = 2c, v = 0 [so that F(t) = 0 by (2)]. Hence (10) gives
       0 = (2/3)c3 + D                  or                 D = (2/3)c3.

 (10) reduces to                   {F(t)}2 1 1
r RFH IK  = 

2
3

 (8c3  r3)

or r4v2 1 1
r RFH IK  = 

2
3



(8c3  r3), using (2).

or          
4 2

3 3 1 3
1 1

( )
r

r r c
   

  
v  = 

2
3



(8c3  r3), using (1)

or v2 = 
2
3

8
1 1

3 3

4 3 3 1 3




c r
r r r c



 


/ / ( ) /o t
...(11)

giving velocity v at the inner surface of the cavity. Hence the velocity of the internal surface
(where r = c) is given by

v2 = 
3

4 1/3
2 7
3 {1/ 1/( 2 )}

c
c c c


                 or            

1/ 21/3

1/3
14 2=
3 2 1

 
 

  
v

Ex. 4. A mass of liquid surrounds a solid sphere of radius a, and its outer surface, which is
a concentric sphere of radius b, is subjected to a given constant pressure ,  no other force
being in action on the liquid. The solid, sphere, suddenly shrinks into a concentric sphere,
determine the subsequent motion and the impulsive action on the sphere.

[Allahabad 2000; Kerala 2004]
Sol. At time t, let v  be the velocity at distance r  from the centre. Again, let R, r be the

radii of the external and internal boundaries at time t, and V, v their velocities. Then the equation
of continuity yields.                  2 2r r  v v     ...(1)

Again from conservation of mass, we have

               3 3 3 34 4 4 4
3 3 3 3

R r b a         
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EQUATIONS OF MOTION OF INVISCID FLUIDS 3.51

so that                                 R3 – r3 = b3 – a3 = c3, (say) ...(2)
     R = (r3 + c3)1/3.
Now the initial kinetic energy is zero. Again the final kinetic energy

          
4 2

2
2 2 2 2 2 ,

1 (4 ) 2
2

R

r

R R

r r

r
dr

r
r dr r dr  


            v

v v  using (1)

     4 22 (1/ 1/ )r r R   v

and the work done by the outer pressure

          3 3 3 32 4 4
( ) ( ),

3 3
4 ( )         

R

b
b R a rR dR   using (2)

Therefore, using the energy equation, we have

           4 2 3 32 (1/ 1/ ) (4 / 3) ( )r r R a r     v

     
1/ 2 3 3 1/ 2

2 1/ 2
2 ( )
3 (1/ 1/ )

a r
r r R

  
    

v     or   
 

1/ 2 3 3 1/ 2

2 3 3 1/3

2 ( )
3 1/ 1/( )

a r
r r r c

  
     

v     ...(3)

Expression for impulsive action on the sphere. Let r be the radius of the solid sphere and
  the impulsive pressure at distance r  from its centre. Then we have

                       
2

2 ,r drd dr
r


     


 v

v   using (1)

Integrating,   
2

,r C
r


  


 v C being an arbitrary constant

Given that 0   when .r R   Hence 2( ) / .C r R   v  So           2 (1/ 1/ ).r r R    v

Thus the impulsive pressure when r r   is given by               2 (1/ 1/ ).r r R    v

Hence the whole impulsive pressure on the sphere 2 34 4 ( ) / ,r r R r R      v
and the whole momentum destroyed

         2 2(4 ) 4          
R R

r r
r dr r drv v 24

R

r
r dr   v ,  using (1)

      24 ( ).r R r  v

Ex. 5. Two equal closed cylinders, of height c, with their bases in the same horizontal
plane, are filled, one with water and the other with air of such a density as to support a column
h of water, h being lees than c. If a communication be opened between them at their bases, the
height x, to which the water rises, is given by the equation.  cx – x2 + ch log {(c – x)/c} = 0.

[Meerut 1997;  Rajasthan 2000]
Sol. Let A (shown on L.H.S.) and B (shown on R.H.S.) be two cylinders containing water

and air respectively. Let   be the cross-section of each cylinder. The water and air are at rest
before and after the communication is set up between the two cylinders. Hence the initial and
final kinetic energies are zero.
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3.52 FLUID DYNAMICS

Now, initial potential energy V1 due to water height in A is

given by 2
1

0

1 .
2

c
V g x dx g c    

After communication is set up, a height x of water rises in B and
hence a height (c – x) of water is left behind in A. Therefore, the final
potential energy V2 due to water in A and B is given by

2
0 0

c x x
V g x dx g x dx


       

   2 2 2 21 1[( ) ] ( 2 2 ).
2 2

g c x x g c cx x       

 The work done against gravity

         = V1 – V2 = loss in potential energy 2(1/ 2) (2 2 ) ( ).g cx x g x c x      

Again, work is also done against the compressions of air in B. Let p be the pressure of the air
when the water stands to a height .x  Assume that temperature remains constant so that Boyle’ss
law is applicable. Thus, we have

            ( )g h c c x                      so that                 ( ) /( )p g hc c x   

Thus the total work done by this pressure 
0

log .
x g hc c xdx g hc

c x c
      


Now by energy equation, we have
Increase in K.E. = total work done                 so that                  total work done = 0

 ( ) log {( ) / } 0g x c x g hc c x c                 or        cx – x2 + ch log {(c – x)/c} = 0.

Ex. 6. Show that the rate per unit of time at which work is done by the internal pressures
between the parts of a compressible fluid obeying Boyle’s law is

     ,u w dx dy dz
x y z

   
      

v

where p is the pressure and u, v, w the velocity components at any point and the integration
extends through the volume of the fluid.

Sol. Let W be the work done in compressing the fluid, p is the pressure and dV an elementary
volume. Then, we have                        W = p(dV) = p dV.

Hence the rate per unit time of work done is given by

           
DW
Dt  = 

Dp
Dt dV .zzz ...(1)

The equation of continuity is                      0.D u w
Dt x y z

    
       

v ...(2)

Since the compressible fluid obeys Boyle’s law, hence we have
    p = k                      so that  = p/k. ...(3)

Using  (3), (2) becomes

0D p p u w
Dt k k x y z

                

v
        so that       

Dp
Dt =

u wp
x y z

   
       

v

x
c  x–

x

A

B
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EQUATIONS OF MOTION OF INVISCID FLUIDS 3.53

Hence (1) gives                        
DW
Dt  = ,u wp dV

x y z
   

     
v

which gives the required rate per unit of time at which work is done.
Ex. 7. A mass of perfect imcompressible fluid of density  is bounded by concentric spherical

surfaces. The outer surface is contained by a flexible envelope which exerts continuously uniform
pressure  and contracts from radius R1 to radius R2. The hollow is filled with a gas obeying
Boyle’s law, its radius contracts from c1 to c2 and the pressure of gas is initially, p1. Initially the
whole mass is at rest. Prove that, neglecting the mass of the gas, the velocity v of the inner
surface when the configuration (R2, c2) is reached is given by

        
3 3

2 1 2 1 1 2
3 3

2 22 1

1 1 1 log 1
2 3

c c p c c
c Rc c

                    
v [I.A.S. 2005]

Sol. Let p2 be the pressure of the gas when the internal radius is c2.  Then, by Boyle’s law,
   (4/3)×c1

3p1 = (4/3)×c3
2p2              so that             p2 = (c1

3/c3
2)p1. ...(1)

Equation of continuity is                          r2v = F(t) = c2
2v. ...(2)

From (2), v = c2
2v/r2. ...(3)

Now, the initial kinetic energy (K.E) = 0.

and                   final K.E. = 
2 2

2 2

2 2 4 2
2 2

1 (4 ) 2 ,
2

R R

c c

drr dr c
r


     

 v v   by (3)

     = 2c4
2v

2 1 1
2 2c RF

HG
I
KJ  = 2c3

2v
2 1 2

2
F

HG
I
KJ

c
R . ...(4)

Now, work done W by the external pressure  and the internal pressure p2  is given by

W  = 4 42
2

2 2
2

2 2
1

2

1

2
R dR c p dc

R

R

c

c
 ( ) z z  = 

L
NMM

O
QPP

 z4
3 3

42
3

2
2 1

3

2
3 1 2

1

2

1

2
 

R c c
c

p dc
R

R

c

c
. , using (1)

 =   2

1

3 3 3
1 2 1 1 2(4 / 3) ( ) 4 log c

c
R R p c c    

 W = 3 3 3
1 2 1 1 2 1(4/ 3) ( ) 4 log( / )R R p c c c     . ...(5)

Since the mass of the fluid remains constant, we have

     3 3 3 3
2 2 1 1(4 / 3) ( ) (4 / 3) ( )R c R c                or         3 3 3 3

1 2 1 2.R R c c   ...(6)
Using (6), (5) reduces to

                     The work done = W = ( / ) ( ) log( / )4 3 41
3

2
3

1 1
3

2 1  c c p c c c  . ...(7)
Now, from the energy equation,                Increase in K.E. = total work done

or 2c3
2v

2(1  c2/R2) = (4/3) × (c1
3  c3

2) + 4p1c1
3 log (c2/c1)

or   1
2 v2c3

2
1 2

2
F

HG
I
KJ

c
R  = c c

c
p c

c1
3 2

3

1
3

1 1

2

1
3 1
F
HG

I
KJ 

L
N
MM

O
Q
PP


 

log

or     
3 3

2 1 2 1 1 2
3 3

2 22 1

1 1 1 log 1 .
2 3

c c p c c
c Rc c

                    
v

Ex. 8. A given quantity of liquid moves, under no forces, in a smooth conical tube having
a small vertical angle and the distances of its nearer and farther extremities from the vertex at
the time t are r and r, show that
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3.54 FLUID DYNAMICS

       
22 2 3

2 2 32 3 0.d r dr r r rr
dt rdt r r

              
[Purvanchal 2005, Agra 2005]

Show that it follows also by taking vis-viva of the mass of the liquid as constant; and that the
velocity V of the inner surface is given by the equations

V Cr r r r2 3   ( ) ,                   r 3  r3 = c3,                C, c being constants.
Sol. At any time t, let p be the pressure at a distance x from the vertex and v be the

velocity there. Let  be the semi-vertical angle of the conical tube. Then the equation of continuity
is given by

v(PQ)2 = f(t)                or    v(x tan )2 = f(t)
or vx2 = F(t),              where                F(t) = cot2 f(t). ...(1)

The equation of motion is                    1 p
t x x
       

   
v v

v ...(2)

From (1),                                          v/t = (1/x2) F (t). ...(3)

Using (3),                (2)            2
2
( ) 1 1

2
F t p

x xx
          

v ...(4)

Integrating (4) with respect to x, we have

                   2( ) 1 ,
2

F t pC
x
    


v C being an arbitrary constant ...(5)

Let v and v be the velocities when x = r and x = r respectively and p be the pressure
there. Then (5) gives

           
2( ) 1

2
F t pC

r


   


v ...(6)

and 2( ) 1
2

F t pC
r


     
 

v ...(7)

Subtracting (6) from (7),              F  (t) 2 2(1/ 1/ ) (1/ 2) ( ) 0.r r      v v ...(8)

From the equation of continuity,                     r2v = r2v = F(t), ...(9)
where   v = dr/dt                  and v = dr/dt. ...(10)

From (9), v = r2v/r2. Then (8) becomes

 F (t)
4 2

2
4

1 1 1 0
2

r
r r r

             

v
v       or     F  (t)

4 4
2

4
1
2

r r r r
rr r

              
v
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EQUATIONS OF MOTION OF INVISCID FLUIDS 3.55

or   
2 3 2 2 3

4
( ) ( )( ) 0

2
r r r r r r r r r rF t

rr r
              

v

or         
3 2 2 3

2
3

2 ( ) 0.F t r r r r r r
r r

      
    

v ...(11)

From (9), F (t) = 
2 2

2 2 2
2( ) 2d d dr dr d rr r r r

dt dt dt dt dt
        
   

v

  (11)             2 2 1 0
2

2
2

2

2 2

2

3

3r r dr
dt r d r

dt
dr
dt

r
r

r
r

r
r

FH IK 
L
NM

O
QP
 FH IK 








F
HG

I
KJ 

or                       2 3 0
2

2

2 2

2

3

3r d r
dt

dr
dt

r
r

r
r

r
r

 FH IK 







F
HG

I
KJ  .

Second part.

The vis-viva = 2 K.E. = 2 2 2 2
2( tan ) tan { ( )} ,

r r

r r

dxx dx F t
x

 
      v  by (1)

              =    tan { ( )} tan { ( )}2 2 2 21 1 1F t x F t r rr

r
LNM

O
QP  


FH IK


. ...(12)

By the principal of conservation of vis-viva, we have

 tan2  {F(t)}2 1 1
r r


FH IK  = constant      or     {F(t)}2 1 1

r r


FH IK  = constant = C

or               (r2v)2 (1/r  1/r) = C using (9)
or   v2 = Cr/(r  r)r3              or           V2 = Cr/(r r)r3,        taking      V = v

Since the mass is constant, volume will also be constant.
Hence               (1/3) ×(r tan )2 r  (1/3)× (r tan )2 r = constant

so that                                 r3  r3 = constant = c3, say.
Ex. 9. A spherical mass of liquid of radius b has a concentric spherical cavity of radius a,

which contains gas at pressure p whose mass may be neglected; at every point of the external
boundary of the liquid an impulsive pressure  per unit area is applied. Assuming that the gas
obeys Boyls’ law, show that when the liquid first comes to rest, the radius of internal spherical
surface will be a exp.{{2b/(2pa2(b  a)}], where exp x stands for ex.

Sol. Let v be the velocity at a distance r from the centre of the spherical cavity at any time
t. Then the equation of continuity is

              r2v = F(t) = b2V, ...(1)
where we have assumed that v = V when r = b.

Let  be the impulsive pressure at a distance r, then
d = v dr =  (b2V/r2) dr, by (1)

Integrating,  = (b2V/r) + C, C being an arbitrary constant. ...(2)
Given that,           when r = b,  =          and         when r = a,  = 0.
  (2)   = (b2V/b) + C          and          0 = (b2V/a) + C.
Subtracting, these give  = (bV/a) (a  b). ...(3)
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3.56 FLUID DYNAMICS

The initial kinetic energy = 
4 2

2 2 2
4

1 (4 ) 2 ,
2

b b

a a

b Vr dr r dr
r

        
 v  by (1)

                            = 2b4V2 dr
r

b V
r a

b

a

b 


 


L
NM

O
QPz 2

4 22 1


                            = 2b4V2  L
NM

O
QP  1 1 2 3 2

b a
b V
a b a ( ). ...(4)

Again,             Final kinetic energy = 0. ...(5)
During the compression let r be the radius of the internal cavity and p1 the pressure of the

gas there. Since the gas obey Boyle’s law, we have
      (4/3)×r3 × p1 = (4/3)×a3 × p                          p1 = a3p/r3. ...(6)

Now, the work done by internal pressure, i.e., work done in compression of the gas from a
sphere of radius a to a sphere of radius r

     = 4 42
1

2 3 3 r p dr r a p r dr
a

r

a

r
 zz ( / ) ,  by (6)

     = 4a3p
dr
r

a p r
aa

r
z 4 3 log .

Now, by energy equation, increase in K.E. = work done
or Final K.E.  initial K.E. = work done

or 0 2 4
3 2

3  



b V
a b a a p r

a( ) log         or       log
( )r

a
b b a

a p
V 




2
4

3

4
2



or            log
( )

( )
r
a

b b a
a p

a
b a b

 





2
4

3

4

2 2

2 2 2







or     
2

2 2log
2 ( )

r b
a p a b a

 
   

  
         or          r a b

p a b a
 



RS|T|
UV|W|

exp
( )




2

22

EXERCISE 3(C)
1. An infinite mass of liquid acted upon by no forces is at rest and a spherical portion of

radius c is suddenly annihilated; the pressure   at an infinite distance being supposed to remain
constant, prove that the pressure at a distance r from the centre of the space in instantaneously
diminished in the ratio (r – c)/r and that the cavity will be filled up in the time

2 (5 / 6) .
6 (4 / 3)

c  
    

2. A spherical globule of gas of radius a and at pressure P extends in an infinite mass of
liquid of density   in which the pressure at infinity is zero. The gas is initially at rest and its
pressure and volume are governed by the equation pv4/3 = const. Prove that the gas doubles its

radius in time (28 /15) 2 .a P [I.A.S. 1999]

3. An infinite fluid in which there is a spherical hollow of radius a is initially at rest under
the action of no forces. If a constant pressure   is applied at infinity, find the rate at which the
radius of the cavity diminishes.
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EQUATIONS OF MOTION OF INVISCID FLUIDS 3.57

3.11. Lagrange’s hydrodynamical equations. [Ranchi 2010; Kanpur 2003, 04]
Let a, b, c be the initial co-ordinates of a particle and x, y, z the co-ordinates of the same

particle at time t. Then (refer Lagrangian method in Art. 2.1 in chapter 2) we know that a, b, c,
t are the independent variables. We wish to obtain x, y, z in terms of a, b, c and t and hence
discuss completely the motion.

Now at time t the component accelerations of the fluid element x y z    are 2 2/ ,x t 
2 2/ ,y t  2 2/ .z t    Let V be the force potential for the external forces. Then we have (noting

that / ,X V x   / ,Y V y    and /Z V z    ) as in Art. 3.1
2

2
1x V p

x xt
  

  
  

...(1)

2

2
1y V p

y yt
  

  
  

...(2)

2

2
1z V p

z zt
  

  
  

...(3)

We now try to get equations containing only differentiations with respect to a, b, c and t. To
this end, we multiply (1), (2) and (3) by / ,x a  /y a   and /z a   then add. Thus, we get*

               
2 2 2

2 2 2
1x x y y z z V p

a a a a at t t
       

    
        ...(4)

Similarly,                  
2 2 2

2 2 2
1x x y y z z V p

b b b b bt t t
       

    
       

...(5)

and                 
2 2 2

2 2 2
1x x y y z z V p

c c c c ct t t
       

    
       

...(6)

These equations, together with the equation of continuity

     0
( , , ) ,
( , , )
x y z
a b c


  
 …(7)

are known as Lagrange’s Hydrodynamical Equations.
3.12. Cauchy’s integrals.

Let a, b, c be the initial co-ordinates of a particle and x, y, z the coordinates of the same
particle at time t. Then (refer Lagrangian method in Art. 2.1 in chapter 2) we know that a, b, c,
t are the independent variables.

Now at time t the component accelerations of the fluid element x y z    are 2 2/ ,x t 
2 2/ ,y t  2 2/ .z t   Let V be the force potential for the external forces. Then we have (noting

that / ,X V x   /Y V y   and /Z V z    ) as in Art. 3.1
2

2
1x V p

x xt
  

  
  

...(1)

2

2
1y V p

y yt
  

  
  

...(2)

*
 Use results:      V V x V y V z

a x a y a z a
      

  
      

 etc.;        p p x p y p z
a x a y a z a
      

  
      

 etc.
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3.58 FLUID DYNAMICS

2

2
1z V p

z zt
  

  
  

...(3)

Taking   as a function of p, we take            dpQ V 
 ...(4)

Then from (4), we have

1Q V p
a a a

  
   
    ...(5)

1Q V p
b b b

  
   
    ...(6)

1Q V p
c c c

  
   
    ...(7)

Multiplying (1), (2), (3) by / ,x a  / ,y a  /z a   respectively, and adding, we have

2 2 2

2 2 2
1x x y y z z V p

a a a a at t t
       

    
       

or
2 2 2

2 2 2
x x y y z z Q

a a a at t t
      

   
     

,   using (5) ...(8)

Similarly
2 2 2

2 2 2
x x y y z z Q

b b b bt t t
      

   
     

...(9)

and
2 2 2

2 2 2
x x y y z z Q

c c c ct t t
      

   
     

...(10)

Writing u, v, w for / ,x t  / ,y t  / ,z t   (8), (9) and (10) may be re-written as

   
u x y w z Q
t a t a t a a

      
   

      
v

...(11)

   
u x y w z Q
t b t b t b b

      
   

      
v

...(12)

   
u x y w z Q
t c t c t c c

      
   

      
v

...(13)

Differentiating (12) and (13) partially w.r.t. to c and b respectively, subtracting and noting

that 
Q Q

c b b c
               

 etc., we get

       
2 2 2 2 2 2

0u x u x y y w z w z
b t c c t b b t c c t b b t c c t b

                
                                     

v v

or      
2 2u x u x u x u x

t b c c b b t c c t b
                            

 + two similar terms = 0

or   
2 2

two similar terms 0, as , andu x u x x u x u xu
t b c c b c t c t b b t
                            
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EQUATIONS OF MOTION OF INVISCID FLUIDS 3.59

or       0u x u x y y w z w z
t b c c b b c c b b c c b
                                                

v v

Integrating the above equation with respect to t and taking u0, v0, w0 as initial values, we  get

    0 0 ,wu x u x y y w z w z
b c c b b c c b b c c b b c

            
      

             
vv v

...(14)

where we have used the following results :

Initially : x = a, y = b and z = c so that / 1,x a   / 0,x b   / 0x c   etc.

Now,       
u u x u y u z
a x a y a z a

      
  

      
 etc.  ...(15)

Making use of relations of the type (15), (14) may be re-wirtten as

( , ) ( , ) ( , )
( , ) ( , ) ( , )

w y z u w z x u x y
y z b c z x b c x y b c

                                

v v 0 0w
b c

 
 

 
v ...(14)'

Let , ,   be the vorticity components. Then, we have [refer Art. 2.27 of chapter 2]

      ,w
y z

 
  

 
v

                 ,u w
z x

 
  

 
                

u
x y

 
  

 
v

Then the above equation (14) becomes

                  0
( , ) ( , ) ( , )
( , ) ( , ) ( , )
y z z x x y
b c b c b c

  
      
   ...(16)

Similarly,                     0
( , ) ( , ) ( , )
( , ) ( , ) ( , )
y z z x x y
c a c a c a

  
      
  

...(17)

and                                    0
( , ) ( , ) ( , ) ,
( , ) ( , ) ( , )
y z z x x y
a b a b a b

  
      
  

...(18)

where 0 , 0 , 0  are the initial vorticity components.
The equation of continuity in Lagrangian system is

                  0
( , , ) .
( , , )
x y z
a b c


  


...(19)

Multiplying (16), (17), (18) by / ,x a  / ,x b  /x c   respectively, adding and using (19),
we obtain

            
0 0 0

0 0 0

x x x
a b c

     
  

       ...(20)

Similarly,                         0 0 0

0 0 0

y y y
a b c

     
  

      
...(21)

and                        0 0 0

0 0 0
.z z z

a b c
     

  
      

...(22)

These are known as Cauchy’s integrals.
We now state and prove the following theorem.
Statement : The motion of a inviscid fluid under conservative forces, if once irrotational, is
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3.60 FLUID DYNAMICS

always irrotational.
OR

When the external forces are conservative and are derived from a single valued potential
and pressure is a function of density only, then if once the motion of a non-viscous fluid is
irrotational, it remains irrotational even afterwards.

Proof. Let the motion be initially irrotational so that 0 0 0 0.       Then (20), (21) and

(22) show that 0       are always zero. Thus if once the motion is irrotational, it remains
irrotational even afterwards.
3.13. Helmholtz equations or Helmholtz vorticity equations

[G.N.D.U. Amritsar 1999, Kanpur 2000]
The Euler’s equations of motion are :

         
1u u u u pu w X

t x y z x
    

    
     

v ...(1a)

          
1 pu w Y

t x y z y
    

    
     
v v v v

v ...(1b)

        
1w w w w pu w Z

t x y z z
    

    
     

v ...(1c)

Let V be the potential function of the external forces and let   be a function of p. Then 1(a)
may be re-written as

1u u u u V pu w
t x y z x x

     
     

      
v

or             
u u u u u u wu w w
t x x x y x z x

                                

v
v v 1V p

x x
 

  
  

...(2)

Let       i j k  be the vorticity vector so that ( , , )    are the vorticity components or
the components of spin. These are given by

1 ,
2

w
y z

  
     

v
           

1 ,
2

u w
z x

       
           

1
2

u
x y

  
     

v
...(3)

Let  q2 = u2 + v2 + w2

Then                      
21

2
u v w qu w
x x x x

   
  

   
v ...(4)

Using (3) and (4), (2) reduces to

        212 2
2

u dpw V q
t x

  
           v ...(5)

Let    21
2

dpQ V q  
 ...(6)

Then (5) reduces to

2 2u Qw
t x

 
     

 
v ...(7)

Similarly, 1(b) and 1(c) may be re-written as :
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EQUATIONS OF MOTION OF INVISCID FLUIDS 3.61

2 2 Qw u
t y

 
     

 
v

...(8)

and 2 2w Qu
t z

 
    

 
v ...(9)

Differentiating (8) and (9) partially w.r.t. ‘z’ and ‘y’ and using the fact 2 / / ,Q z y Q y z      
we obtain

   
2 2

2 2 2 2 2 2 2 2w u w uw u u
z t z z z z y t y y y y
         

            
           

v v
v

or  2 2 2 2 2 2 0w w u uu w
t y z y z y z y z y z
               

                                

v v
v ...(10)

From (3), it easily follows that         0
x y z

  
  

  
...(11)

Using (11), (10) reduces to

   2 2 2 2 2 2 2 2 0          
                        

u w u u uu w
t x y z x y z x z z

v
v

or                  
D u w u u u
Dt x y z x y z

         
                    

v
...(12)

Now the equation of continuity is

0D u w
Dt x y z

    
        

v
            so that             1 .u w D

x y z Dt
   

   
   

v ...(13)

Using (13), (12) becomes

D D u u u
Dt Dt x y z
     
      
   

      or      2
1 D D u u u

Dt Dt x y z
        
   

      

or                
D u u u
Dt x y z

       
          

...(14a)

Similarly, we have

               
D
Dt x y z

       
          

v v v
...(14b)

               
D w w w
Dt x y z

       
          

...(14c)

We now re-write (14a), (14b), (14c) in another form. Using (3), we observe that

u u u u w w
y z y x x z x x

                                          

v v

                                   = ( 2 ) (2 ) w w
x x x x

        
         

         
v v ...(15)

Using (15), (14a) reduces to
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3.62 FLUID DYNAMICS

    
D u w
Dt x x x

       
          

v
...(16a)

Similarly, (14b) and (14c) reduce to

    
D u w
Dt y y y

       
          

v
...(16b)

and                .D u w
Dt z z z

       
          

v
...(16c)

Equations (16a), (16b), (16c) are known as Helmholtz’s equations. Let at any instant
t, 0.        Then the above equations reduce to

     0D D D
Dt Dt Dt

       
              

...(17)

or                         0,D D D
Dt Dt Dt
  
     if   = constant ...(18)

Equation (18) shows that , ,   must be constant. Since these are zero at time t = 0, it
follows that 0       at all time afterwards.

Thus those elements of fluid which at any instant have no rotation remain during the
motion without rotation.

We discuss the general case by taking constant  . Let / , / ,   u x xv  etc. be all finite and
let L denote their superior limit. Then / ,  / ,  /   cannot increase faster than if they satisfied
the equations

      ( ) /D D D L
Dt Dt Dt

       
                    

...(19)

Let                     W       ...(20)

Then (19) reduces to                      3 ,D DW LW
Dt Dt

   
       

so that if W is not zero, by dividing by W and integrating, we have
                              W = Ce3Lt, C being an arbitrary constant ...(21)
But 0       at t = 0. So W = 0 at t = 0. Hence (21) shows that C = 0 and so W is

always zero. But W is the sum of three quantities , ,   which evidently cannot be negative.

It follows that 0.       Moreover as , ,   remain zero when they satisfy (19), still
more will they do so when they satisfy (16a) to (16c)

Thus, in general, if the motion is irrotational at any instant, it must be so for all time. In
other words, if once, the velocity potential exists, it exists for all time. This is known as the
principle of permanence of irrotational motion.
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EQUATIONS OF MOTION OF INVISCID FLUIDS 3.63

An illustrative solved example
Prove that in the steady motion of an incompressible liquid, under the action of conserrative

forces, we have ( / ) ( / ) ( / ) 0u x u y u z            and two similar equation in v and w..
Sol. Helmholtz equations are given by

    
D u u u
Dt x y z

       
          

...(1a)

    
D
Dt x y z

       
          

v v v
...(1b)

and     D w w w
Dt x y z

       
          

...(1c)

For the steady incompressible liquid,              0D D D
Dt Dt Dt

       
              

                      (1a)  ( / ) ( / ) ( / ) 0u x u y u z           

                    (1b)  ( / ) ( / ) ( / ) 0x y z           v v v

and          (1c)  ( / ) ( / ) ( / ) 0w x w y w z           

OBJECTIVE QUESTIONS ON CHAPTER 3
Multiple choice questions
Choose the correct alternative from the following questions

1. The equation for impulsive action is

(i) 2 1 (1/ )     q q I  (ii) 2 1 (1/ )     q q I 

(iii) 2 1 (1/ )     q q I  (iv) 1 2     q q I  [Kanpur 2001]
2. The motion of a inviscid fluid under conservative forces, if once irrorational, is always

(i) rotational            (ii) irrotational            (iii) laminar             (iv) None of these
3. If   denotes the impulsive pressure and external impulsive body forces are absent, then

(i) 2 0              (ii) 0               (iii) 2 0              (iv) None of these
4. Euler’s equation of motion in x-direction is

(i) / (1/ ) ( / )Du Dt X p x               (ii) / (1/ ) ( / )Du Dt X p x     

(iii) / (1/ ) ( / )u t X p x                 (iv) / (1/ ) ( / )u t X p x       

Answers/Hints to objective type questions
1. (iii). See Eq. (3), Art. 3.6 2. (ii). Refer Art. 3.1.2
3. (i). See Cor. 1, Art. 3.6 4. (i). See Eq. (1), Art. 3.1
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3.64 FLUID DYNAMICS
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4.1. Integration of Euler’s equations of motion. Bernoulli’s equation. Pressure equation.
[I.A.S. 2005; Kanpur 2002, 04, 05, 09; Meerut 2000, 02, 08]

When a velocity potential exists (so that the motion is irrotational) and the external forces are
derivable from a potential function, the equations of motion can always be integrated. Let    be the
velocity potential and V be the force potential. Then, by definition, we get

       / ,u x                    / ,y   v                 / ,w z    ...(1)

      / ,X V x                  / ,Y V y                    / ,Z V y    ...(2)

and     / / ,u y x    v              / / ,z w y    v              / / .    w x u z ...(3)
Then well known Euler’s dynamical equation are

                       
1    

    
     
u u u u pu w X
t x y z x

v

                           
1– pu w Y

t y
    

   
     
v v v v

v
x y z

                          
1    

    
     
w w w w pu w Z
t x y z z

v

Using (1) (2) and (3), these can be re-written as

        

2

2

2

1

1–

1–

      
       
        

             
        

            
        

u w V pu w
t x x x x x x

u w V pu w
t y y y y y y

u w V pu w
t z z z z z z

v
v

v
v

v
v

…(4)

One-Dimensional Inviscid
Incompressible Flow

(Bernoulli’s Equation and
its Applications)
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4.2 FLUID DYNAMICS

Re-writing equations (4), we get

      
2 2 21 1( )

2
V pu w

x t x x x
                  

v ...(5)

      
2 2 21 1( )

2
V pu w

y t y y y
                  

v ...(6)

    
2 2 21 1( )

2
V pu w

z t z z z
                  

v ...(7)

Now         d dx dy dz
t dx t y t z t

                                  
...(8)

                     ( / ) ( / ) ( / )dV V x dx V y dy V z dz         ...(9)

( / ) ( / ) ( / )dp p x dx p y dy p z dz         ...(10)

   2 2 2 2 2 2 2 2 2 2 2 2( ) ( ) ( ) ( )d u w u w dx u w dy u w dz
x y z
  

          
  

v v v v …(11)

Multiplying (5), (6) and (7) by dx, dy and dz respectively, then adding and using (8), (9), (10)
and (11), we have

       
2 2 21 1( )

2
d d u w dV dp

t
          

v

or              21 1 0
2

d dq dV dp
t

        
...(12)

where                      2 2 2 2q u w  v  = (velocity of fluid particle)2

If   is a function of p, integration of (12) gives

    
21 ( ),

2


    
 

dpq V F t
t ...(13)

where F(t) is an arbitrary function of t arising from integration in which t is regarded as constant.
(13) is Bernoulli’s equation in its most general form. Equation (13) is also known as pressure
equation.

Special Case I. Let the fluid be homogeneous and inelastic (so that   = constant i.e., fluid is
incompressible). Then Bernoulli’s equation for unsteady and irrotational motion is given by

      
21 ( )

2
pq V F t

t


    
  ...(14)

Special Case II. If the motion be steady / 0,t    the Bernoulli’s equation for steady
irrotational motion of an incompressible fluid is given by

             2 / 2 /q V p C    , where C is an absolute constant.      (Kanpur 2010)  ...(15)

4.2. Bernoulli’s theorem. (Steady motion with no velocity potential and conservative
field of force).
[ Agra 2009; Meerut 2009, 2010; Kanpur 2004; Purvanchel 2005; G.N.D.U. Amritsar 2002, 05]

When the motion is steady and the velocity potential does not exist, we have
21 ,

2
dpq V C  


where V is the force potential from which the external forces are derivable. [Meerut 2011]
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ONE-DIMENSIONAL INVISCID INCOMPRESSIBLE FLOW (Bernoulli’s Equation & Its Applications) 4.3

Proof. Consider a streamline AB in the fluid. Let s  be an element of this stream line and CD
be a small cylinder of cross-sectional area   and s  as axis. If q be the velocity and S be the
component of external force per unit mass in direction of the streamline, then by Newton’s second
law of motion, we have

       . Dq ps s S p p s
Dt s

            

or                       
1Dq pS

Dt s


 
 

or                
1q q pq S

t s s
  

  
        ...(1)

If the motion be steady / 0,q t    and if the external forces have a potential function V such

that / ,S V s    (1) reduces to

        
21 1 0

2
  

  
   
q V p
s s s ...(2)

If   is a function of p, integration of (2) along the streamline AB yields

             
21 ,

2
dpq V C  
 ...(3)

where C is constant whose value depends on the particular chosen streamline.
Special Case I. If the fluid be homogeneous and incompressible,   = constant and hence (3)

reduces to
          2 / 2 / .q V p C                  (Kanpur 2008) ...(4)

Special Case II. Let S be a graviational force per unit mass. Let h  be the vertical distance
between C and D. Then we have

   – ( ),hS g gh
s s

 
  

 
         as          V = gh

Hence, if the fluid be incompressible, (3) reduces to

            2 / 2 / .q gh p C    ...(5)

4.3. Illustrative solved examples.
Ex. 1. A stream is rushing from a boiler through a conical pipe, the diameter of the ends of

which are D and d; if V and v be the corresponding velocities of the stream and if the motion be
supposed to be that of the divergence from the vertex of the cone, prove that

     2 22 2 ( – ) /2/ ( / ) V kV D d e vv [I.A.S. 1993, 98]

where k is the pressure divided by the density and supposed constant.
Sol. Let AB and A B  be the ends of the conical pipe such that A B   = d and AB = D. Let

1  and 2  be densities of the stream at A B   and AB. By principle of conservation of mass, the
mass of the streem that entres the end AB and leaves at the end AB must be the same. Hence the
equation of continuity is

       2 2
1 2( / 2) ( / 2)d D V    v

p s +     p
s

B

D

C

p 
A

s
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4.4 FLUID DYNAMICS

so that                  
2

2
2

1

D
V d


 


v

...(1)

By Bernoulli’s theorem (in absence of external forces
like gravity), we have

                   
21

2
dp q C 
 ...(2)

Given that                p/  = k                so that                  dp = k d . ...(3)

  (2) reduces to                           21 ,
2

dk q C
 

 using (3)

Integrating,                       2log / 2 ,k q C  C being an arbitrary constant ...(4)

When      q = v,      1        and      when       q = V,      2.    Hence, (4) yields

      k log 2
1 / 2 C  v                 and                k log 2/

2 2 V = C

Subtracting,                      2 2
2 1(log log ) ( ) / 2 0k V     v

or        log 2 2
2 1( / ) ( )2V k   v          or               2 2( )2

2 1/ .V ke    v ...(5)

Using (5), (1) reduces to               2 22 2 ( ) / 2/ ( / ) .V kV D d e   vv

Ex. 2. A stream in a horizontal pipe, after passing a contraction in the pipe at which its
sectional area is A is delivered at atmospheric pressure at a place, where the sectional area is B.
Show that if a side tube is connected with the pipe at the former place, water will be sucked up

through it into the pipe from a reservoir at a depth 2 2 2( / 2 ) (1/ 1/ )s g A B   below the pipe, s
being the delivery per second. [I.A.S. 1997]

Sol. Let v be the velocity in the tube of smaller section A and p the pressure at that section.
Further, let V and   be the corresponding quantities
at the bigger section B of the figure. Then, by
Bernoulli’s Theorem (in absence of external forces like
gravity) for incompressible fluid, namely

      2/ / 2p q   = constant,

we obtain      2 2/ / 2 / / 2p V    v

so that                          2 2( ) / ( ) / 2p V    v ..(1)
Let h be the height through which water is sucked up. Then

            ( ) ,h g p        being area of cross-section of the tube

or          g h  difference of pressure = .p ...(2)
The equation of continuity is             Av = BV = s         (delivery per second)

so that v = s/A              and                      /V s B ...(3)

Using (2) and (3), (1) reduces to

    
2 2

2 2
1 1

2
s sg h
A B

 
       

      or             
2

2 2
1 1 .

2
sh
g A B

   
 

A
D

V

B

d

A 

B 

v

1
2

. v


h

A
B

p, v
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ONE-DIMENSIONAL INVISCID INCOMPRESSIBLE FLOW (Bernoulli’s Equation & Its Applications) 4.5

Ex. 3. A mass of homogeneous liquid is moving so that the velocity at any point is
proportional to the time and that the pressure is given by

         2 2 2 2 2 2 2/ ( / 2) ( ).p x y z t y z z x x y      

Prove that this motion may have been generated from rest by natural forces independent of
the time and show that, if the direction of motion at every point coincides with the direction of
the acting force, each particle of the liquid describes a curve which is the intersection of two
hyperbolic cylinders.

Sol. Given that velocity q is proportional to time. So              q t  ...(1)

Also, given             2 2 2 2 2 2 2/ ( / 2) ( )p x y z t y z z x x y       ...(2)
Suppose that the motion is produced by finite natural forces (conservative forces) which are

derivable from the potential function V. Then by Bernoulli’s equation, we get

          
21 ( )

2
p q V F t

t


   
 

or 2 21 ( ),
2

p t V F t
t


    

 
 using (1) ...(3)

Since (2) and (3) must be identical, equating the coefficients of t2 on R.H.S. of (2) and (3),
we get

2 2 2 2 2 2 2y z z x x y    ...(4)

Using (4), (1) reduces to                2 2 2 2 2 2 2 2( )q t y z z x x y   ...(5)

But          2 2 2 2( / ) ( / ) ( / )q x y z         ...(6)

Comparing (5) and (6), an appropriate value of   is given by

         t xyz  ...(7)
Using (7) and (4), (3) reduces to

2 2 2 2 2 2 2/ ( / 2) ( ) ( )p xyz t y z z x x y V F t        ...(8)

Comparing (2) and (8), we find          F (t) = 0         and        –xyz V xyz 

Thus,                    V = xyz (1 – µ) ...(9)
If u, v, w are the components of velocities and X, Y, Z are the components of forces, then

  – ( / ) – ,u x tyz           – ( / ) – ,y txz   v         – ( / ) –w z txy   

and – ( / ) ( –1) ,X V x yz     – ( / ) ( –1) ,Y V y xz     – ( / ) ( –1)Z V z xy        ... (9)
Given that the direction of motion coincides with that of the acting forces. Hence, we have

   u/X = v/Y = w/Z
Again, the equations of the path

          
dx dy dz
u w

 
v

             reduce to               
dx dy dz
X Y Z

 

i.e.,                      
dx dy dz
yz zx xy

  , using (9) …(10)

Taking the first two members of (10), we get
         xdx – ydy = 0                 so that                 x2 – y2 = C1  ...(11)
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4.6 FLUID DYNAMICS

Taking the last two members of (10), we get
         ydy – zdz = 0                 so that                 y2 – z2 = c2 ...(12)

Thus each particle of the fluid will be on the curve which is the intersection of two hyperbolic
cylinders 2 2

1x y C   and 2 2
2 ,y z C  C1 and C2 being arbitrary constants

Ex. 4. A quantity of liquid occupies a length 2l of a straight tube of uniform small bore
under the action of a force to a point in the tube varying as a distance from that point. Determine
the pressure at any point.

OR
A quantity of liquid occupies a length 2l of a straight tube of uniform bore under the

action of force which is equal to µx to a point O in the tube, where x is the distance from O. Find
the motion and show that if z be the distance of the nearer free surface from O, pressure at any
point is given by    2 2/ –( / 2) ( ) ( ) ( ).p x z x z z l       

Sol. Let p be the pressure and u the velocity at a distance x from the fixed point O; and let
z be the distance of the nearer free surface from O. Then the equation of continuity is

                 / 0u x   ...(1)
Let µx be the external force at a distance x which acts towards O. Then equation of motion

        1u u pu X
t x x

  
  

   
             reduces to             1u px

t x
 

  
  

...(2)

Integrating (2) w.r.t. ‘x’, we get

                     
21

2
u px x C
t


    

  , C being an arbitrary constant ...(3)

But p = 0 when x = z and x = z + 2l. So (3) gives

   21
2

uz z C
t


   


...(4)

      21( 2 ) ( 2 )
2

uz l z l C
t


     


...(5)

Subtracting (4) from (5), we get

2 212 [( 2 ) ]
2

ul z l z
t


    


                    or                     – ( )

  

u z l
t

...(6)

or        2 2/ ( )d z dt z l              [ / ]u dz dt ...(7)
Putting            z + l = y             so that            z = y – l,           (7) gives

                       2 2/ 0d y dt y 

whose solution is                  cos ( ),y A t B   A and B being arbitrary constants.

Since y = z + l, it yields                          cos ( ) –z A t B l       ...(8)
in which A and B may be determined from the knowledge of initial position and velocity.

We now determine pressure. From (4), we get

                        21
2

uC z z
t


  


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ONE-DIMENSIONAL INVISCID INCOMPRESSIBLE FLOW (Bernoulli’s Equation & Its Applications) 4.7

Putting this value of C in (3), we get

2 21 ( ) ( )
2

p ux z x z
t


     

 
     or     2 21 ( ) ( )( ),

2
p x z x z z l      


  using (6)

which gives the pressure at any point.
Ex. 5. A horizontal pipe gradually reduces in diameter from 24 in. to 12 in. Determine the

total longitudinal thrust exerted on the pipe if the pressure at the larger end is 50 lbf/in2 and the
velocity of the water is 8 ft./sec.

Sol. Let S1 and S2 be the cross-sections of the larger and the smaller ends. Let q1 and q2 be
the velocities and p1 and p2 be the pressures at the larger and the smaller ends of the pipe. Given

      2 2
1 (12) in . S                        and       2 2

2 (6) in .,S  

Also,    q1 = 8 × 12 = 96 in/sec.            and                   p1 = 50 lbf/in2.

The equation of continuity           S1q1 = S2q2             gives         2 2
1 2(12) (6)q q  

so that                                  2 14q q ...(1)
By Bernouill’s equation, we have

     
2 21 2
1 2

1 1
2 2

p p
q q  

                 or              2 2
1 2 2 1

1 ( )
2

p p q q   

                         2 2
1 2 1 1(1/ 2) (16 ),p p q q     using (1)

or                                 2
2 1 1(15 / 2)p p q    ...(2)

  The required longitudinal thrust on the pipe

   2 2
1 1 2 2 1 2 1 2(12) (6) 36 (4 )p S p S p p p p        

  2
1 1 136 [4 (15 / 2) ],p p q       using (2)

  2
1 1

1536 (3 )
2

p q    2
3

15 62.436 150 96
2 12

      
 

95040 

     3 3 3( 62.4 lb/ft (62.4) /12 lb/in .)  
Ex. 6. An elastic fluid, the weight of which is neglected, obeying Boyle’s law is in motion in

a uniform straight tube; show that on the hypothesis of parallel sections the velocity at any time
t at a distance r from a fixed point in the tube is defined by the equation

         
2 2

2
2 22 k

r t rt r
             

v v v v
v v [Kanpur 2006; Rohilkhand 2005]

Sol. The equation of continuity is                     ( ) 0.
t r

 
  

 
v ...(1)

The equation of  motion is                    
1 p

r r r
  

   
   
v v

v ...(2)

Since the given elastic fluid obeys Boyle’s law, we have

          p = k         so that         
p k
r r

 
 

 
...(3)
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4.8 FLUID DYNAMICS

Using (3), (2) becomes                    
k

t r r
  

   
   
v v

v ..(4)

Differentiating (4) partially with respect to t, we have

             
2

2
k

t r t rt
                   

v v
v ...(5)

Now,           2 21 1
2 2t r t r r t r t

                                               

v v
v v v v

and ( log ) ( log )k kk k
t r t r r t r t
                                 

Hence (5) reduces to

    
2

2
k

r t r tt
                   

v v
v         or      

2

2 0k
r t tt
    

        

v v
v

or
2

2
( ) 0,k

r t rt
                 

v v v
v  using (1)

or
2

2 0k
r t r rt
                   

v v v
v v   or

2

2 0kk
r t r rt
     

          

v v v
v v

or
2

2 ,k
r t r t rt

                    

v v v v v
v v v  using (4)

or
2

2
2 2 k

r t r rt
             

v v v v
v v = 0 or

2 2
2

2 22 k
r t rt r

             

v v v v
v v

Ex. 7. Water oscillates in a bent uniform tube in a vertical plane. If O be the lowest point
of the tube, AB the equilibrium level of the water,   the inclinations of the tube to the
horizontal at A, B and OA = a, OB = b, the period of oscillation is given by

 1/ 22 ( ) / (sin sin )a b g     [Ranchi 2010; Garhwal 2000; Kanpur 2001]
Sol. Let O be the lowest point of the tube, AB the

equilibrium level of water, h the height of AB above O,
 , the inclinations of the tube to the horizontal at A
and B and its inclination at P at distance s from O. Let
a, b, denote the lengths OA, OB and suppose that at time
t the water is displaced a small distance x along the tube
from its equilibrium position.

If q is the velocity, the equation of continuity is                q/s = 0. ...(1)

Again, the equation of motion is                






  



q
t q q

s g p
ssin .


1 ...(2)

Using (1), (2) becomes                      


  



q
t g p

ssin

1

or                          1 , sinq y p yg as
t s s s

   
    

    
...(3)

a
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ONE-DIMENSIONAL INVISCID INCOMPRESSIBLE FLOW (Bernoulli’s Equation & Its Applications) 4.9

Integrating (3) with respect to s, we have

                   s 


   
q
t gy p f t


( ),    where f (t) is an arbitrary function of t.   ...(4)

Let  be the atmospheric pressure. Then, the conditions at the ends of the tube are :
When y = h + x sin  s = a + x, p =       and     when y = h  x sin , s = (b  x), p = .
       Hence, (4) yields

           (a + x) 


    
q
t g h x f t( sin ) ( )


                              ...(5)

and (b  x) ( sin ) ( ) 
     

 
q g h x f t
t

. ...(6)

Subtracting (6) from (5), we have              (a + b) 


  q
t gx (sin sin ) 

or
2

2 (sin sin ) ,d x g x
a bdt

    


        as        dxq
dt

        and      
2

2
q d x
t dt






or           x  = µx,            where            µ = g (sin sin )  /(a + b).
This represents a simple harmonic motion. If T be its time period, then we have

1 22 / 2 [ (sin sin ) /( )]T l g a b          1/ 22 ( ) / (sin sin )a b g    
Ex. 8. A straight tube of small bore, ABC, is bent so as to make the angle ABC a right

angle and AB equal to BC.  The end C is closed and the tube is placed with end A upwards and
AB vertical and is filled with liquid. If the end C be opened, prove that the pressure at any point
of the vertical tube is instantaneously diminished one-half and find the instantaneous change of
pressure at any point of the horizontal tube, the pressure of the atmosphere being neglected.

[Aligarh 2005; Bangalore 2003, Nagpur 1999]
Sol. Let ABC be the given tube in which AB is vertical and BC

is horizontal. Let AB = BC = a.
Let at time t the liquid fall through a depth z and at that instant

let q be the downward velocity and p be the pressure at a point P at
depth y in the vertical tube. Since the only external force acting
downwards is g, the equation of motion is

               







q
t q q

y  = g p
y




1


. ...(1)

Since the motion is one-dimensional, the equation of continuity is
 q y/  = 0.   ...(2)

Using (2), (1) becomes        q t g p y/ ( / ) ( / ).1  ...(3)
Integrating (3) with respect to y, we have

                     ( / ) ( / ) ,q t y gy p C      C being an arbitrary constant. ...(4)
Initially, when y = z, p = 0. So                  (4)         C = z(q/t  g).

So (4) gives                         



  




q
t y gy p z q

t gz


so that                   
p g q

t y z


 



F
HG

I
KJ ( ) . ...(5)
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4.10 FLUID DYNAMICS

At B, where y = a, let p = p1 so that from (5), we have

            p1 =  g q
t a z




F
HG

I
KJ ( ). ...(6)

The cross-section of the tube being the same everywhere, let a point Q at a distance x from
the point B have the velocity q and let p be the pressure there.

The equation of continuity is                     q x/ .0 ...(7)

and the equation of motion is             






 
 


q
t q q

x
p
x

1


or       q t p x/ ( / ) ( / ),1   using (7). ...(8)

Integrating (8) with respect to x,              x ( / ) ( / ) .       q t p C ...(9)

At C, when        x = a,        p = 0        so         (9)      C  = a ( / ) q t .

Hence (9) gives         p =  ( / ) ( ).  q t x a ...(10)
At B, where x = 0, p = p1 so that from (10), we have

                  p1 = a q t( / )  . ...(11)

Now,             (6) and (11)             g q
t a z a q

t



F
HG

I
KJ  




( )

or                              ( / ) ( ) ( ).    q t a z g a z2 ...(12)

Initially, when z = 0, (12) gives                      


F
HG

I
KJ 

q
t g

0

1
2

. ...(13)

If the initial pressure at P be p0, then putting z = 0 in (5), we get

p g q
t y g g y gy0

0

1
2

1
2

 



F
HG

I
KJ

RST
UVW

 FH IK  .

Thus,                                         p0 = (1/2) × gy. ...(14)
When end C is closed, the hydrostatic pressure pH at P is            pH = gy. ...(15)
Now,          (14) and (15)             p0 = (1/2) × pH,

showing that the pressure at any point of the vertical tube is instantaneously diminished by half.
If p0 be the initial pressure at Q, then from (10), we get

              p0 =   (x  a) 


F
HG

I
KJ

q
t 0

 =  × 1
2 (x  a)g, using (13)

When end C is closed, let p2 be the initial pressure at Q.
     p2 = the initial pressure at B = ga.
Hence the change in pressure

     = p2  p0 = ga + (1/2)× (x  a)g = (1/2) × g(a + x).
Ex. 9. A fine tube whose section k is a function of its length s, in the form of a closed plane

curve of area A, filled with ice, is moved in any manner. When the component angular velocity
of the tube about a normal to its plane is  , the ice melts without change of volume. Prove that
the velocity of the fluid relatively to the tube at a point where the section is K at any subsequent
time when  is the anguler velocity is

2 A K ds
k

( ) , RST
UVWz the integral being taken once round tube.
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ONE-DIMENSIONAL INVISCID INCOMPRESSIBLE FLOW (Bernoulli’s Equation & Its Applications) 4.11

Sol. With O as pole (origin) and OX as initial
line, let polar coordinates of an arbitrary point P on
the tube be (r, ).  Let O be taken as a fixed point
on the tube and the length of the arc OP of the tube
be s.  Let the tube rotate about a normal through O
and let at any subsequent time, after the ice melts,
the component angular velocity be .  Let the cross-
section of the tube be k at P and let v be velocity
there. Let Q be the point where the cross-section of
the tube is K and velocity V. Let p be pressure at P.

The equation of continuity is vk = VK. ...(1)
Relative to the tube, the acceleration of the fluid particle along the tangent at P is

( / ) / )t s    V V( V .
Let  be the angle between radius vector OP and tangent PT.  Then we know that

           sin  = r (d/ds)              and              cos  = dr/ds. ...(2)
Now, acceleration of the point P of the tube along the tangent at P

         =  r  sin   r2 cos  = r rd
ds

r dr
ds

 ,


 2           where              = d
dt


Hence the equation of motion is given by          
2 2 1d dr dpr r

t s ds ds ds
  

       
  

V V
V

Integrating both sides of the above equation w.r.t. ‘s’ once round the tube, we have
2 2 1d dr dpds ds r ds r ds ds

t s ds ds ds
  

      
      V V

V      ... (3)

      But  2[ / 2] 0,Q
Q

VV ds V dV V
s


  

   Similarly, 2 2 2 / 2 0
Q

Q

drr ds r
ds

       and

( / ) [ ] 0Q
Qdp ds ds p  . Hence, (3) reduces to

      2 0ds r d
t


   

  V                or               2–ds r d
t


  

 
V

or             2 ,ds A
t


  

 V               as                21
2

A r d  ...(4)

Integrating both sides of (4) w.r.t. ‘t’, we get

    2 dds dt A dt
t dt





 
 

 
V

           or v ds = 2A(  )

or         VK
k dsz  = 2A(  ),               since from (1), v = VK

k

or      VK ds
kz  = 2A(  )              or           V A K ds

k
  RST

UVWz2 ( ) , 

Ex. 10. The water is flowing through a tapering pipe having diameters 300 mm and 150 mm
at sections AA and BB respectively. The discharge through the pipe is 40 litres/s. The section
AA is 10 m above datum and section BB is 6 m above datum. Find the intensity of pressure at
section BB if that at section AA is 400 KN/m2.

Sol. At section AA, we have                diameter = d1 = 300 mm = 0.3 m
  Area of cross-section = S1 = (/4)  (0·3)2 = 0·0707 m2

Q
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4.12 FLUID DYNAMICS

Pressure = p1 = 400 kN/m2

Height of upper end above the datum = h1 = 10 m
At section BB, we have

                  diameter = d2 = 150 mm = 0.15 m
  Area of crosssection = S2 = (/4)  (0.15)2

  = 0.01767 m2.
Height of the lower end above the datum = h2 = 6 m.
Let pressure at section BB be p2.
Rate of flow (i.e. discharge) = Q

                                    = 40 liters/s =
40 10

10

3

6


 = 0.04 m3/s.

Let velocity of flow at sections AA and BB be q1 and q2 respectively. Then, we have

   q1 = 
Q
S1

004
0 0707 .
. 0.566 m/s        and        q2 = 

Q
S2

0 04
0 01767 .
. = 2.264 m/s.

Applying Bernaulli’s equation at sections AA and BB, we get

1
2 1

2
1

1q gh p
 

  = 1
2 2

2
2

2q gh p
 

      or     
p p q q g h h2 1

1
2

2
2

1 2
1
2 

    ( ) ( )

or,       
p
w

p
w g q q h h2 1

1
2

2
2

1 2
1

2    ( ) ( ) ,              as           g w 

   
p
w

2 2 2400
9 81

1
2 9 81 0566 2 264 10 6 


  . . ( . ) ( . ) ( ) = 40.77  0.245 + 4 = 44.525 m

    p2 = 44.525  w = 44.525  9.81 = 436.8 kN/m2   as w= 9.81kN/m3

Ex. 11. A jet of water 8 cm in diameter impinges on a plate held normal to its axis. For a
velocity of 4 m/s, what force will keep the plate in equilibrium?

Sol. Diameter of jet = d = 8 cm = 0.08 m.
 Area of cross section of the jet

        2 2 2( / 4) ( / 4) (0.08) .S d m      
q = velocity of jet = 4 m/s
w = weight per unit cubic meter of water = 103 kg/m3

F = Force acting on the jet.
Now,            force on the plate = charge in momentum

              
2 2 2( ) 1000 ( / 4) (0.08) 4 32.8 .

9.81
w Sq q wSqF kg

g g
   

   

Ex. 12. Air, obeying Boyle’s law, is in motion in a uniform tube of a small section prove that
if   be the density and v the velocity at a  distance x from a fixed point at time t, then

2 2
2

2 2 { ( )},k
t x

  
  

 
v   where      .pk 


[Garhwal 2005. Kanpur 2004, Meerut 2003, 2011]

Sol.  Given that p  = k           that is,                p = k ... (1)
Since the motion is one-densional, the equations of continuity and motion (refer equation (1)

with S = 0 in Art. 4.2) are respectively

     ( ) 0
t x

 
  

 
v ...(2)
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ONE-DIMENSIONAL INVISCID INCOMPRESSIBLE FLOW (Bernoulli’s Equation & Its Applications) 4.13

and    
1 p

t x x
  

  
   
v v

v ...(3)

From (1), we have      / ( / )p x k x     ...(4)

Using (4), (3) reduces to                          k
t x x

  
  

   
v v

v ...(5)

Differentiating (2) partialy w.r.t. ‘t’, we get

         
2

2 ( ) 0
t xt

       
   

v                or              
2

2 ( ) 0
x tt

       
   

v

or         
2

2 0
x t tt

         
    

v
v        or       

2

2 ( ) 0k
x x x xt
       

              

v
– v v v

[on using (2) and (5)]

or      
2

2 ( )k
x x x xt

           
     

v
v v v ( ) k

x x x
          

v v 2( )k
x x
      
  

v

or                                      
2 2

2
2 2 { ( )}.k

t x
  

  
 

v

Ex. 13. If the body force F form a conservative system, density is a function of p only and
the flow is steady, prove that 2 / 2 qP  is constant along every streamline and vortex line,

where              ,F                 1P dp 
     and q is velocity..      [I.A.S. 1989]

Sol. Vector equation of motion for invicid incompressible fluid is

                     2/ ( / 2) curl (1/ )        t pq q q q F ...(1)

Since the flow in steady,                               /   0tq . ...(2)

Since   in function of p only,                      (1/ ) ( / ).p p     ...(3)

Also given that                                         . F ...(4)
By definition,                            vorticity vector = w = curl q. ...(5)
Using (2), (3), (4) and (5), (1) reduces to

    2( / 2) ( / )     pq q w           or          
21

2
dp 

      q q w

or 21 ,
2

P      
 

q q w              as             
1 dp P 

    (given) ...(6)

Taking scalar product of (6) with d r, a time independent variation in the position vector r of
the fluid particle, we get

       2( / 2) ( ).    Ωd P dq r q w  ...(7)
Two cases arise:
Case I. Let q × w = 0. Then have

either (i) when q and w are parallel, i.e., when the streamlines and vortex lines coincide. For such
motion, q is known as Beltrami vector.
or    (ii) when w = 0, i.e. the motion is irrotational.
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4.14 FLUID DYNAMICS

In both cases, (7) gives                        2( / 2) 0d P  q ...(8)

at all times throughout the entire flow field.

Integrating (8),                              2 / 2 constantP  q ...(9)

throughout the entire field of flow. The constatnt in (9) will remain unchanged throughout the
entire field because the differential dr in (7) is an arbitrary small variation of position vector r in
the field.

Case II. When q×w 0.  Since q × w is perpendicular to the vectors q and w, it follows
that if ,d  0r  then ( ) 0  dr q w  whenever dr lies in the plane of q and w. Therefore, if we
take the variation dr in the surface containing both the streamlines and vortex lines, then (7)

shows that                            2[ / 2] 0d P  q             over such a surface

and hence                                 2 / 2 constantP  q ...(10)
over a surfce containing the streamlines and vortex lines. It may be observed that the constant in
(10) is the same everywhere on any one such surface, but that its value varies from one surface to
another. It may be noted that (10) holds for steady rotational as well as irrotational motious.

Ex. 14. Prove that in a steady motion of a liquid, 2/ / 2 constantH p q V    along a
streamline. If this constant has the same value everywhere in the liquid, then prove that the
motion must be either irrotational or the vertex lines must coincide with the streamlines.

In two dimensional motion of a liquid with constant vorticity ,  prove that

                                         ( 2 ) 0.H   

Show that if the motion be steady, the pressure is given by 2/ 2 const.,p q V     
where   is the Laplace’s operator. [Agra 2000; I.A.S. 1992; Rohilkhand 1999]

Sol. For the first part, refer Art. 4.2 Thus, we have

                21 const.
2

dp q V  
  along a streamline …(1)

If the fluid be homogeneous so that const,   then (1) becomes

             2/ / 2 constantH p q V     along a streamline ...(2)
Second part. We know that for steady motion, Euler’s equations of motion for homogeneous

liquid moving under conservative forces (so that / ,X V x   / ,y V y   / ,Z V z     where

V is force potential and X Y Z  F i j k  and )u w  q i j kv  (refer Art. of 3.1 chapter3).

                     
1V pu w u

x y y x x
     

           
v ...(3A)

                     
1V pu w

x y z y y
     

           
v v ...(3B)

                        
1V pu w w

x y z z z
     

           
v ...(3C)

Let , ,   be the vorticity components, then

   2 / / ,w y z     v        2 / / ,u z w x               2 / / ,x u y     v ...(4)
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ONE-DIMENSIONAL INVISCID INCOMPRESSIBLE FLOW (Bernoulli’s Equation & Its Applications) 4.15

Re-writing (3A), we have

           
1 0u w u u w p Vu w w

x x x y x z x x x
                                

v v
v v

or         2 2 21 1( ) ( 2 ) (2 ) 0,
2

p Vu w w
x x x
  

         
   

v v  using (4)

or     
2

2( ),
2

 
         

p q V w
x

v            where          q2 = u2 + v2 + w2

or                                   / 2( ),H x w     v  using (2) ...(5A)
Similarly (3B) and (3C) reduce to

                         / 2( )H y w u     ...(5B)

                         / 2( )H z u    v ...(5C)
Multiplying (5A), (5B), (5C) by u, v, w respectively and then adding, we get

   ( / ) ( / ) ( / ) 0u H x H y w H z        v ...(6)

Multiplying (5A), (5B), (5C) by , ,   and the adding, we get

                          ( / ) ( / ) ( / ) 0H x H y H z            ...(7)
From (6) and (7), it follows that the surface H = const. contains the streamlines (whose

direction cosines are proportional to u, v, w) and vertex lines (whose direction cosines are
proportional to , ,  ).

If H has the same value everywhere in the liquid, we have

        / 0,H x                / 0H y                 and               / 0H z  

         0,w   v          0,w u            0,u  v  by (7A) (7B) and (7C)

         either                 0                    or               / / /u w    v

Now,       0                 the motion is irrotational.

and                / / /u w    v       streamlines given by           (dx)/u = (dy)/v = (dz)/w

coincide with vortex lines                     ( ) / ( ) / ( ) /dx dy dz    

Third part. Consider two dimensional motion such that               constnat. 

Then, w = 0 and 2 / / .x u y      v  Also, if   be stream function, then we have (refer Art. 5.4,
chapter 5)

                             2 2 2 22 / / ,          x y ...(8)

where                       2 2 2 2( / / )x y       is Laplace’s operater …(8)'
As before, Euler’s equations motion (refer Art. 3.1, chapter 3), for two dimensional notion (so

that w = 0), we have

                             
1u u u V pu

t x y x x
    

    
     

v ...(9A)

and                                
1V pu

t x y y y
    

    
     
v v v

v ...(9B)
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4.16 FLUID DYNAMICS

Re-writing (9A),             
1u u u V pu

t x x y x x x
       

               

v v
v v

or                                2 21 1( ) ( 2 )
2

u V pu
t x x x

   
        

    
v v

or    
2 12 ,

2
u q V p
t x x x

     
               

v         where          2 2 2q u  v

or               / 2 ( / ).u t H x       v ...(10 A)

Similarly, (9B) gives               / 2 ( / )t u H y       v ...(10B)
Differentiating (10A) and (10B) w.r.t.‘x’ and ‘y’ respectively and then adding, we get

                   
2 2

2 22u u H H
t x y x y x y

          
                       

v v
…(11)

For incompressible fluid in two dimensions, equations of continuity is
               / / 0u x y     v …(12)

Also, for a two dimensinonal, if   be velocity potential, then we have

/ ,u y        / x  v      so that     2 2/ / ,u y y           2 2/ /x x     v

                     2 2 2 2 2/ / / / ,x u y x y              v ...(13)
where   is given by (8)'.

Using (12), (13) and (8)', (11) reduces to

           2 H                  or                ( 2 ) 0H    ...(14)

Fourth Part. Let the motion be steady so that / / 0u t t     v  and so again (11) reduces
to (15),

Integrating (14),                                2 const.H   

or                        2/ / 2 2 const.,P q V      using (2)
Ex. 15. A long pipe is of length l and has slowly tapering cross-section. It is inclined at

angle   to the horizontal and water flows steadily through it from the upper to the lower end.
The section at the upper end has twice the radius of the lower end. At the lower end, the water is
delivered at atmospheric pressure. If the pressure at the upper end is twice atmospheric, find the
velocity of delivery.

Sol. Let ABCD be the given pipe of length
( ). l O O  Let OX be horizontal line which is taken

as the zero level of potential energy. Let radii of the
ends AD and BC of the given pipe be 2a and a
respecively Let   be the atmopsheric pressure. Then,
the pressures at upper and lower ends are 2   and
  respectively. Let q1 and q2 be velocities at the entry
end AD and exist end BC respectively.

Now, Bernoulli’s equation for steady motion is
      2/ / 2 ,p q V C    ...(1)

where V is the force potential and C is a absolute constant.

q 1
A

D

2 O

2a 

zero level of
Potential Energy

X

l

C

B

q2

o
a
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ONE-DIMENSIONAL INVISCID INCOMPRESSIBLE FLOW (Bernoulli’s Equation & Its Applications) 4.17

At end AD, V = 0 and at end BC, V = – gl sin  , where – gl sin   is the potential ernergy per
unit mass of the gravitational force at the end BC. Hence, using (1) at the ends AD and BC,

         
1
22 1 0

2
q C

  


            and              2
21 sin

2
q ql C

   


...(2)

Since the fluid is incompressible, equation of continuity of water flowing through the given
pipe is (refer Art. 2.14) given by

        2 2
1 2(4 ) ( )q a q a                        or                  q1 = q2/4 ...(3)

From (2), 2
22

12 sin
2 2

 
    

 

qq gl         or         2
22

2sin ,
2 32


   



qqgl  using (3)

or             2
215 sin

32


  


q gl            or             
1/ 2

2
32 sin ,
15

  
      

q gl

which yields the desired velocity of delivery at exist BC.
Ex. 16. AB is a tube of small uniform, bore forming a quadrant arc of a circle of radius a

and centre O, OA being horizontal and OB vertical with B below O. The tube is full of liquid of
density  , the end B being closed. If B is suddeenly opened, show that intially du/dt = 2g/  ,
where u = u(t) is the velocity and that the pressure at a point whose angular distance from A is
  immediately drops to (sin 2 / )g a     above atmospheric pressure. Prove further that when

the liquid contained in the tube subtends an angle   at the centre,

                             2 2/ (2 / ) sin ( / 2).d dt g a     
Sol. As shown in the figure, AB is a tube of

small uniform bore ( ).AA BB PP QQ        Let
90 .AOB    Let P be any point of the tube such

that .AOP    Let Q be another point on the tube
such that .AOQ    Also, let arc AP = s and
arc ,AQ s s    where s is measured from A.

Let u(t) be  the velocity of the liquid along arc
AB so that / 0.u s    Then equation of motion of
the element PP Q Q   is given by (refer equation (1)
of Art. 4.2)

          
1cosdu pg

dt s


 
  ...(1)

But,     21
2

du u u uu u
dt t s t s

               
            and           cos ,dy

ds
 

where y is the depth of P blow OA. Therefore, (1) reduces to

                                
2 1

2
u u dy pg
t s ds s

   
        

...(2)

Integrating (2) w.r.t. ‘s’ while treating t as constant, we get

                            2( / ) / 2 ( / ) ( ),s u t u gy p f t       ...(3)
where f (t) is the arbitary function of t. Note that while integrating w.r.t. ‘s’ we have assumed that
at any time t, /u t   is the same at all points of the liquid.

O M N A A

R 

P 

Q 

Q

B 

B

a



  /2–
90° 90°

R
y



P
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4.18 FLUID DYNAMICS

Let   be the atmospheric pressure.
Now, initially at A, when    t = 0,     s = 0,     u = 0,     p =       and     y = 0.

 (3) reduces to            0 ( / ) (0)f                or          (0) /f    ...(4)

Again, at B, when     t = 0,     s = arc ( ) / 2,AB a     u = 0,     ,p        y = a

 (3) reduces to                      
0

(0)
2 t

a u ga f
t 

          ...(5)

Subtracting (4) from (5), we have

        
02 t

a u ga
t 

     
                 or                

0

2

t

u g
t 

     
...(6)

We now apply (3) at P. Initialy at P, t = 0, u = 0, y = OM = a sin  , s = arc AP = a  . Also, let
p = p0. Then (3) reduces

0 0( / ) sin ( / ) (0)ta u t ga p f      

or                       0(2 / ) sin ( / ) / ,a g ga p         by (4) and (6)

or          0( ) / sin (2 ) /p ga ga               or        0 (sin 2 / ),p ga     

showing that if B is suddenly opened, the pressure at P immediately drops to (sin 2 / ).ga    
Let us now consider the situation when the liquid contained in the tube AB subtends an

angle   at the centre. In this case liquid is shown in part R B B R   of the tube such that
.ROB    Then / 2 .NOR     Let RN be perpendicular to OA. Thus sin( / 2 )RN OR  

cos .a   Also, arc ( / 2 ).AR a    For this situation, P    at the surface .RR  So (3) gives

                         
2

cos ( )
2 2

u ua ga f t
t

            
...(7)

Again, using (3) at B, where         ( ) / 2,s a         y = a,      ,p         we get

                               
2

( )
2 2

a u u ga f t
t

  
    

 
...(8)

Subtracting (7) from (8), we have

           (1 cos )ua ga
t


   


              or                22 sin

2
u g
t

 


 
...(9)

Since arc ( / 2 ),AR a                     we have               
2

au a
t
       

or                  du a
dt


                     so that                
2

2
u da
t dt

 
 


...(10)

From (9) and (10),        
2

2
2

2 sin
2

d ga
dt

 
 


         or          

2
2

2
2 sin

2
d g

adt
 

 


Created with Print2PDF. To remove this line, buy a license at: http://www.software602.com/

SuccessClap: Best Coaching for UPSC Mathematics : For Info- 9346856874
Checkout ->22 Weeks Study Plan, Videos, Question Bank Solutions, Test Series

Succ
ess

Clap



ONE-DIMENSIONAL INVISCID INCOMPRESSIBLE FLOW (Bernoulli’s Equation & Its Applications) 4.19

EXERCISE 4 (A)
1. Liquid of density   is flowing along a horizontal pipe of variable cross-section, and the

pipe is connected with a differential pressure gauge at two points A and B. Show that if p1 – p2 is
the pressure indicated by the gauge, the mass m of liquid through the pipe per second is given by

1 2
1 2 2 2

1 2

2 ( )p pm  
  

  
, where 1 2,   are the cross-sections at A, B respectively..

2. The diameter of a pipe changes from 20 cm at a section 5 metres above datum, to 5 cm
at a section 3 metres above datum. The pressure of water at first section is 5 kg/cm2. If the
velocity of flow at the first section is 1 m/sec, determine the intensity of pressure at the second
section. [Ans. 3.9 kg/cm2]

3. A pipe 300 metres long has a slope of 1 in 100 and tapers from 1 metre diameter at the
high end to 0.5 metre at the low end. Quantity of water flowing is 5,400 litres per minute. If the
pressure at the high end is 0.7 kg/cm2, find the pressure at the low end. [Ans. 0.999 kg/cm2]

4. Find out Bernoulli’s equation for unsteady irratational. [Kanpur 2005; Meerut 2002]
5. Obtain the well known equation 2( / ) / ( / 2)t p q V C       [Kanpur 2001]
6. Obtain Bernoulli’s equation for steady motion. [Kanpur 2002, 03]
7. Define pressure equation. [Kanpur 2000]
8. Define pressure equation in its most general form by integrating Euler’s equation of motion.

[I.A.S. 2005; Meerut 2000]
9. A vertical tube AB of small section has two apertures close to its base B in which horizontal

tubes are fitted and the apertures are closed by valves; a given height a of the tube AB is filled with
water and the valves are then opened. The areal section of each horizontal tube being half that of
the vertical tube and the length of each greater than AB, prove that the motion is of the simple
harmonic type until the vertical tube is emptied which will take place after time ( / 2) ( / ).a g

10. In the case of a steady motion of an ineladtic fluid under no forces the velocities parallel
to the axes at the point (x, y, z) are proportional to y + z, z + x, x + y; prove that the surfaces of equal

pressure are oblate spheroids, the eccentricity of the generating ellipse being 2 / 3.
11. Derive Bernoulli’s equation for unsteady motion of an incompressible fluid and hence

derive expression for steady motion.
12. (a) State the condition under which Euler’s equation of motion can be integrated. Show

that                                     21 ( ),
2

dpq V F t
t


    

 
where the symbols have this usual meaning. [I.A.S. 2005]

[Hint: Proceed as in Art. 4.1 upto equation (13)]
(b) When the velocity potential exists and the forces are conservative, show that the Euler’s

dynamical equations can always be integrated in the form 21 ( ),
2


   

  dp q V f t
t

 where

the symbols have their usual meaning.    [Kanpur 2008]

4.4. Applications of Bernoulli’s equation and theorem. [Meerut 2008]
Bernoulli’s equation is of fundamental importance in fluid dynamics, especially in hydraulics.

It is employed to handle some complicated situations of fluid flow problems in a simple manner.
We now discuss some practical applications of the Bernoulli’s equation. In each case the fluid will
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4.20 FLUID DYNAMICS

be assumed inviscid and incompressible
4.4A. Flow from a tank through a small orifice. Torrieclli’s theorem.

Consider a tank containing a liquid. Let the tank be sealed except for a small orifice near its
base. We wish to determine the velocity of efflux from the
tank when the orifice is opened. Let S1 and S2 be the areas
of cross-section of the tank and the orifice respectively.

Now the water will move out steadily in the form of a
smooth jet. Let the line connecting point 1 on the liquid
surface with the point 2 in the jet represents a streamline of
the flow. Then the Bernoulli’s theorem [refer equation (5) of
Art 4.2] yields

     
2 21 2
1 1 2 2

1 1
2 2

p p
q gh q gh    

  ...(1)

But from figure                                   h1 – h2 = h ...(2)
Now, from the equation of continuity, we have
             q1S1 = q2 S2                    or                   q1 = (S2/S1) × q2 ...(3)
Using (2) and (3), (1) reduces to

2
2 22
2 2 1 2 1 22

1

1 1 1( ) ( )
2 2

S
q q g h h p p

S
    


   or      2 2 2

2 2 1 1 2( / 2) (1 / ) ( ) /q S S gh p p     

or               1 2
2 2 2

2 1

2
(1 / )

p p
q gh

S S
 

    
...(4)

which gives the desired velocity of efflux from the tank through the orifice.
We now discuss two special cases of (4) :
Case I. Suppose the tank is vented to the atmosphere or has an open surface, so that

p1 = p2. Further, let S2 << S1. Then (4) reduces to
                                             2 2 .q gh ...(5)
Hence the velocity of efflux from the vented tank is equal to that of a rigid body falling

freely from a height h.
The above result is known as Torricelli’s theorem.
Case II. Let S2 << S1 and (p1 – p2)/   >> gh. Then (4) reduces to

                                      2 1 2(2 / ) ( ).   q p p

Illustrative Examples.
Ex. 1. Calculate the velocity of the water jet in above problem if  p2 = 14.7 Ib/in2.,

p1 = 30 lb/in2., S2/S1 = 0.01 and h = 10ft.,   = 1.94 lb/ft3.
Sol. From (4), we have

2 2
2 (30 14.7) 144 (32.2 10)

1.941 (0.01)
q        

 = 2917.8 54.01f / sec.t

If p1 = p2, the discharge velocity is given by          2 2 (32.2) (10) 25.38f / sec.q t   

Ex. 2. Fluid is coming out from a small hole of cross-section 1  in a tank. If the minimum
cross-section of the stream coming out of the hole is 2 ,  then show that 2 1/ 1/ 2.  

S1

p11
q1

S2

q2
p2

h
h1

h2

2

Reference Line
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ONE-DIMENSIONAL INVISCID INCOMPRESSIBLE FLOW (Bernoulli’s Equation & Its Applications) 4.21

Sol. Let AB be the hole and A B   be its image on the opposite
wall of the tank. Let h be the height of the fluid level in the tank
above the orifice. Again, let p1 be the pressure at AB when the
hole is closed. Since the velocity of the fluid coming out from
minimum cross-section is at right angles to the hole, the direction
of velocity will be horizontal there. If the velocity at the minimum
cross-section is q2 and pressure is p2 there, then the principle of
the conservation of momentum yields

2
1 1 2 2 2( )p p q            or       2

1 2 2 1 2( / )p p q            ...(1)

Consider a streamline connecting a point of A B   and a point of minimum cross-section of
the jet. Then the Bernoulli’s equation for the above streamline gives

          21 2
2

1
2

p p
q 

 
                   or                 2

1 2 2
1
2

p p q   ...(2)

Comparing (1) and (2), we find that           2 1/ 1/ 2.  

4.4B. Trajectory of a free jet.
Consider a liquid jet which is coming out from a small hole of area of cross-section S with

velocity q1 and making an angle   with the horizon. Since the entire jet is in the atmosphere, p1
= p2. Then the Bernoulli’s equation between the jet exit 1 and an arbitrary point 2 on the stream
line yields

1

O



q1

y h2

h1

q2

2

Reference Line 

X

Y

        2 2
1 1 2 2/ 2 / 2gh q gh q                   or               2 2

2 1 2 ,q q gy  ...(1)

where y = h2 – h1. Let Q = q1 S so that q1 = Q/S. Then (1) reduces to

                                       2 2
2 ( / ) 2q Q S gy  ...(2)

To determine the trajectory of the jet, consider the equations of motion for the jet along the
horizontal line (x-axis) and the vertical line (y-axis).

1/ cosdx dt q  ...(3)

and       1/ sin ,dy dt q gt   ...(4)
where (x, y) are coordinates of point 2 with point 1 as the origin. Integrating (3) and (4), we get

                           1 1cosx q t c    , c1 being an arbitrary constant ...(5)

and                  2
1 2sin (1/ 2) ,y q t gt c      c2 being an arbitrary constant ...(6)

Initially at point 1, t = 0, x = 0, y = 0 so that c1 = 0 and c2 = 0. Then (5) and (6) give
                                       1 cosx q t   ...(7)

A 

B 
1

A

B
2 2 2, , p q

h
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4.22 FLUID DYNAMICS

                                        2
1 sin (1/ 2)   y q t gt ...(8)

Eliminating t from (7) and (8), the equation of the jet (or streamline) is given by

                             2 2 2
1tan (1/ 2) ( / )secy x g q x     ...(9)

or                          2 2 2tan (1/ 2) ( / ) secy x g S Q x    ...(10)
Putting this value of y in (2), the velocity of the liquid at any point of the jet is given by

                         2 2 2 2 2( / ) 2 tan ( / ) secy Q S gx S Q g x     ...(11)

Illustrative Solved Examples
Ex. 1. Calculate the horizontal distance required for a jet striking the ground which is 3

feet below the horizontal line of the nozzle. The jet is inclined at an angle of 60° with the
horizontal at a velocity of 20 ft./sec. What is the velocity of the jet just before reaching the
ground.

Sol. Refer equation (9) in above article. Here  = 60°,q1 = 20 ft./sec., y = – 3 ft. Then we get
2 2 23 tan 60 (1/ 2) ( / 20 )sec 60    x g x         or     2 10.74 18.63 0,x x    on simplification

or                       2{10.74 (10.74) (4 18.62)}/ 2x    

Since x cannot be – ve, reject – ve sign in the above value of x. Then (1) gives x = 12.13 ft,
which is the required horizontal distance between the nozzle and jet striking the ground.

The velocity q2 of the jet just before reaching the ground can be obtained by using (1) of

above article. Thus,            2
2 (20) 2 ( 3) 593 24.24ft / sec.q g    

Ex 2. A nozzle is situated at a distance of 1.2 m above the ground level and is inclined at
60° to the horizontal. The diameter of the nozzel is 40 mm and the jet of water from the nozzle
strikes the ground at a horizontal distance of 5m.Find the flow rate.

Sol. Here the co-ordinates of A, which is on the
centre line of the jet of water and is situated on the
ground with respect to O as origin are (5, –1.2). Let v
be the velocity of the jet. Then the equation of the jet
is given by

                 
2

2 2tan
2 cos

gxy x  
v

or              
2

2 2
9.81 51.2 5 tan 60

2 cos 60


  
v

or    21.2 5 1.732 (122.62 4) /     v         or
2498.48 / 8.66 1.2 v

or                               2 49.74v         or          7.05 m / s.v

Area of cross-section of nozzle = ( / 4)  (diameter)2 2 2 2( / 4) (0.04) m 0.001256m .   

Hence, flow rate = Q = Sv = 30.001256 7.05 0.00885m / s. 

Ex. 2. Calculate the horizontal distance required for the jet striking the ground which is 2

y
v

nozzle 60°
jet

x

1.2m

O

5m A(5, –1.2)
ground
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ONE-DIMENSIONAL INVISCID INCOMPRESSIBLE FLOW (Bernoulli’s Equation & Its Applications) 4.23

ft. above the horizontal line of the nozzle. The jet is inclined at a 30° angle with the horizontal at
a velocity of 25 ft/sec.

Hint: Do just like Ex. 1.
4.4C. Pitot tube. [Garhwal [1994, 96]

A Pitot tube is an instrument to measure the velocity of flow at the required point in a pipe or
a stream. Suppose we wish to determine the velocity q of a stream of water. The inner tube BA is
kept so as to face the direction of the flow as shown in figure.
The outer tube of the Pitot tube has holes such as H. If p is the
pressure in the stream where the fluid velocity is q then p is
also the pressure on the inside and outside of the hole and
therefore p is also the pressure at the meniscus D of the mercury
in the U-tube (manometer). Let the steam enter the tube AB and
let it be brought to rest at meniscus C. C is called a stagnation
point. Let p0 be pressure at C. Applying the Bernoulli’s equation
to the steamline passing through A and C, we have

2 02( )1 or ,
2

p pp pq q  
    

   
...(1)

where   is the density of the water..
Let h be the difference in level of the mercury in the U-tube and let   be the density of the

mercury. Then we have       0p p gh       ...(2)

Using (2), (1) reduces to       1/ 2(2 / )  q gh ...(3)
which determines the fluid velocity at a point in the flow region.
4.4D. Venturi meter (or tube).

A venturi meter is an instrument to measure the fluid velocity in pipes. The flow rate of a
fluid in conduit and the discharge of a fluid flowing in a pipe may also be measured. The venturi
meter is made up of a constant cross-section S1 tapering
to a section of smaller cross-section S2 (also known as
throat) and then gradually expanding to the original cross-
section. A U-tube serving as a mercury manometer is
attached to connect the broad and narrow sections at A
and B.

Let q1, q2 be the fluid velocities at A, B and p1, p2
the pressures. Then by the equation of continuity, we have

              1 1 2 2q S q S                   or                   2 1 1 2( ) /q q S S ...(1)
Applying the Bernoulli’s equation to the central streamline passing through A and B, we get

                  2 2
1 1 2 / 2/ / 2 / 2,p q p q    ...(2)

where   is the density of the fluid. Eliminating 2q  from (1) and (2) we have

          

1/ 22
1 2 2

1 2 2
1 2

2( )
( )
p p Sq
S S

    
   

...(3)

Let h be the difference in levels of the mercury in the U-tube and let   be the density of the
density of the mercury. Then we have       1 2p p gh                  ...(4)

S1

S2

A q1 B q2

h
Mercury

H

H

A
q 

B

h

D

Mercury
C
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4.24 FLUID DYNAMICS

Using (4), (3) reduces to      
1

1/ 22
2

2 2
1 2

2
( )

ghSq
S S

    
   

    …(5)

Let Q be flow rate of the fluid flowing through the broad section at A. Then

      1

1/ 22
2

1 1 1 2 2
1 2

2
( )

ghSq q S S
S S

       
   

…(6)

Remarks. Let the venturi meter be kept inclined at a certain angle to the horizon. With
reference to a fixed horizontal line, let vertical heights of A and B be h1 and h2 (h2 > h1) and let
h2 – h1 =  h. Then equation (2) modifies in the following form:

              2 2
1 1 1 2 2 2/ / 2 / / 2p q gh p q gh     ...(7)

Eliminating q1 from (1) and (7), we get

   

1/ 2
1 2 2 1

2 2
2 1

2[( ) / ( )]
1 ( / )

p p g h hq
S S

      
  

and hence the flow rate at either sections is given by

    
1/ 2

2 2 2 2
2 1

2[( ) / ]
1 ( / )

gh g hQ S q S
S S

        
  

...(8)

Let C be the coefficient of venturi meter (or the coefficient of discharge). Let Q be the
discharge through the venturi meter. Then we know that

    
1/ 2

2 2 2 2
2 1

2[( / ) ]
1 ( / )

gh g hQ CS q CS
S S

        
  

...(9)

If  h = 0 (i.e. the venturi meter is horizontal), then (9) reduces to

1 2
2 2
1 2

2 .CS SQ gh
S S





...(10)

4.4 E. Weir.
A structure, used to measure the flow rate of fluid with a free surface (as in an open channel

or river), is known as a weir. There are two types of weirs depending on the common physical
principle. One type of weir, known as sharp-crested weir, is made up of a sharp edged plate
mounted normal to the direction of the flow so as to span the fluid stream. The opening is
generally either a rectangle or a triangle (called V-notch also). The other type of weir, known as
broad-crested weir, is made up of a obstacle with broad edge. We now discuss these in details.

(i) Sharp-crested weir.

1
q1

h

2
q2

H

h1 h2

( )a

( )b

( )c

H



H

B
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ONE-DIMENSIONAL INVISCID INCOMPRESSIBLE FLOW (Bernoulli’s Equation & Its Applications) 4.25

Consider a streamline lying entirely in the free surface and joining points 1 and 2 as shown in
Fig. (a). Then the Bernoulli’s equation for this streamlines yields

     
2 21 2
1 1 2 2

1 1
2 2

p p
q gh q gh    

  ...(1)

Since the entire streamline lies in free surface, we have p1 = p2. Let 1 2h h h   Then, (1)

reduces to         2
2 1 2 ,q q gh      ...(2)

which gives the velocity at the weir plane. Again the flow rate over the weir is given by

         
H

22 , o
Q q dS ...(3)

where dS2 is the cross-sectional element parallel to the width lying in the plane of the weir.
For rectangular weir [see Fig. (b)] dS2  = Bdh and hence

           
H 2 3/ 2 3

2 1 1[(2 ) ]
3o

BQ q B dh gH q q
g

    ...(4)

When the body of water being measured is very large in comparison with the weir opening,
q1 may be neglected. Than, we have

3/ 2(2 / 3) 2 Q B g H ...(5)

If dwC  is a discharge coefficient, for the actual case, we have

      3 / 2
actual

2 2
2

 dwBCQ g H ...(6)

In a similar manner, for the triangular weir the flow rate is given by

                                5 / 2
actual

8 2 tan ( / 2)
15 dwQ C g H  ...(7)

(ii) Broad-crested Wear.
We again proceed as in (i) above. Let there be

uniform parallel flow at point 2 and let 1 2.q q
Then Bernoulli’s equation for the streamline joining
points 1 and 2 gives

2
1 2 2/ 2gh q gh 

 The flow rate over a weir of width B is given by

           2 1 22 ( ) Q Bh g h h ...(8)

Then, we have           actual 2 1 22 ( ) dwQ C B h g h h ...(9)

4.5. Euler’s momentum theorem.
Consider steady motion of a non-viscous liquid contained

between, AB and CD of the filament at a given time t. The surrounding
fluid will produce a force on the walls and ends of the filament. By
Newton’s second law of motion, the net force will be equal to the rate
of change of momentum of the fluid in the filament ABCD at time t. At
time ,t t   let the new position of the fluid be .A B C D     Then
notice that the momentum of the given fluid has increased by the
momentum of the fluid between CD and C D   and has decreased by
the momentum of the fluid between AB and .A B 

h1
h2

2 q2

q11 Free Surface

C 
q2

D

C

2

B A 

A B

D 

1

q1
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4.26 FLUID DYNAMICS

    Gain of momentum at 2 2 2( )CD q t q  

and                  loss of momentum at 1 1 1,( )AB q t q  

where q1 and q2 are the velocities at AB and CD respectively.

Hence the net gain = 2 2
2 2 1 1( )  t q q      or      the net rate of gain = 2 2

2 2 1 1( ).  q q
This gives the resultant force due to pressure of the surrounding liquid on the walls and

ends of the filament. This result is known as Euler’s momentum theorem.
4.6. D’Alembert’s paradox. [Meerut 2000, Kanpur 2001]

Consider a long straight channel of uniform cross section in which a liquid is flowing with a
uniform speed q. Let the ends of the tube be bounded by equal cross-sectional area  . If an
obstacle A is placed in the middle of the channel, the flow
in the immediate neighbourhood of A will be disturbed
whereas the flow at a great distance either up-stream or
down-stream will remain undisturbed. Suppose F is the
force required to hold the obstacle to rest, in the direction
of uniform flow.

Let BB  and CC   be two sections at a great
distance from A and let the fluid between these sections
be split up into stream filaments. Since the outer filaments
are bounded by the walls of the channel, the thrust
components are normal to the direction of flow. Moreover, the obstacle A acts on those filaments
which are in contact with it by a force – F.

By Euler’s momentum theorem the resultant of all the thrusts on the fluid is 2 2.q q 

Let p1 and p2 be the pressures on BB  and CC   respectively. Then Bernoulli’s theorem gives
2 21 21 1

2 2
   

 
p p

q C q                      so that                      p1 = p2

Now, the thrust due to pressure 1p  and 2p  is      1 2 .p p 
Thus the equation of motion becomes
          2 2

1 2p p F q p q                  so that            F = 0,             as   p1 = p2

Let the diameter of the channel increase indefinitely. Then the above problem reduces to that
of a obstacle immersed in an infinite uniform stream. As before, again the resultant force exerted by
the liquid on the obstacle is zero.

Now let us superimpose a velocity u in the opposite direction on the entire system (the body
A and the liquid). Then the body A can be thought as moving with uniform velocity u and the
liquid at great distance is reduced to rest.

Thus a body moving with uniform velocity through an infinite liquid, otherwise at rest, will
experience no resistance at all. This result is known as D’Alembert’s paradox.

EXERCISE 4 (B)
1. A venturi meter has its axis vertical, the inlet and throat diameter ratio being 2.5. The

throat is 12 in. above the inlet and the coefficient of discharge is 0.97. Determine the pressure
difference between the inlet and throat when the velocity of water at the inlet is 6 ft/sec.

2. A jet of water 1 in. in diameter strikes a flat plate at an angle 30° to the normal of the
plate with a velocity of 30 ft/sec. Determine the velocity of the plate, moving parallel to itself, if
the normal force exerted by the jet is 2.5 Ib.

3. A rectangular plate 4 in. wide and 10 in. long hangs vertically from hinges at its top
edge. A jet of water 1 in. in diameter with a velocity of 30 ft/sec strikes the plate at its centre.

B C



q

p2

CB

p1

q A


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ONE-DIMENSIONAL INVISCID INCOMPRESSIBLE FLOW (Bernoulli’s Equation & Its Applications) 4.27

Determine the weight of the plate if the plate stays in equilibrium after deflecting 20° from its
original position.

4. A jet of water 2 in. in diameter discharges 1.0 ft3/sec. Calculate the force required to move
a flat plate towards the jet with velocity of 25 ft/sec. The jet is perpendicular to the plate.

5. Calculate the force exerted by a jet of water 3/4 in. in diameter which strikes a flat plate at
an angle of 30° to the normal of the plate with a velocity of 30 ft/sec if (a) the plate is stationary, (b)
the plate is moving in the direction of the jet with a velocity of 10 ft/sec.

[Ans. (a) 4.63 Ibf. (b) 3.09 Ibf.]
6. State and prove Bernoulli’s theorem for steady inviscid flow in a conservative field of force

and discuss the nature of the constant.
7. Fluid enters a contracting pipe with velocity V1 through area A1 and leaves with velocity

V2 through area A2 after having been turned through an angle .  Determine the force required to
hold the pipe in equilibrium against the pressure of the fluid.

8. A water venturi meter has a throat diameter of 3 in. and a pipe diameter of 6 in. Calculate the
velocity at the throat if the deflection of mercury manometer which connects the pipe and the
throat is 9.5 in. The coefficient of discharge is 0.96.

9. Define stream tube. Using this obtain the Bernoulli’s equation for a steady flow.
10. The venturi meter has an entrance of 6 inch diameter and a throat of 3 inch diameter

whose centre is 18 inch above the centre of the entrance. Find the velocity of water at the throat
when p1 – p2 = 5 Ib/in2. The coefficient of discharge Cd is 0.97. Find the value of the constant for
the venturimeter. [Ans. 25.4 ft/sec]

11. Calculate the horizontal distance required for the jet striking ground which is 0.5 m
above the horizontal line of the nozzle. The jet is inclined at a 30° angle with the horizontal at a
velocity of 10 m/s.

12. If the water jet is discharged from a nozzle (inclined at a 60o angle with the horizontal)
at 5 m/s, calculate the horizontal distance required for the jet striking the ground which is 1 m
below the horizontal line of the nozzle. What is the velocity of the jet just before reaching the
ground ?

13. A horizontal straight pipe gradually reduces in diameter from 0.5 m to 0.25 m. Determine
the total longitudinal thrust exerted on the pipe if the pressure at the larger end is 0.4 MN/m2 and
the velocity of the water is 2 m/s.

14. A jet of water 0.05 m in diameter strikes a plate at an angle 30° to the normal of the
plate with a velocity of 10 m/s. Determine the velocity of the plate, moving parallel to itself, if
the normal force exerted by the jet is 10 N.

15. Calculate the force exerted by a jet of water 10 mm in diameter which strikes a flat
plate at an angle of 30o to the normal of the plate with a velocity of 10 m/s if (a) the plate is
stationary, (b) the plate is moving in the direction of the jet with a velocity of 2 m/s.

16. A venturi meter has its axis vertical, the inlet and throat diameter ratio being 2.5. The
throat is 0.3 m above the inlet and the coefficient of discharge is 0.97. Determine the pressure
difference between the inlet and throat when the velocity of water at the inlet is 2 m/s.

17. A water venturi meter has a throat diameter of 0.1 m and a pipe diameter of 0.2 m.
Calculate the velocity at the throat if the deflection of the mercury manometer which connects the
pipe and the throat is 0.15 m. The coefficient of discharge is 0.96.

18. State and prove D’Alembert’s Paradox. [Meerut 1999, 2000]
19. Briefly explain the application of Bernoulli’s theorem. [Kanpur 2000]
Hint. Refer Art. 4.4 and Art 4.4A
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4.28 FLUID DYNAMICS

OBJECTIVE QUESTIONS ON CHAPTER 4
Multiple choice questions
Choose the correct alternative from the following questions

1. If the motion is steady, velocity potential does not exist and V be the potential function
from which the external forces are derivable, then Bernoulli’s theorem is

(i) 21
2


    

 
dpq V C

t
(ii) 21

2
dp q V C  


(iii) 2/ / 2p q V C    (iv) None of these
2. The Bernoulli’s equation for unsteady and irrotational motion is given by

(i) 2/ / 2 / ( )t q V p F t        (ii) 2/ / 2 ( )t q V F t     

(iii) 2/ / 2 / ( )t q V p F t        (iv) 2 / 2 / ( )q V p F t   
3. A stream in a horizontal pipe, after passing a contraction in the pipe at which its sectional

area is A is delivered at atmospheric pressure at a place, where the sectional area is B. If a side
tube is connected with the pipe at the former place, water will be sucked up through it into the
pipe from a reservoir at a depth h below the pipe, s being the delivery per second, where h is
given by

(i) 2 2 2( / 2 ) (1/ 1/ )s g A B  (ii) 2 2 2( / 2 ) (1/ 1/ )s g A B 

(iii) 2 2 2(2 / ) (1/ 1/ )g s A B  (iv) 2 2 2(2 / ) (1/ 1/ )g s A B 
4. The horizontal distance required for a jet striking the ground which is 3 feet below the

horizontal line of the nozzle (given that the jet is inclined at a an angle 60° with the horizontal
at a velocity of 20 ft/sec.) is

 (i) 12.20 feet       (ii) 12.15 feet              (iii)  12.13 feet           (iv) None of these
5. A body moving with uniform velocity through an infinite liquid otherwise at rest, will

experience no resistance at all. This result is known as
(i) Euler’s paradox (ii) Lagrange’s paradox

(iii) D’Alembert’s paradox (iv) none of these
6. If the fluid be homogeneous and incompressible, then in usual, symbols, the Bernoulli’s

theorem bcomes

(i) 2 / 2q V p C   (ii) 2 /q V p C   

(iii) 2 2/ 2 /q V p C    (iv) 2 / 2 /q V p C   
7. The most general form of Bernoulli’s equation for motion of fluid is

(a) 21
2


   

  dpq
t

 = f (t)              (b) 
21 ( )

2
dpq f t

t


   
 

(c) 21 ( )
2


    

  dpq f t
t

               (d) 21 ( )
2

dpq f t
t


    

  [Agra 2005]

8. The equation 2 / 2 /    q p constant is known as                  (a) Navier equation
(b) Bernonilli equation       (c) Euler equation          (d) Stokes equation [Agra 2007]

9. The Bernoulli’s equation for steady motion with the velocity potential and conservative
field of force is..........   (Fill up the gap) [Agra 2008]
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ONE-DIMENSIONAL INVISCID INCOMPRESSIBLE FLOW (Bernoulli’s Equation & Its Applications) 4.29

Answers/Hints to objective type questions
1.  (ii). See Eq. (3), Art. 4.2 2.   (i). See Eq. (14), Art. 4.1
3.  (ii). See Ex. 2, Art. 4.3 4. (iii). See Ex. 1, Art. 4.4B
5. (iii). Refer Art. 4.6 6. (iv). See Eq. (4), Art. 4.2
7.  (a). See Art. 4.1 8.  (b). See Eq. (15), Art. 4.1

9. 2 / 2 (1/ ) .q V dp C     Refer Eq. (3), Art. 4.2.
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5.1. Motion in two-dimensions.
Let a fluid move in such a way that at any given instant the flow pattern in a certain plane

(say XOY) is the same as that in all other parallel planes within the fluid. Then the fluid is said to
have two-dimensional motion. If (x, y, z) are coordinates of any point in the fluid, then all physical
quantities (velocity, density, pressure etc.) associated with the fluid are independent of z. Thus u,
! are functions of x, y and t and w = 0 for such a motion.

To make the concept of two-dimensional motion more clear, suppose the plane under
consideration be xy-plane. Let P be an arbitrary point on that plane. Draw a straight line PQ parallel
to OZ (or perpendicular to the xy-plane). Then all points on the line PQ are said to correspond to
P. Draw a plane (in the fluid) parallel to the xy-plane and
meeting PQ in R. Then, if the velocity at P is V in the xy-
plane in a direction making an angle  with OX, the velocity
at R is also V in magnitude and parallel in direction to the
velocity at P as shown in the figure. It follows that the
velocity at corresponding points is a function of x, y and
the time t, but not of z.

In order to maintain physical reality, we assume that
the fluid in two-dimensional motion is confined between
two planes parallel to the plane of motion and at a unit
distance apart. The reference plane of motion is taken parallel to and midway between the assumed
fixed planes. Thus while studying the flow of a fluid past a cylinder in a two-dimensional motion in
planes perpendicular to the axis of the cylinder, it is useful to restrict attention to a unit length of
cylinder confined between the said planes in place of worrying over the cylinder of infinite length.

Suppose we are dealing with a two-dimensional motion in xy plane. Then by flow across a
curve in this plane, we mean the flow across unit length of a cylinder whose trace on the plane xy
is the curve under consideration, the generators of the cylinder being parallel to the z-axis. By a
point in a flow, we mean a line through that point parallel to z-axis.
5.2. Stream function or current function.

[Agra 2005; Rohilkhand 2002, 03; Meerut 1999, 2010; Kanpur 2010, 09]
Let u and ! be the components of velocity in two-dimensional motion. Then the differential

equation of lines of flow or streamline is

            / /dx u dy !                     or                    0dx udy ! ...(1)
and the equation of continuity is

5.1
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have two-dimensional motion. If (x, y, z) are coordinates of any point in the fluid, then all physical
quantities (velocity, density, pressure etc.) associated with the fluid are independent of z. Thus u,
! are functions of x, y and t and w = 0 for such a motion.

To make the concept of two-dimensional motion more clear, suppose the plane under
consideration be xy-plane. Let P be an arbitrary point on that plane. Draw a straight line PQ parallel
to OZ (or perpendicular to the xy-plane). Then all points on the line PQ are said to correspond to
P. Draw a plane (in the fluid) parallel to the xy-plane and
meeting PQ in R. Then, if the velocity at P is V in the xy-
plane in a direction making an angle  with OX, the velocity
at R is also V in magnitude and parallel in direction to the
velocity at P as shown in the figure. It follows that the
velocity at corresponding points is a function of x, y and
the time t, but not of z.

In order to maintain physical reality, we assume that
the fluid in two-dimensional motion is confined between
two planes parallel to the plane of motion and at a unit
distance apart. The reference plane of motion is taken parallel to and midway between the assumed
fixed planes. Thus while studying the flow of a fluid past a cylinder in a two-dimensional motion in
planes perpendicular to the axis of the cylinder, it is useful to restrict attention to a unit length of
cylinder confined between the said planes in place of worrying over the cylinder of infinite length.

Suppose we are dealing with a two-dimensional motion in xy plane. Then by flow across a
curve in this plane, we mean the flow across unit length of a cylinder whose trace on the plane xy
is the curve under consideration, the generators of the cylinder being parallel to the z-axis. By a
point in a flow, we mean a line through that point parallel to z-axis.
5.2. Stream function or current function.

[Agra 2005; Rohilkhand 2002, 03; Meerut 1999, 2010; Kanpur 2010, 09]
Let u and ! be the components of velocity in two-dimensional motion. Then the differential

equation of lines of flow or streamline is

            / /dx u dy !                     or                    0dx udy ! ...(1)
and the equation of continuity is
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5.2 FLUID DYNAMICS

             0u
x y
 
 

 
!                      or                    ( )u

y x
  


 
! ...(2)

(2) shows that L.H.S. of (1) must be an exact differential, d (say). Thus, we have

                   ( / ) ( / )dx udy d d x dx y dy        ! ...(3)

so that     /u y                    and                  / x  ! ...(4)
This function  is known as the stream function. Then using (1) and (3), the streamlines are

given by 0d  i.e., by the equation ,c   where c is an arbitrary constant. Thus the stream
function is constant along a streamline. Clearly the current function exists by virtue of the equation
of continuity and incompressibility of the fluid. Hence the current function exists in all types of
two-dimensional motion whether rotational or irrotational.
5.3. Physical significance of stream function. [Kanpur 2005; Rohilkhand 2002, 03]

Let LM be any curve in the x-y plane and let 1

and 2  be the stream functions at L and M
respectively. Let P be an arbitrary point on LM such
that arc LP = s and let Q be a neighbouring point on
LM such that arc .LQ s s    Let   be the angle
between tangent at P and the x-axis. If u and ! be the
velocity-components at P, then
         velocity at P along inward drawn normal PN

          cos sinu  ! ...(1)
When  is the stream function, then we have

             /u y               and               /  x! ...(2)

Also from Calculus,             cos /  dx ds           and           sin = / dy ds ...(3)

Using (1), we get              flux across PQ from right to left = ( cos sin )u s  !

  Total flux across curve LM from right to left

       
LM

( cos sin )u ds   !
LM

,dx dy ds
x ds y ds

  
      using (2) and (3)

       
2

1
2 1

LM





  
          dx dy d

x y
Thus a property of the current function is that the difference of its values at two points

represents the flow across any line joining the points.
Remark 1. The current function   at any point can also be defined as the flux (i.e. rate of

flow of fluid) across a curve LP where L is some fixed point in the plane.
Remark 2. Since the velocity normal to s  will contribute to the flux across s  whereas

the velocity along tangent to s  will not contribute towards flux across s , we have
                flux across s = s   normal velocity

or                        ( ) s      × velocity from right to left acrss s

or                  Velocity from right to left across /s s    ...(4)

O T X 

L

P 

Q 

M

N

Y

u





!
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MOTION IN TWO-DIMENSIONS AND SOURCES SINKS 5.3

Remark 3. Velocity components in terms of   in plane-polar coordinates (r, ) can be

obtained by using the method outlined in remark 2 above. Let rq  and q  be velocity components
in the directions of r and   increasing respectively. Then

     qr = velocity from right to left across r

    
0

1lim
,r r

 
 

 

and q = velocity from right to left across r

    
0

lim .
 

 
 

 r r r

Thus,           
1

rq
r





                and              .q
r





…(5)

5.4. Spin components in terms of ψ .
We know that the velocity components u and ! are functions of x, y and t and w = 0 in two-

dimensional flow. Hence the spin components ( , , )   are given by

2 0,w
y z
 

   
 

! 2 0u w
z x
 

   
 

and       
2 2

2 22 u
x y x x y y x y

                              

!

Let the motion be irrotational so that 0   also. Then we obtain

          2 2 2 2/ / 0x y                           or                2 0  

showing that   satisfies Laplace’s equation.

5.5. Some aspects of elementary theory of functions of a complex variables.
Suppose that    z = x + iy    and that        ( ) ( , ) ( , ),w f z x y i x y    

where x, y,  ,   are all real and 1.i    Also, suppose that   and   and their first derivatives
are everywhere continuous within a given region. If at any point of the region specified by z the
derivative / ( ( ))dw dz f z  is unique, then w is said to be analytic or regular at that point. If the
derivative is unique throughout the region, then w is said to be analytic or regular throughout the
region. It can be shown that the necessary and sufficient conditions for w to be analytic at z are

       / /x y                       and                  / / ,     y x

which are known as the Cauchy-Riemann equations. The functions ,   are known as conjugate
functions.
5.6. Irrotational motion in two-dimensions. [Meerut 2007; Purvanchal 2004, 05]

Let there be an irrotational motion so that the velocity potential   exists such that

/u x     and          / y  ! ....(1)
In two-dimensional flow the stream function  always exists such that

/u y      and          /  x! ...(2)

q
qr

P r ( ,  )

XO 
Initial line



Created with Print2PDF. To remove this line, buy a license at: http://www.software602.com/

SuccessClap: Best Coaching for UPSC Mathematics : For Info- 9346856874
Checkout ->22 Weeks Study Plan, Videos, Question Bank Solutions, Test Series

Succ
ess

Clap



5.4 FLUID DYNAMICS

From (1) and (2), we have

                / /x y                     and              / /y x      ...(3)

which are well known Cauchy-Riemann’s equations. Hence i   is an analytic function of

z = x + i y. Moreover   and   are known as conjugate functions.
On multiplying and re-writing, (3) gives

                                    0   
   

   x x y y
, ...(4)

showing that the families of curves given by  = constant and  = constant intersect orthogonally..
      Thus the curves of equi-velocity potential and the stream lines intersect orthogonally.

Differentiating the equations given in (3) with respect to x and y respectively, we get

          
2 2

2 x yx
   


 

                  and                   
2 2

2 .
x yy

   
 

 
...(5)

Since 
2 2

,
x y y x
   


   

 adding (5) gives

                      2 2 2 2/ / 0.x y        ...(6)
Again, differentiating the equations given in (3) with respect to y and x respectively, we get

         
2 2

2y x y
   


  

                  and                  
2 2

2x y x
   

 
  

Since 2 2/ / ,x y y x          subtracting these, we get   2 2 2 2/ / 0x y           ...(7)
Equations (6) and (7) show that  and  satisfy Laplace’s equation when a two-dimensional

irrotational motion is considered. [Meerut 2010]
5.7. Complex potential.   [Meerut 2011]

[G.N.D.U. Amritsar 2003; Rohilkhand 2001; Kanpur 2001, 05; Agra 2005]
Let w i    be taken as a function of x + iy i.e., z. Thus, suppose that w = f (z) i.e.

                                      ( )i f x iy    ...(1)
Differentiating (1) w.r.t x and y respectively, we get

                          / ( / ) ( )x i x f x iy       ...(2)

and                / ( / ) ( )y i y if x iy      

or                         / ( / ) { / ( / )},          y i y i x i x  by (2)
Equating real and imaginary parts, we get

       / /x y                    and                / /y x      ...(3)
which are Cauchy-Riemann equations. Then w is an analytic function of z and w is known as the
complex potential.

Conversely, if w is an analytic function of z, then its real part is the velocity potential and
imaginary part is the stream function of an irrotational two-dimensional motion.

Remarks. If             ( ),i f x iy               then          ( )i if x iy   

Thus,                      – ( ) ( ),i if x iy g x iy        say
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MOTION IN TWO-DIMENSIONS AND SOURCES SINKS 5.5

Hence proceeding as before, we get (3). Hence another irrotational motion is also possible in
which lines of equi - velocity potential are given by  = constant and the streamlines by
 = constant.

5.7A. Cauchy-Riemann equations in polar form. [Kanpur 2003]
Let            ( ) ( )ii f z f re     …(1)

Differentiating (1) w.r.t. r and  , we get

         ( )i ii f re e
r r

     
 

…(2)

and          ( )i ii f re rie     
 

…(3)

From (2) and (3), we easily obtain                 i ir i
r r

           
Equating real and imadginary parts,we get

r
r

 
 

 
                     and                    r

r
 


 

Thus,
1

r r
 


 
                      and                  

1 ,
r r
 
 

 
…(4)

which are Cauchy-Riemann equations in polar form.
5.8. Magnitude of velocity. [G.N.D.U. Amritsar 2002; Kanpur 1997]

Let w = f (z) be the complex potential. Then
             w i                        and                     z x iy  ...(1)

Also / /x y                     and                / /y x      ...(2)
For two-diensional irrotational motion, we have (see Art. 5.1.)

            /  u x     and         /  y! ...(3)

From (1),                  .dw z i
dz x x x

  
 

  
              and              1z

x





                                    
dw i
dz x y

 
 
  ,  using (2) ...(4)

or                            /dw dz u i  !"  using (3) ...(5)
which is called the complex velocity.

From (4) and (5), we see that the magnitude of velocity q at any point in a two-dimensional
irrotational motion is given by | dw/dz |, where

               1/22 2 1/ 2 2 2| / | {( / ) ( / ) } ( )dw dz x y u q        ! ...(5)
Remarks. The points where velocity is zero are known as stagnation points.

5.9. Complex potential for some uniform flows
(i) Consider                      w = ikz, ...(1)

where k is a real and positive constant
Now, (1)   dw/dz = u + i! = ik   u = 0 and ! = k,

which is clearly a uniform flow parallel to y-axis.
Hence the complex potential for a uniform flow whose

magnitude of the stream is V in the positive y-direction is given
by w = iVz.

y

x
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5.6 FLUID DYNAMICS

(ii) Consider                     w = keiz, ...(2)
where k and  are real constants.

From (2),              dw/dz = u + i! = kei

  – u + i! = k (cos i sin )
              u = k cos          and ! = k sin  which

corresponds to a uniform flow inclined at an angle  to the x-
axis.

Hence the complex potential for a uniform flow whose
magnitude is V and which is inclined is at an angle  to x-axis is
given by                              w = Vei z.
5.10. Illustrative Solved Exaples

Ex. 1. To show that the curves of constant velocity potential and constant stream functions
cut orthogonally at their points of intersection.               [Meerut 2007; Garhwal 2005]

OR
To shows that the family of curves  (x, y) = c1 and (x, y) = c2, c1, c2 being constants,

cut orthogonally at their points of intersection.
Proof. Let the curves of constant velocity potential and constant stream function be given by

                          (x, y) = c1 ...(1)
and               (x, y) = c2, ...(2)
where c1 and c2 are arbitrary constants. Let m1 and m2 be gradients
of tangents PT1 and PT2 at point of intersection P of (1) and (2).
Then, we have

m1 = 
 
 

/
/

x
y                and            m2 = 

 
 

/
/

x
y

   ...(3)

We know that  and   satisfy the Cauchy-Riemann
equations, namely,

    / /x y        and       y = x. ...(4)

Now, from (3),           m1m2 =
( / ) ( / ) ( / ) ( / )
( / ) ( / ) ( / ) ( / )

x x y x
y y x y

       


        
, by (4)

Hence m1m2 = 1, showing that the curves (1) and (2) cut each other orthogonally.
Ex. 2. If = A(x2  y2) represents a possible flow phenomenon, determine the stream

function.
Sol. Here                                       = A(x2  y2)       ...(1)

                                 / y =  / x = 2Ax, using (1)

Integrating it w.r.t. ‘y’,                        = 2Axy + f(x), ...(2)
where f(x) is an arbitrary function of x. (2) gives the required stream function.

Ex. 3. Determine the stream function  (x, y, t)  for the given velocity field u = Ut, ! = x.

Sol. We know that             u =  ( / ) y           and     ! = x.

                           y = Ut . ...(1)
and                  x = x. ...(2)

Integrating (1),                   (x, y, t) = Uty + f(x, t), ...(3)
where f(x, t) is an arbitrary function of x and t.

 x, y c
( ) =

1

P

Created with Print2PDF. To remove this line, buy a license at: http://www.software602.com/

SuccessClap: Best Coaching for UPSC Mathematics : For Info- 9346856874
Checkout ->22 Weeks Study Plan, Videos, Question Bank Solutions, Test Series

Succ
ess

Clap



MOTION IN TWO-DIMENSIONS AND SOURCES SINKS 5.7

From (3),    x = f/x. ...(4)
Then (2) and (4)     fx = x. ...(5)
Integrating (5),     f(x, t) = x2/2 + F(t), ...(6)

where F(t) is an arbitrary function of t.
From (3) and (6),                    (x, y, t) = Uty + x2/2 + F(t).
Ex. 4. The velocity potential function for a two-dimensional flow is  = x(2y  1). At a

point P(4, 5) determine : (i) The velocity and (ii) The value of stream function.
Sol. Given                                    = 2xy  x. ...(1)
(i) The velocity components u and ! in x and y directions are given by
           u = x = 2y + 1             and ! =   / y = 2x. ...(2)
At the point P(4, 5),             u = 10 + 1 = 9            and ! = 8.
 Resultant velocity = V = (u2 + !2)1/2 = (81 + 64)1/2  = 12·04 units.
(ii) Now, u =   / y            and ! =  / x. ...(3)
From (2) and (3),           /x = 2x            and          /y = 2y  1.
Now,                d = (/x)dx + (/y)dy = 2x dx + (2y  1)dy.
Integrating,           = x2 + y2  y + C, C being constant of integration.
For  = 0 at the origin, we have   0 = 0 + C  or       C = 0.
Hence                  = x2 + y2  y.
At the point P(4, 5),       = 42 + 52  5 = 4 units.
Ex. 5. The streamlines are represented by (a)  = x2  y2      and    (b)  = x2 + y2.

Then (i) determine the velocity and its direction at (2, 2) (ii) sketch the streamlines and show
the direction of flow in each case.

Part (a) Given that                        = x2  y2.
Now,              u = /y = 2y             and ! = /x = 2x.
At (2, 2),       u = 4                   and ! = 4.
 The resultant velocity = (u2 + !2)1/2 = (16 + 16)1/2 = 4 2  units

and its direction has a slope = !/u = 1 showing that
the velocity vector is inclined at 45° to
x-axis.

The required streamlines are given by  = c,
where c is a constant, i.e. x2  y2 = c, which repre-
sents a family of hyperbolas. In figure, we have
sketched the steamlines for various values of . The
direction of arrowhead shows the direction of flow
in each case.

Part (b)  Given that            = x2 + y2

Now,           u = y = 2y,  ! = x = 2x.
At (2, 2),    u = 4               and ! = 4.
  The resultant velocity
           = (u2 + !2)1/2 = (16 + 16)1/2 = 4 2  units.

and its direction has a slope = !/u = – 1, showing that the velocity
vector is inclined at 135o to x-axis.

The required streamlines are given by  = c, where c is a
constant, i.e. x2 + y2 = c, which represents a family of circles. In
figure, we have sketched the streamlines for various values of .
The direction of arrowhead shows the direction of flow in each
case.

Fig. Pattern of Streamlines for  =  –y  x  y2 2

y 
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5.8 FLUID DYNAMICS

Ex. 6. If  = 3xy, find x and y components of velocity at (1, 3) and (3, 3). Determine the
discharge passing between streamlines passing through these points.

Sol. The velocity components u and ! in x and y directions are given by
       u = x = 3y              and ! = y = 3x. ...(1)

Hence the velocity components at (1, 3) are            u = 9, ! = 3.
and the velocity components at (3, 3) are                      u = 9, ! = 9.

Now, we have               u = y             and ! = x. ...(2)
Then, (1) and (2)         y = 3y           and       x = 3x. …(3)
                     d = (x)dx + (y)dy = 3xdx  3y dy.
Integrating,     y = (3x2/2)  (3y2/2) + C, where C is constant of integration. ...(4)
Discharge between the streamlines passing through (1, 3) and (3, 3)

        = (1, 3)  (3, 3) = (3/2) × (1  9)  (3/2) × (9  9) = 12 units.
Ex. 7. If the expression for stream function is described by  = x3  3xy2, determine

whether flow is rotational or irrotational. If the flow is irrotational, then indicate the correct
value of the velocity potential.            (a)  = y3 – 3x2y.           (b)  = – 3x2y.

Sol. Now             u = y = 6xy, ! = x = 3(x2  y2). ...(1)
Hence,         !/x = 6x               and              u/y = 6x. ...(2)
A two-dimensional flow in xy-plane will be irrotational if the vorticity vector component

z in the z-direction is zero.
Here                 z = (!/x)  (u/y) = 6x  (6x) = 0, by (2)
Hence the flow is irrotational.
Now,               u = x              and        ! = y. ...(3)
For an irrotational flow Laplace equation in  must be satisfied, i.e. (2/x2) + (2/y2) = 0.
We now check the validity of each given value of .
(a) Given         = y3  3x2y            2/x2 = 6y          and        2/y2 = 6y
                       (2/x2) + (2/y2) = 6y + 6y = 0.
(b) Given         = 3x2y                 2x2 = 6y           and        2y2 = 0
                       (2/x2) + (2/y2) = 6y + 0  0.
Hence the correct value of  is given by                     = y3  3x2y.
Ex. 8. Show that the velocity vector q is everywhere tangent to lines in the xy-plane along

which  (x, y) = const.
Sol.  We have                      d = (x)dx + (y)dy

or            (x)dx + (y)dy = 0 [ (x, y) = const.   d = 0]
or !dx  udy = 0,              as            u = y           and ! = /x
or                           (dx)/u = (dy)/!,
showing that the velocity vector q = ui + !j is tangent to the streamlines (x, y) = const.

Ex. 9. Find the stream function  for a given velocity potential = cx, where c is a
constant. Also, draw a set of steamlines and equipotential lines. [Rohilkhand 2003]

Sol. The velocity components u and ! in x and y
directions are given by

u = x = c    and  ! = y = 0. ...(1)
    u = y    and   ! = x
   y = c     and           x = 0. ...(2)
Then,    d = (x)dx + (y)dy = c dy.
Integrating,              = cy + d, ...(3)

where d is constant of integration.
Now,  = constant  cx = constant  x = constant,

showing that the lines of equipotential are parallel to y-axis.
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MOTION IN TWO-DIMENSIONS AND SOURCES SINKS 5.9

Next,       = constant             cy + d = constant             y = constant,
showing that the streamlines are parallel to x-axis as shown in the figure.

Ex. 10. In a two-dimensional incompressible flow, the fluid velocity components are given
by u = x  4y and ! = y  4x. Show that velocity potential exists and determine its form as
well as stream function.

Sol.  Given               u = x  4y              and ! = y  4x. ...(1)
The velocity potential will exist if flow is irrotational. Therefore, the vorticity component

z in the z-direction must be zero.
Here                z = (!/x)  (u/y) = 4  (4) = 0, using (1).
Here the vorticity being zero, the flow is irrotational and so the velocity potential  exists.

Now, we have         d = (x)dx + (y)dy =  udx  ! dy
or  d = (x  4y)dx  (y  4x)dy = xdx + ydy + 4(ydx + xdy).

Integration,    = (x2/2) + y2/2 + 4xy + C, where C is constant of integration. ...(2)
If = 0 at the origin, then from (2), we find C = 0. Hence (2) reduces to

                     = (y2  x2)/2 + 4xy.
Ex. 11.  For a two-dimensional flow the velocity function is given by the expression,

 = x2  y2. Then (i) Determine velocity components in x and y directions (ii) Show that the
velocity components satisfy the conditions of flow continuity and irrotationality (iii) Determine
stream function and flow rate between the streamlines (2, 0) and (2, 2) (iv) Show that the
streamlines and potential lines intersect orthogonally at the point (2, 2).

Sol. (i) The velocity components in x and y directions are
      u = x = 2x                 and ! = y = 2y. ...(1)

(ii) Here                  








 



   
u
x y x

x
y

yv ( ) ( ) ,2 2 2 2 0

showing that the velocity components satisfy the flow continuity conditions.

Here                  curl q =

2 2 0
x y z x y z

u w x y
            



i j k i j k

!

or curl q = (0) (2 ) (0) ( 2 )y x
y z x z

                
i j  


 


L
NM

O
QPx y y x( ) ( )2 2 k

             curl q = 0                               flow is irrotational.
(iii) We know that          u = y            and ! = x. ...(2)
Then  (1) and (2)        y = 2x         and           x = 2y
                  d = (x)dx + (y)dy = 2(y dx + xdy).
Integrating,     = 2xy + C, C being constant of integration.
The required flow between the streamlines through (2, 0) and (2, 2)

                                      = (2, 0)  (2, 2) = 0  (8) = 8 m3/s.
Now, we have               = x2  y2             and              = 2xy + C.     ...(3)

m1 = The slope of tangent at (x, y) to potential lines  = c1

    = / 2 ,
/ 2

x x x
y y y

 
   
  

using (3)

           m1 = The slope of tangent to  = c1 at (2, 2) = 2/2 = 1.
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5.10 FLUID DYNAMICS

Next, m2 = the slope of tangent to  = c2 at (x, y) = 
 
 

 



 
/
/

x
y

y
x

y
x

2
2

, by (3)

           m2 = slope of tangent to streamlines  = c2 at (2, 2) =  (2/2) = 1
Here m1m2 = 1 showing that the streamlines and the potential lines intersect orthogonally
Ex. 12. Find the lines of flow in the two dimensional fluid motion given by  + i

= –(n/2) × (x + iy)2 e2int. Prove or verify that the paths of the particles of the fluid (in polar
coordinates) may be obtained by eliminating t from the equations.

r cos (nt + )  x0 = r sin(nt + )  y0 = nt (x0  y0).        [Banaras 2003; I.A.S. 1992]
Sol. Given                    + i = – (n/2) × (x + iy)2 e2int. ...(1)
Let      x = r cos     and   y = r sin .      Then       x + iy = r (cos  + i sin ) = rei
So (1) becomes             + i = (n/2) × (rei)2 e2int = (n/2) × r2 e2i( + nt)

or               + i = (n/2) × r2 [cos 2( + nt) + i sin 2( + nt)].
Equating the real and imaginary parts on both sides of (2), we get
 = (n/2) × r2 cos 2( + nt)           and          = (n/2) × r2 sin 2( + nt). ...(2)
The lines of flow are given by  = constant, namely,
   (n/2) × r2 sin 2( + nt) = constant         or         r2 sin 2( + nt) = constant.
We now proceed to find the path of the particles. We have

                    dr
dt r 




= nr cos 2( + nt) = nr cos 2, by (2) ...(3)

and     r d
dt r
  




1 = nr sin 2( + nt) = nr sin 2, by (2) ...(4)

where                 nt +  = . ...(5)

Now,     (3)     nr cos 2 =
dr
dt

dr
d

d
dt

dr
d

d
dt n  FH IK





, by (5)

or          nr cos 2 =
dr
d n n


( sin ), 2  using (4)

or          (2/r) dr  [2 cos 2/(1  sin 2)] d = 0.
Integrating,        2 log r + log (1  sin 2) = log C       or         r2(1  sin 2) = C

or r2(sin2  + cos2   2 sin  cos ) = C or        [r (cos   sin )]2 = C

or              r(cos  sin ) = C , where C  (= C ) is an arbitrary constant. ...(6)
Initially, let  = o and r = r0 when t = 0. Then (6) gives
     C  = r0 (cos 0  sin 0) = x0  y0,       where      x0 = r0 cos 0,      y0 = r0sin 0.
 (6) becomes                     r cos   r sin  = x0  y0 ...(7)

or    r cos ( + nt)  x0 = r sin (  nt)  y0, using (5). ...(8)
Now, from (5),      d/dt = n + (d/dt)      or      d/dt = n  n sin 2, using (4)

or       d
1 2 sin = ndt                          or                d

 (cos sin ) 2 = n dt

       sec
( tan )

2

21
 

d n dt


 zz                   or                z du

u2 = nt + D

(Putting 1  tan  = u       so that sec2  d = du)
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MOTION IN TWO-DIMENSIONS AND SOURCES SINKS 5.11

or           1
u = nt + D                  or                   

1
1  tan  = nt + D

or cos /(cos   sin ) = nt + D. ...(9)
As before, initially  = 0 and t = 0. Hence (9) gives

          D =
cos

cos sin
cos

cos sin


 


 
0

0 0

0 0

0 0 0 0

0

0 0






r

r r
x

x y , as before

Then, (9) becomes                     r
r r nt x

x y
cos

cos sin


 
 


0

0 0

or r nt
x y nt x

x y
cos ( ) 


 

0 0

0

0 0
                or           r cos ( + nt) = nt(x0  y0) + x0

or               r cos (nt + )  x0 = nt(x0  y0). ...(10)
 Then, from (8) and (10), we have

  r cos  (nt + )  x0 = r sin (nt + )  y0  = nt(x0  y0)
Ex. 13. A single source is placed in an infinite perfectly elastic fluid, which is also a

perfect conductor of heat. Show that if the motion be steady, the velocity  ! at a distance r from

the source satisfies the equation k  
 
!

!
2k

r r




!     and hence that  r =

2 41 ke !

!
Sol.  Since we have an infinite perfectly elastic fluid, there would be hardly any change in

temperature, and hence Boyle’s law would be obeyed and so                 p k  ... (1)
Since the motion is symmetrical about the source, the equation of continuity may be written  as

r2! = constant, ...(2)
where ! is the velocity at a distance r and  is the density of fluid. The pressure equation takes
the form

2

2
dp



!

= constant            or          k
2

2




!

= constant, by (1). ...(3)

Differentiating (2) and (3) w.r.t. ‘r’, we have

!r2 2 2r r
r r
       

!
! = 0 ...(4)

and 0,k
r r
 
 

  
!

!                i.e.,               r k r
  
  

 
! !

...(5)

Substituting the value of /r given by (5) in (4), we get

     
2 2 2 0r r r

k r r
                

! ! !
! !

or       
2

2( ) 2r k r
k r


  

!

! !               or               
2 ,k k

r r
     

!
!

!
...(6)

which proves the first part of the problem.
Integrating (6), (!2/2)  k log ! = 2k log r  2k log C,  C being an arbitrary constant.

or     (1/2) × log ! + log r  log C = !2/4k            or           r ! = C
2 / 4ke!

or              r =
2 / 4(1/ ) ,ke!!  taking C = 1.

Created with Print2PDF. To remove this line, buy a license at: http://www.software602.com/

SuccessClap: Best Coaching for UPSC Mathematics : For Info- 9346856874
Checkout ->22 Weeks Study Plan, Videos, Question Bank Solutions, Test Series

Succ
ess

Clap



5.12 FLUID DYNAMICS

Ex.14. Prove that the radius of curvature R at any point of a streamline  = constant is

given by                 2 2 3/ 2 2 2( ) / | ( / ) 2 ( / ) ( / ) |,R u u x u u x u y         ! ! ! !

where u, !  are respectively the velocity components of a fluid motion along OX and OY..
Sol. From Differential Calculus, we know that the radius of curvature R at a point (x, y) of

streamline ( , )x y  constant is given by

                                2 3/ 2 2 2[1 ( / ) ] / ( / ).R dy dx d y dx  ...(1)

Given streamline is                                   ( , ) 0.x y  …(2)

Also, we have       /u y       and            / .x  ! …(3)

Differentiating (2) w.r.t. x,                  ( / ) ( / ) ( / ) 0x y dy dx     

or         ( / ) 0u dy dx !                  or                   / / .dy dx u ! …(4)

Differentiating (4) w.r.t. x,                 
2

2
d y dy

x u y u dxdx
            

! !

or                
2

2 2 2
( / ) ( / ) ( / ) ( / ) . ,d y u x u x u y u y

udx u u
         

 
! ! ! ! !

 uning (4)

or             
2

2 3
[ ( / ) ( / )] [ ( / ) ( / )]d y u u x u x u y u y

dx u
          


! ! ! ! !

or                            
2 2

2 3
( / ) 2 ( / ) ( / )d y u x u u x u y

dx u
       


#! ! !

…(5)

– , by (3)
                      
 u

y y x x y x
!

Putting the values of dy/dx and d2y/dx2 from (4) and (5) in (1), we get

      
2 2 3/ 2

2 2 3
(1 / )

|{ ( / ) 2 ( / ) ( / )}/ |
uR

u x u u x u y u



       

!

! ! !

2 2 3/ 2

2 2
( )

| ( / ) 2 ( / ) ( / ) |
u

u x u u x u y



       

!

! ! !
.

Ex.15 Show that u = 2cxy, ! = c(a2 + x2 – y2) are the velocity components of a possible
fluid motion. Determine the stream function. [Rohilkhand 1999]

Sol. Given                     u = 2cxy, ! = c(a2 + x2 – y2) …(1)
Equation of continuity in xy-plane is given by

                          / / 0u x y    ! …(2)

From (1), / 2u x cy    and / 2 .y cy   !  Putting these values in (2) we get 0 = 0,
showing (2) is satisfied by u, ! given by (1). Hence u and ! constitute a possible fluid motion.

Let  be the required stream function. Then, we have

        ( / )u y                      or                  / 2y cxy    …(3)

and         / x  ! or     2 2 2/ ( )    x c a x y …(4)

Created with Print2PDF. To remove this line, buy a license at: http://www.software602.com/

SuccessClap: Best Coaching for UPSC Mathematics : For Info- 9346856874
Checkout ->22 Weeks Study Plan, Videos, Question Bank Solutions, Test Series

Succ
ess

Clap



MOTION IN TWO-DIMENSIONS AND SOURCES SINKS 5.13

Integrating (3) partially w.r.t. ‘y’             2 ( , ),cxy x t     …(5)

where ( , )x t  is an arbitrary function of x and t.

Differentiating (5) partially w.r.t. ‘x’,             2/ /x cy x       …(6)

(4) and (6)        2 2 2 2/ ( )cy x c a x y              or      2 2/ ( )x c a x    …(7)

Integrating (7) partially w.r.t. ‘x’,             2 3( , ) ( / 3) ( , )x t c a x x y t    ,

where ( , )y t  is an arbitrary function of y and t.
Substituting the above value of ( , )x t  in (5), we get
   2 3 2( / 3 ) ( , ),c ax x xy y t       which is the required stream function.
Ex. 16. Show that u = – y, ! = x, w = 0 represents a possible motion of inviscid fluid.

Find the stream function and sketch stream lines. What is the basic difference between this
motion and one represented by the potential 2 2 1/ 2log , where ( ) .A r r x y   

Sol. Given           u = – y, ! = x             and            w = 0 …(1)

(1)     / 0 / .u x y     !  Hence the equation of continuity / / 0     u x y! is
satisfied. Hence these exist a two dimensional motion defined by (1).

Now,                     ( / ) ( / )x dx y dy       …(2)

 But            
    

 
x

x y
!             and              

 
    

 
u y

y x

  (3) reduces to                 2 2{ ( ) / 2}      d x dx y dy d x y

Integrating, 2 2( ) / 2 ,    x y c  where c is an arbitrary constant.

The required streamlines are given by  = constant = c , say

i.e.   2 2( ) / 2    c x y c     or    2 2 22( ) / ,    x y c c w a  say
Hence the required streamlines are concentric circles with centres

at origin as shown in the adjoining figure.
Second part: Given
               2 2 1/ 2 2 2log log ( ) ( / 2) log( )A r A x y A x y       …(3)

    2 2
Axu

x x y


   
 

                       and                     2 2
Ay

y x y


   
 

!

    
2 2 2 2 2

2 2 2 2 2 2
2 ,

( ) ( )
u x y x x yA A
x x y x y
   
  

          
2 2 2 2 2

2 2 2 2 2 2
2

( ) ( )
x y y x yA

y x y x y
   
   

  
!

 / / 0u x y     !  so that the equation of continuity is satisfied.

Hence there exists exists a motion for the given value of  .
Third part. Difference between the two given motions.
For the fluid motion given by (1), we have

curl ( / / ) ( / / ) ( / / )w y z u z w x x u y               q i j k! !

       (0 0) (0 0) ( ) ,       0i j k

showing that curl 0.q  Hence velocity potential does not exist for the fluid motion defined by (1)
(refer Art. 2.26), whereas velocity potential exist for the second fluid motion.

Y

X
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5.14 FLUID DYNAMICS

Ex. 17. In irrotational motion in two dimensions, prove that
2 2 2( / ) ( / )q x q y q q       . (Agra 2012; Kanpur 2002; Meerut 2002,05)

Sol. Since the motion is irrotational, the velocity potential   exists such that

                                 2 2 2 2 2/ /x y           = 0 ...(1)

Again,                         2 2 2( / ) ( / )q x y      ...(2)
Differentiating (2) partially w.r.t. x and y respectively, we get

                  
2 2

2
qq
x x y x yx
      
 

    
...(3)

and                   
2 2

2
qq
y x x y y y
      
 

      ...(4)

Differentiating (3) and (4) partially w.r.t. x and y respectively, we get

          
2 222 2 3 2 3

2 2 3 2
q qq

x x x y yx x x x y
                                        

...(5)

and           
2 222 2 3 2 3

2 2 2 3
q qq

y x y x yy x y y y
               

                         
...(6)

Adding (5) and (6) and simplifying, we get
2 2 222 2 2 2 2 2 2 2

2
2 2 2 2 2 22q qq q

x y x y x x y yx y x y x y
                                                                                     

                   2 2 2 2 22( / ) 2 ( / )        x x y …(7)

2 22 2 2 2 2 2

2 2 2 2 2 20
x y x y x y

                                      


Next, squaring and adding (3) and (4), we get
2 222 2 2 2

2
2

q qq
x y x x yx

                                                 

2 22 2 2

2

                             
y x y y

                     
2 2 2

2 22
        

         x y x y x y

                             

2 222 2 2

2 ,
x y x yx

                                           
 using (1)

    
2 22 2

2
2 ,q

x yx

                     
 using (2)
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MOTION IN TWO-DIMENSIONS AND SOURCES SINKS 5.15

Thus,                 2 2 2 2 2 2 2( / ) ( / ) ( / ) ( / )x x y q x q y              ...(8)
From (7) and (8), we find

          2 2 2 2 2( / ) ( / ) 2[( / ) ( / ) ]q q q x q y q x q y            

or                            2 2 2( / ) ( / ) .q q q x q y      

Ex. 18.  denoting a variable parameter, and f a given function, find the condition that
( , , ) 0f x y    should be a possible system of stream lines for steady irrotational motion in two

dimensions.        [Kurukshetra 1998]
Sol. If   is the stream function, then streamlines are given by

                                          C   (constant) ...(1)

Given that                                     ( , , ) 0f x y   ...(2)

represents a system of streamlines,   being parameter. Then for '    (say), (2) must give a
streamline which corresponds with (1) for C C . Hence  is a function of   alone. Moreover
  is a function of x and y from (2). Hence, we obtain

      d
x d x
  


  
                                  and                          d

y d y
  


  

Again,          
2

2
d d d

dx x x d x x d x d x xx
                                               

so that                                        
2 2

2 2
d d d

d d x x dx x
                    

       Thus,                                 
22 2 2

2 2 2
d d

x dx d x
             

...(3)

Similarly,                        
22 2 2

2 2 2
d d

y dy d y
       

      
...(4)

For the irrotational motion,           2 2 2 2/ / 0.x y             ... (5)
Adding (3) and (4) and using (5), we get

                      

222 2 2

2 2 2 0d d
x y dd x y

                                

or        
22 2 2

2 2 2 2
/
/

d d
x y x y d d

                               
...(6)

Since the R.H.S. of (6) is a function of  alone, the required condition is that the L.H.S.  of
(6) should be a function of   alone.

Ex. 19. In two-dimensional motion show that, if the streamlines are confocal ellipses
2 2 2 2/( ) / ) 1x a y b      ,         then            2 2log ( )A a b B      

and the velocity at any point is inversely proportional to the square root of the rectangle under
the focal radii of the point. [Rajasthan 1998]

Sol. Take           cosz C w             then           cos ( )x iy C i    ...(1)
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5.16 FLUID DYNAMICS

or              (cos cos sin sin )x iy C i i      

or            cos cosh Csin sinhx iy C i       ...(2)
Equating real and imaginary parts, (2) gives

         cos coshx C                  and              sin sinhy C   

so that              cos
cosh

x
C

 


                and               sin –
sinh

y
C

 


Squaring and adding these, we obtain

                              
2 2

2 2 2 2 1
cosh sinh

 
 

x y
C C ...(3)

which give the streamlines in two-dimensions.
Again, given that the streamlines are confocal ellipses

   2 2 2 2/( ) /( ) 1x a y b      ...(4)

Since (3) and (4) must be identical, we have

         2 2 2coshC a                    and               2 2 2sinhC b  

    2 2(cosh sinh )C a b              or      2 2Ce a b      
   [  cosh  = (e + e–)/2    and   sinh  = (e – e–)/2 ]

or           2 2log ( ) – loga b C      ...(5)

If  ,  are velocity potential and stream function, so also will be A   and A  where A is
a constant. Hence (5) may be re-written as

2 2log ( )A a b B      

From (1),          2 2 2 1/ 2sin 1 cos (1 / )       
dz C w C w C z C
dw

                             2 2
1 2– – – ( ) ( – ) –C z C z C z r r   

where r1 and r2 are the focal distances (radii) of any point P(z) from the foci S (C, 0) and
S (– C, 0) of the ellipses.

Thus             1 2| / | 1/ .q dw dz r r 

Ex. 20. Show that the velocity potential     
2 2

2 2
1 ( )log
2 ( )

x a y
x a y
 

 
 

gives a possible motion. Determine the streamlines and show also that the curves of equal speed
are the ovals of Cassini given by rr = const. [Rajasthan 2000; I.A.S. 1990]

Sol. Given                    2 2 2 2(1/ 2) log[( ) ] (1/ 2) log[ ) ]x a y x a y        

                               2 2 2 2( ) ( )
x a x au

x x a y x a y
  

    
    

...(1)

and                    2 2 2 2( ) ( )
y y

y x a y x a y


    
    

! ...(2)

From (1)                     
2 2 2 2

2 2 2 2 2 2
( ) ( )

[( ) ] [( ) ]
u y x a y x a
x x a y x a y
    
  

    
...(3)
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MOTION IN TWO-DIMENSIONS AND SOURCES SINKS 5.17

From (2)                     
2 2 2 2

2 2 2 2 2 2
( ) ( )

[( ) ] [( ) ]
x a y x a y

y x a y x a y
    
  

    
!

...(4)

Adding (3) and (4), we see that the equation of continuity / / 0u x y     !  is satisfied.

Hence there exists a motion for the given  .

To determine the streamlines, we use the fact that velocity potential   and the stream
function   satisfy the Cauchy-Riemann equations, namely,,

      / /x y                     and                 / /y x      ...(5)

From (1) and (5), we have    2 2 2 2( ) ( )
x a x a

y x a y x a y
  

 
    

Integrating it w.r.t. y, we get

         1 1tan tan ( )y y f x
x a x a

  
 

, f (x) being an arbitrary function of x    ...(6)

                      2 2 2 2 ( )
( ) ( – )

y y f x
x x a y x a y
    
    ...(7)

Again from (5) and (2), we get

                        2 2 2 2( ) ( – )
y y

x x a y x a y


  
    ...(8)

Comparing (7) and (8) ( ) 0f x   so that f(x) = constant. Omitting the additive constant,
(6) gives

             
   
  

1 1 1 /( ) /( )
tan tan tan

1 /( ) /( )
y x a y x ay y

x a x a y x a y x a
     

   
    

                          
1

2 2 2
( 2 )tan ay

x y a
 

 
 

Hence the streamlines are given by  = const. = tan–1 (– 2a/C), that is,

                    2 2 2x y Cy a   ....(9)
which are circles. When C = 0, the stream line is the circle passing through (a, 0) and (– a, 0).
Again, if C is infinite then stream line y = 0 [divide (9) by C and then let C  ]

Now, 2 2 2 2 –1 –11 1log ( ) ) log ( ) tan – tan
2 2 –

y yw i x a y x a y i i
x a x a

                 

          log ( ) log ( )x a iy x a iy      log ( ) log ( )z a z a    , as  z x iy

            
1 1 2 2 ,

| | | |
dw a aq
dz z a z a z a z a rr

    
    

where ,r r are the distances of the point from the points P (x, y) from the points (a, 0) and

(–a, 0). The curves of equal speed are given by          q = constant        or        rr = constant,
which are Cassini ovals.

Ex. 21. A velocity field is given by q = – xi + (y + t)j. Find the stream function and the
streamlines for this field at t = 2. [Agra 2005; Garhwal 2000; Rohilkhand 2002]
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5.18 FLUID DYNAMICS

Sol. We have             / y u x      …(1)

and              / x y t    ! ...(2)

Integrating (1) and (2), we get                   1( , )xy f x t   ...(3)

and               2 ( , )xy tx f x t    ...(4)
Note that f2 must be a function of t alone, otherwise (4) will not be satisfied; and then

f1 = tx + f2. Thus
    2 ( )xy tx f t    ...(5)

The function f2 cannot be obtained from the given data. However since we deal only with
differences in   values at a given t or with the derivatives / x   and / ,y   the determination
of f2 is not necessary. At t = 2, (5) becomes

               22 (2)xy x f    ...(6)

The stream lines ( = constant) are given by                x (y + 2) = constant,
which are rectangular hyperbolas.

Ex. 22. A two-dimensional flow field is given by  = xy. (a) Show that the flow is irrotational.
(b) Find the velocity potential. (c) Verify that   and   satisfy the Laplace equation. (d) Find the
streamlines and potential lines. [Agra 2005, 2011; Garhwal 2005]

Sol. (a) The velocity components are given by – / – ,u y x    / x y   ! so that
    q = ui + !j                 or              q = – xi + yj

and          curl .

0
x x z
x y

  
 
  


i j k

q 0

Hence the flow is irrotational.

(b) We have     ,
x y
 


 
                     

y x
 
 

 

        2
1 1( / ) ( ) / 2 ( ),y dx f y x f y       ...(1)

and          2
2 2/ ( ) ( / 2) ( ).x dy f x y f x         ...(2)

(1) and (2) show that
    f1(y) = – y2/2 + constant               and              f2(x) = x2/2 + constant,

so that               = (x2 – y2)/2 + constant

(c)  2 2 2 2 2/ / 0 0 0x y                and   2 2 2 2 2/ / 1–1 0x y           

Hence   and   satisfy the Laplace equation.

(d) The streamlines ( = constant) and the potential lines (  = constant) are given by
                  xy = C1 and x2 – y2 = C2, respectively, where C1 and C2 are constants.

EXERCISE 5 A
1. Show that the difference of the values of   at two points represents the flux of the fluid

across any curve joining the two points. [Kanpur 2005]
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Sources and sinks.
[Aga 2005; Kanpur 2000, 02; Purvanchal 2004; Meerat 2009; Rohilkhand 2005]

If the motion of a fluid consists of symmetrical radial flow in all directions proceeding from a
point, the point is known as a simple source. If, however, the flow is such that the fluid is directed
radially inwards to a point from all directions in a symmetrical manner, then the point is known as
a simple sink.

Sink 

( )ii

Source

( )i

Obviously a source implies the creation of fluid at a point whereas a sink implies the
annihilation of fluid at a point. Sources and sinks are not readily obtained by some dynamical
effects of the motion of fluid but may occur due to some external causes. For example, consider a
simple source in a tank filled with a fluid. This source may be created by taking a long tube of
very small cross-section and injecting fluid through it into the tank as shown in figure (i). In
such a situation, we find that the fluid is coming out from the tube radially into the tank, Again,
a sink can be created by taking a long tube of very small cross-section and sucking fluid through
the tube from the tank as shown in figure (ii).

Consider a source at the origin. Then the mass m of the fluid coming out from the origin in
a unit time is known as the strength of the source. Similarly, in a tank at the origin, the amount
of fluid going into the sink in a unit time is called the strength of the sink.
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5.20 FLUID DYNAMICS

Remark. Since the velocity is unique at a point, so usually no two streamlines intersect each
other. But some flow fields may have singularities, where the velocity vector is not unique. Sources
and sinks are examples of singularities of a flow field because infinitely many stream lines meet at
such points as indicated in the figures (i) and (ii).
5.12. Source and sinks in two-dimensions.

[Garhwal 2002; Kanpur 1999; Meerut 2010]
In two-dimensions a source of strength m is such that the flow across any small curve

surrounding is 2 .m  Sink is regarded as a source of strength – m.
Consider a circle of radius r with source at its centre. Then radial velocity qr is given by

         
1

rq
r


 


...(1)

or              ,rq
r


 


                  as                    
1

r r
 


 
...(2)

Then the flow across the circle is 2 .rrq  Hence we have

            2 2rrq m                   or                    rrq m ...(3)

or             
1– ,r m
r
    

 by (1)

Integrating and omitting constant of integration, we get
          – m   ...(4)

Using (2) and (3), we obtain as before
                    logm r   ...(5)

Equation (4) shows that the streamlines are  = constant, i.e., straight lines radiating from the
source. Again (5) shows that the curves of equi-velocity potential are r = constant, i.e., concentric
circles with centre at the source.
5.13. Complex potential due to a source.

[Kurukshetra 2004; Meerut 2001, 2012; Kanpur 2009]
Let there be a source of strength m at origin. Then

    – log – (log log ) log ( ) log .             i iw i m r im m r i e m re m z

If, however, the source is at z  , then the complex potential is given by w = – m log (z – z  )
The relation between w and z for sources of strengths m1, m2, m3,… situated at the points

z = z1, z2, z3,… is given by
w = – m1 log (z – z1) – m2 log (z – z2) – m3 log (z – z3) – ...

leading to  = – m1 log r1 – m2 log r2 – m3 log r3 – …

and        1 1 2 2 3 3– – – –m m m     

where           | – |n nr z z           and           n = arg (z – zn),          n = 1, 2, 3, …

5.14. Doublet (or dipole) in two dimensions
[Agra 2005; Garhwal 2000, 04; Rohilkhand 2000; Kanpur 1999, 2002, 07]

A combination of a source of strength m and a sink of strength – m at a small distance s
apart, where in the limit m is taken infinitely great and s  infinitely small but so that the product
m s  remains finite and equal to µ, is called a doublet of strength µ, and the line s  taken in the
sense from – m to + m is taken as the axis of the doublet.
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MOTION IN TWO-DIMENSIONS AND SOURCES SINKS 5.21

Complex potential due to a doublet in two-dimensions
[G.ND.U. Amritsar 2004, 06; Kanpur 2000, 05, 07; Meerut 2002, 09, 10; Purvanchal 2004, 05]

Let A, B denote the positions of the sink and source and P be any point. Let AP = r,
BP = r + r  and  PABAB =  . Let   be the velocity potential due to this doublet.

Then           log – log ( ) – log r rm r m r r m
r
 

    

or           – log 1 rm
r
    

 

    – rm
r


  , to first order of approximation. …(1)

Let BM be perpendicular drawn from B on AP. Then,

                          AM = AP – MP = – ( ) –r r r r   

           cos / – /AM AB r s                  so that           – cosr s   

 From (1),      cos cosm s
r r
  

     ...(2)

where       m s    strength of the doublet.

From (2),                                  2
cos–

r r
  




or            2
1 cos– ,
r r
  




                   as                  1
r r
 


 

or                             cos–
r

  



Integrating it with respect to , we get

    sin– ( )f r
r

 
   ...(3)

Now,          1 –
r r
 


 
…(4)

Using (2) and (3), (4) reduces to

   2
1 sin sin– – ( )f r
r r r

             
or  ( ) 0f r    so that   f (r) = constant Hence omitting the additive constant, (3) reduces to

       
sin–
r

 
  ...(5)

Using (2) and (5), the complex potential due to a doublet is given by

      (cos – sin )w i i
r


      – .i
ie

r zre



  

  

Note 1. Equi-potential curves are given by  = constant, i.e., by

       ( cos ) / r   constant                   or                  (cos ) / r C 

       2cosr Cr                      or                 x = C (x2 + y2),
which represent circles touching the y-axis at the origin.

A
–m( )

B
m(+ )

P

M

–
r

r

r +
r

s
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5.22 FLUID DYNAMICS

Note 2. Streamlines are given by  = constant i.e., by

         (– sin ) / r  = constant                 or                 (sin ) / r C  

or             2sinr C r                         or                 2 2( ),y C x y 
which represent circles touching the x-axis at the origin.

Note 3. If the doublet makes an angle  with x-axis, we have to write  –  for  so that

       ( – )

i i

i i
e ew

zre re

 

  
  

   

If the doublet be at the point ( , )A x y   where z x iy    [in place of A being origin (0, 0)]

then we have       
–

iew
z z





Note 4. If doublets of strengths µ1,  2,  3,… are situated at z = z1, z2, z3, … and their axes

making angles  1,  2,  3,… with x-axis, then the complex potential due to the above system is
given by

      
31 2

31 2

1 2 3– – –

ii i ee e
w

z z z z z z

   
   

5.15. Illustrative solved examples.
Ex. 1. What arrangement of sources and sinks will give rise to the function w

= log (z – a2/z). Draw a rough sketch of the streamlines. Prove that two of the streamlines
subdivide into the circle r = a and axis of y.          [Kanpur 2003, 04; Meerut 2001, 03, 10, 11;

[Agra 2005; Garhwal 2004; GNDU Amritsar 2003, 05; Rohilkhand 2000, 03, 05]

Sol. Given         
2 ( – ) ( )log – loga z a z aw z
z z

           
or                    w = log (z – a) + log (z + a) – log z
which shows that there are two sinks of unit strength at the points z = a and z = – a and a source
of unit strength at origin. Since w i    and z = x + iy, we obtain

    log ( – ) log ( ) – log ( )i x iy a x iy a x iy      

                    log ( – ) log ( ) – log ( )i x a iy x a iy x iy      

Equating imaginary parts on both sides, we have

           –1 –1 –1tan tan – tan
–
y y y

x a x a x
  


, as 2 2 –11log ( ) log ( ) tan

2


      


i i

           
–1 –1 –1 –1

2 2 2
2–tan – tan tan – tan

– –1
–

y y
y xy yx a x a

y y x xx y a
x a x a


 

 


2 2 22 2 2
–1 –1

2 2 2

2 2 2

2 –
( )– –tan tan .

2 ( – )1
– –

xy y
x y x y ax y a

xy y x x y a
xx y a

 
 

 

The desired streamlines are given by  = constant = tan–1 (C), i.e.

            
2 2 2

2 2 2
( ) .
( – )

y x y a C
x x y a

 



...(1)
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MOTION IN TWO-DIMENSIONS AND SOURCES SINKS 5.23

When C = 0, (1) reduces to y = 0. Thus x-axis is a streamline. Again, when ,C   (1)
reduces to x (x2 + y2 – a2) = 0, i.e, x = 0 and x2 + y2 = a2 or r = a, which are streamlines.

Hence the rough sketch of the streamlines is as shown in the following figure. In this figure
there is a source of unit strength at origin O and there are two sinks each of unit strength at A (a,
0) and (– a, 0).

Y

(– , 0)$ ( , 0)$

XAB O

Y 

X

Y

Ex. 2. There is a source of strength m at (0, 0) and equal sinks at (1, 0) and (–1, 0). Discuss
two-dimensional motion. Also draw the stream lines. [Meerut 2002, 09]

Sol. Proceed just like Ex. 1. Here, we have
       w = m log (z –1) + m log (z + 1) – m log (z – 0)

 + i = m [log (x + iy – 1) + log (x + iy + 1) – log (x + iy)]

    –1 –1 –1tan tan – tan
–1 1
y y ym

x x x
     

      or       
2 2

–1
2 2

( 1)tan
( –1)

y x y
m x x y
  




[As in Ex. 1, here note that a = 1]
The desired streamlines are given by /m = constant = tan–1 C i.e.

                        
2 2

2 2
( 1) .
( –1)

y x y C
x x y

 



...(1)

Now give the same discussion and figure as given in Ex. 1 noting that here a = 1.
Ex. 3. Two sources, each of strength m are placed at the points (– a, 0), (a, 0) and a sink of

strength 2m at the origin. Show that the streamlines are the curves  (x2 + y2)2

= a2 (x2 – y2 +  xy) where   is a variable parameter.. [U.P. P.C.S. 1999; I.A.S. 1999, 2003]
Show also that the fluid speed at any point is (2ma2)/(r1 r2 r3) where r1, r2, r3, are the

distances of the points from the sources and the sink.
[I.A.S. 1999, 2003; Meerut 2000; Garhwal 2005; Rohilkhand 2002]

Sol. First Part.
The complex potential w at any point P(z) is given by

                w = – m log (z – a) – m log (z + a ) + 2m log z ...(1)
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5.24 FLUID DYNAMICS

or       w = m [log z2 – log (z2 – a2)]

or               2 2 2 2 2[log( – 2 ) – log ( – – 2 )]i m x y ixy x y a ixy     , as    z = x + iy

Y P z( )

m

–2m

m

r2

O(– 0)$, ( , 0)$

r3 r1

x  x

Equating the imaginary parts, we have

               –1 2 2 –1 2 2 2tan 2 /( – ) – tan 2 /( – – )m xy x y xy x y a    

                 
2

–1
2 2 2 2 2 2

–2tan
( ) – ( – )

a xym
x y a x y

 
   

 
, on simplification.

The desired streamlines are given by  = constant = m tan–1 (–2/). Then we obtain
2 2 2 2 2 2 2(–2 / ) (–2 ) /[( ) – ( – )]a xy x y a x y        or 2 2 2 2 2 2( ) ( – ).x y a x y xy   

Second Part. From (1), we have

         
22 2– – –

– ( – ) ( )
dw m m m a m
dz z a z a z z z a z a
  

 

                
2 2

1 2 3

2 2
| | | – | | |

dw a m a mq
dz z z a z a r r r

  


where              r1 = | z – a |,             r2 = | z + a |             and            r3 = | z |.
Ex. 4. An area A is bounded by that part of the x-axis for which x > a and by that branch

of  x2 – y2 = a2 which is in the positive quadrant. There is a two-dimensional unit source at (a, 0)
which sends out liquid uniformly in all directions. Show by means of the transformation
w = log (z2 – a2) that in steady motion the streamlines of the liquid within the area A are portions
of rectangular hyperbola. Draw the streamlines corresponding to  = 0, /4, /2. If 1  and 2

are the distances of a point P within the fluid from the points (± a, 0), show that the velocity of
the fluid at P is measured by 2OP/ 1 2 ,   O being the origin. [Grahwal 2001]

Sol. Given                     w = log (z2 – a2) ...(1)

or     w = log [(x +iy)2 – a2]            or          2 2 2log[( – – ) 2 ]i x y a ixy   

Equating the imaginary parts, we have

   –1
2 2 2

2tan
– –

xy
x y a

  …(2)

The streamlines are given by     = constant = tan–1C,              i.e.,
             (2xy) / (x2 – y2– a2) = C ...(3)

When C = 0, stream lines (3) reduce to xy = 0 i.e., x = 0, and y = 0. Again, when ,C 
(3) reduces to x2– y2 – a2 = 0, i.e. x2 – y2= a2.

Hence the liquid flows in the area A bounded by x = 0, y = 0 and x2 – y2 = a2 in the positive
quadrant.
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MOTION IN TWO-DIMENSIONS AND SOURCES SINKS 5.25

From (1),                        w = log (z – a) + log (z + a),
which shows that there is a source of unit strength at (a, 0) and an equal source at (– a, 0). Here the
source at (–a, 0) is the image of (a, 0) with respect to y-axis.

From (1),                           2 2
2 2

( – ) ( )–
dw z z
dz z a z az a
 



                                
1 2

2 | | 2
| – | | |

dw z OPq
dz z a z a

  
  

From (2), the streamline corresponding to 0   is

     2 2 2
2 0

–
xy

x y a



             giving           x = 0           and           y = 0.

From (2), the streamline corresponding to  = /4 is

        2 2 2
2 tan 1

4– –
xy

x y a


                  or              x2 – y2 – a2 = 2xy.

From (2), the streamline corresponding to  = /2 is

      2 2 2
2 tan

2– –
xy

x y a


                   or                 x2 – y2 = a2.

Ex. 5. Find the stream function of the two-dimencial motion due to two equal sources and
an equal sink situated midway between them. [Kanpur 2008; I.A.S. 1996]

Sol. Let there be two sources of strength m at the points z = a and z = – a and a sink at of same
strength at z = 0 (origin). Then complex potential w due to these sources and sink is given by

                  w = – m log(z – a) – m log (z + a) +m log (z– 0)
or               log( ) – log( – ) – log( )i m x iy m x iy a m x iy a      

or               log( ) – log ( – ) – log ( )i m x iy m x a iy m x a iy      

or     2 2 –1 2 2{(1/ 2) log( ) tan ( / )} – [(1/ 2) log{( – ) }       i m x y i y x m x a y
+ i tan–1{y/(x – a)}] – m [(1/2) × log{(x + a)2 + y2} + itan–1{y/(x + a)}]

Equating imaginars parts on both sides, we get

             –1 –1 –1tan ( / ) – [tan { /( – )} tan { /( )}]m y x m y x a y x a   

or   –1 –1 { /( – )} { /( )}tan – tan
1–{ /( – )}{ /( )}

y y x a y x a
m x y x a y x a
  



–1 –1

2 2 2
2tan – tan

– –
y xy
x x y a



or
2 2 2

–1
2 2 2

( / ) – {2 /( – – )}tan
1 ( / ){2 /( – – )}

y x xy x y a
m y x xy x y a




        or        

2 2 2
–1

2 2 2
( )tan
( – – )

y x y am
x a x y

 
 

Ex. 6. An infinite mass of liquid is moving irrotationally and steadily under the influence of
a source of strength µ and an equal sink at a distance 2a from it. Prove that the kinetic energy of
the liquid which passes in unit time across the plane which bisects at right angles the line
joining the source and sink is (8µ3)/7a4,  being the density of the liquid.

Sol. Let a aource of strength µ and a sink of strength – µ be situated at A and B such that
AB = 2a. Let O  be  the  middle  point of AB so that OA = OB = a. Let OYZ be the plane which
bisects AB at right angles. Hence 90 .POA POB     Let PAB PBA     . Let PC be parallel
to AB such that .A PC BPC      Also let AP = BP = r. From ,PAO  we have

   cos /a r        and      y = a tan ,      where      OP = y.      Also,      r = (a2 + y2)1/2.
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5.26 FLUID DYNAMICS

Consider an annular strip bounded by circles of radii
y and .y y   It S  be the area of this strip, then

     2 .S y y    …(1)
At any point inside the circular ring all the fluid

particles have the same velocity q in the same direction,
namely normal to the plane.

Now, velocity at P due to source  + µ at A
  = /r2 along AP

and         velocity at P due to sink – µ at B = µ/r2 along PB

 q = the resultant of the above velocites along PC = 2 3 2 2 3/ 2
2 2 2cos .

( )
a a

r r a y
  

  


In unit time the mass m of the liquid crossing the strip is given by
    ( ) (2 ) ,m S q y y q         by (1) …(2)

Hence the required K.E. of the liquid which passes across the plane OYZ  in unit time

2 2 3

0 0

1 1 (2 ) ,
2 2

mq q y q dy q y dy
 

         by (2)

3
3 3

2 2 3/ 2 2 2 9 / 20 0

2 8
( ) ( )

a y dyy dy a
a y a y

  
     

  
 

2/ 23 3
9 90

tan sec8 ,
sec

   
 

 a a da
a

 putting y = a tan  and dy = a sec2 d

/ 23 3 7 3/ 2 6
4 4 40

0

8 8 cos 8cos sin –
7 7

d
a a a


     

       
 


Ex. 7. In a two dimensinal liquid motion  and  are the velocitly and current functions, show

that a second fluid motion exists in which   is the velocity potential and –  the current function;
and prove that if the first motion be due to sources and sinks, the second motion can be built up
by replacing a source and an equal sink by a line of doublets uniformly distributed along any curve
joining them

Sol. Since and   are the velocity potential and stream function respectively for the two-
dimensional motion, we have

       / /x y                     and               / – ( / )y x     …(1)
Again if  and –  be the velocity potential and strem function respectively for another

fluid motion in two-dimensions, then the conditions of the type (1) must be satisfied by   and
–  i.e., we must have

  (– )
x y
  


 
                and                (– )–

y x
  


 

i.e.,          / – ( / )y x                     and                / /x y    
which is true by virtue of (1).

If follows that if w i    exists, then – – ( ) – ,w i i i iw         also exists.
Second part. Consider a source of strength m at A (a, 0) and a sink of strength –m at

B (–a, 0). Then, the complex potential function w due to them is given by

A¢

Cq

B Xa

Q

y

O

r
P

( m)+( m)–

m/r
2

m/r
2

a

q

q



r
C

Z

A

dy
Y
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MOTION IN TWO-DIMENSIONS AND SOURCES SINKS 5.27

          – log ( – ) log ( ) log{( ) /( – )}w m z a m z a m z a z a     …(2)
Join A, B by an arbitrary curve. Then the axis of the doublet on this curve is normal to AB. If

w  be the complex potential due this line of doublets then

             
/ 2

/ 2 – –log log –
–

iB i

A

me z a z aw dt m e mi iw
z t z a z a


    

 
The required result now follows from the first part.

EXERCISE 5 (B)
1. Find the cartesian equation of the lines of plane flow when fluid is streaming from three

equal sources situated at the corners of an equilateral triangle.
2. Let there be a source of strength m at (a, 0) and a sink – m at (– a, 0). Find , , w and

velocity q.
3. Let there be a source of strength m at (a, 0) and a sink – m at (0, a). Find , , w and

velocity q.
4. If there are sources at (a, 0) and (– a, 0) and sinks at (0, a), (0, – a) all of equal strengths,

show that the circle through these four points is a streamline. [I.A.S. 1990]
5. A source of strength m at A (a, 0) and a sink of strength – m at B (– a, 0) are in the xy

plane and in the presence of a uniform stream U-parallel to the x-axis. The stream is directed
from the source to the sink. Derive the stream function of the resulting motion.

6. A source and a sink of the same strength are placed at a given distance apart in an
infinite fluid which is otherwise at rest. Show that the streamlines are circles and that the fluid
speed along any streamline varies inversely as the distance from the line joining the source and
sink.

7. Define sources and sinks and explain their utility in hydrodynamics. [Kanpur 2002]
8. There is a source at A and an equal sink at B. AB is the direction of a uniform stream. If

A is ( a, 0), B is (– a, 0) and the ratio of the flow issuing from A in unit time to the speed of the
stream is 2b, show the stream function is                   –1 2 2 2V – V tan [2 /( – )]y b ay x y a  
and that the length 2l, and the breadth 2d, of the closed wall that forms part of the dividing
streamline is given by              l2 = a2 + 2ab,              tan (d/b) = 2ad/(d2 – a2)
and the locus of the points at which the speed is equal to that of the stream is x2 – y2 = a2 +ab.

9. Sources of equal strength are placed at the points z = nia where n = …, – 2, – 1, 0 , 1,
2, ... . Prove that the complex potential is w = – m log sinh (z/a). Hence show that the complex
potential for doublets, parallel to x-axis of strength   at the same points is given by
w = µ coth ( / )z a .

If the row of doublets is placed in a uniform stream – U parallel to x-axis, prove that the

streamline 0   is 2
sin (2 / )

cosh (2 / ) – cos(2 / )
ay y a

x a y ab



 

and show that this consists of part of the x-axis and part of an oval curve which is nearly circular
(diameter 2b) if b << a.
5.16. Images.

If in a liquid a surface S can be drawn across which there is no flow, then any system of
sources, sinks and doublets on opposite sides of this surface is known as the image of the system
with regard to the surface. Moreover, if the surface S is treated as a rigid boundary and the liquid
removed from one side of it, the motion on the other side will remain unchanged.

As there is no flow across the surface, it must be a streamline. Thus the fluid flows tangentially
to the surface and hence the normal velocity of the fluid at any point of the surface is zero.
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5.28 FLUID DYNAMICS

Images in two dimensions.
If in a liquid a curve C can be drawn across which there is no flow, then any system of

sources, sinks and doublets on opposite sides of this curve is known as the image of the system
with regard to the curve.
5.17. Advantages of images in fluid dynamics. [Kanpur 2002]

The method of images is used to determine the complex potential due to sources, sinks and
doublets in the presence of rigid boundaries. Suppose we wish to determine the flow field outside
a rigid boundary due to sources, sinks, doublets lying outside the boundary. To this end we
assume the existence of some hypothetical image sources, sinks, doublets within the boundary in
such a manner so that the boundary behaves as a streamline or surface. Then the given system of
sources, sinks and doublets together with the hypothetical one will be equivalent to the given
sources and the rigid boundaries for the region outside the rigid boundary.
5.18. Image of a source with respect to a line.

[Agra 2006; Kanpur 2003, 04, 07, 08; Meerut 2003]
Suppose that image of the source m at A (a, 0) on x-axis is required

with respect to OY. Take an equal source at A (– a, 0). Let P be any
point on OY such that .AP A P r   Then the velocity at P due to
source at A is m/r along AP and velocity at P due to source A  is
m/r along .A P  Let PL be perpendicular to OY. Then, we see that

Resultant velocity at P due to sources at A and A  along PL
 = ( / )cos – ( / )cos 0,m r m r  

showing that there will be no flow across OY. Hence by definition, the image of a simple source
with respect to a line in two-dimensions is an equal source equidistant from the line opposite to
the source.

Remark 1. Proceeding as above we can prove that the image of a sink with respect to a line
in two-dimensions is an equal sink equidistant from the line opposite to the sink.

Remark 2. The result of Art. 5.18 will still hold good if a line is replaced by a plane.
Corollary. Image of a doublet with respect to a line.

[Kanpur 2002, Rohilkhand 2003]
Let PQ be a doublet with its axis

inclined at an angle  to OX. Then by using
the above result for finding the images of
source and sink with respect to OY, we see
that the image of the doublet PQ is again an
equal doublet P Q   symmetrically placed as
shown in the adjoining figure.
5.19A. Conformal representation (or transformation or mapping.)

Let f(z) be a function of the complex variable z = x + iy and let f(z) be single-valued and
differentiable within a closed contour C in the z-plane (i.e. xy- plane). Let i      be another
complex variable in  -plane (i.e  -plane) and let there be a relation ( ).f z   Then
corresponding to each point in the z-plane within or on C, there will be a point   in the  -plane
and points on C or within C will lie on or within a certain contour C  in the  -plane. The
necessary condition for existence of such a mapping of z-plane into  -plane is that ( )f z  should
never vanish at any point on or within C, or in other words, /d dz  must exist independent of
the directions of .z  Thus,  let P, P1, P2 be neighbouring points z, z1, z2 and Q, Q1, Q2 the
corresponding points 1 2, , .    Then, we have

q

qq
m m x

A
O

A¢

Y

P

r
r

L

mm

–m –m

Y

A X
X 

Q

O

 

A

Q

P  P
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MOTION IN TWO-DIMENSIONS AND SOURCES SINKS 5.29

Y

O X

P

P2

P1



O





Q

Q2

Q1





              1 1

1 1

– ( ) – ( ) ,
– –

f z f z
z z z z
 

             and           2 2

2 2

– ( ) – ( )
– –

f z f z
z z z z
 



In the limit when P1, P2 approach P, we have

            1

1

– ( ),
–

f z
z z
          and 2

2

– ( ),
–

f z
z z
    very nearly

                    1 2

1 2

– – ( )
– –

df z
z z z z dz
       …(1)

or        1 2

1 2

i i

i i
QQ e QQ e
PPe PP e

 

               or              
( – ) ( – )1 2

1 2

i iQQ QQe e
PP PP

    

 – –                 or          – –                  i.e.         1 2 1 2Q QQ P PP  

and                            1 2

1 2
| ( ) |QQ QQ df z

PP PP dz
  

Hence the triangles P1PP2 and Q1QQ2 are similar. This establishes the similarity of the
correspoding infitiesimal elements of the two planes. Such a relation between the two planes is
called the conformal represenation of either plane on the other.

Again      21 2 1 2 1 2 1 2

1 2 1 2 1 2 1 2

(1/ 2) sin | ( ) |
(1/ 2) sin

Q QQ QQ QQ Q OQ QQ QQ f z
P PP PP PP POP PP PP

       
   

…(2)

From         ( )f z             i.e.,           ( ),i f x iy               we have

( )
( )

x y i x y i x i y
x y x y x x y yi

z x iy x i y x i y

                                             
        

Since / z   is independent of / ,x y   we must have

        i i i
y y x x
           

 so that                 
x y
 


 
                  and                   –

y x
 


 
…(3)

Also       
  
 
 

d i
dz y y …(4)

        
2 22

2| ( ) | ,               

df z
dz y y

 using (1) and (4)
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5.30 FLUID DYNAMICS

or
22

2 2| ( ) | ,            
f z h

x y
 (say), using (3) …(5)

 From (2), 2
1 2 1 2/Q QQ P PP h              so that          2 ,d d h dxdy  

showing that the corresponding areas in the   and z planes are in the ratio h2 : 1.

Let and   be the velocity and current functions of any motion within the contour C  in
 -plane. Then, within the contour C , we have

               1( )i F i      …(6)

and C  is given by                          1( , ) const.f     …(7)

Substituting the values of ,   in terms of x, y, (6) and (7) respectively reduce to

               2 ( )i F x iy    …(8)

and             2 ( , ) constant,f x y   …(9)

where f2(x, y) is the new value of 1( , ).f    Thus we fund that   and   are the same in the two

cases. In other words,  w i    is the same in both the motions so that if q1 and q2 be velocities
at P and Q respectively, then

            2
1 | / |q dw dz                    and                    2 2

2 | / |q dw d 

so that      2 2 2 2 2
2 1 1| / | / ,q q dz d q h    using (5)

                 2 2 2 2 2
2 1 1( / ) ,q d d q h h dx dy q dx dy    

so that           2 2
2 1

1 1 ,
2 2

q d d q dx dy     
showing that the kinetic energies of the two fields are equal.
5.19B. Two important transformation.

(i) Transformation of a source.

1

C

– plane

z1

Cz

z–plane

Stream line


=

1

Let there be a source of strength m at z1 and 1  be the corresponding point in the  -plane.
Let these be regular points of the transformation. Then a small closed curve Cz may be drawn to
enclose z1 which will transform into a small closed curve C  enclosing 1 .  Since the value of
the stream function is independent of the domain considered, we obtain

            ,


   
zC C

d d …(1)

But                        ( – )
z zC C
d udy dx    ! total flow across the contour Cz

                         = sum of source strength within Cz
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MOTION IN TWO-DIMENSIONS AND SOURCES SINKS 5.31

Let Cz be chosen sufficiently small so as to isolate the single source of strength m at z1. It
follows from (1) that this will transform into a source at 1  of equal strength. Thus, a source will
always transform into a source but the strengths will be equal only if the position of the source is
a regular point of the transformation i.e. when it is possible to draw a closed contour surrounding
the point. However care has to be taken at a zero, infinity or branch point of the function that
 is of z or that z is of  . For example, in the case 1/ 2 ,z   since a semi circle with centre

0   transforms into a circle with centre z = 0 (as arg (1/ 2) arg z   ). Hence if there be a
source of strength m at z = 0 the corresponding source at 0   must be of strength 2m as the
mass efflux is unchanged by the transformation. (see the following figure).

AB

2 m

fluid produced = 2 m ×
- plane

p
z

B

A

Fluid produced m 2
z - plane

 =  × 

m

(ii) Transformation of a Doublet.

xO

C1 (+m)

B1

A1
(– )m

h

a

plane

aA
m(– )

O X

Y

B

C m (+ )

Z–plane 

Let there be doublet of strength µ at A. Then by above case (i), it follows that there will be
doublet of strength   at the corresponding point A1 in the  -plane.

Also,               A1C1 = h AC,               µ = m · AC,             1 1m A C  

       1 1 ,
A C

h
AC


 


                    i.e.,                    h  

If the axis AC of the doublet at A makes an angle  with a given direction, the axis A1C1 of
doublet at A1 will make angle  with the corresponding direction in -plane.
5.19C. Same theorems concerning conformal transformation of line distribution

[Bangalore 2005, Kurukshetra 1997]
Theorem 1. Under conformal transformation a uniform line source maps into another

uniform line source of the same strength. [Bangalore 2005; K.U. Kurukshetra 1997]
Proof. Let there be a uniform line source of strength m per unit length through the point z

= z0 and suppose the conformal transformation  = f (z) is made from the z-plane to the -plane

so that the point z = z0 maps into the point 0.    Let 
0zC be a closed curve in the z-plane

containing the point z = z0 and Cz0
 maps into 

0
C  is the  -plane. Then 0    lies within 

0
.C

The complex potential w is clearly the same for both the systems and has the forms

    
, for the - plane
, for the -plane.

w i z
i

    
      

…(1)
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5.32 FLUID DYNAMICS

From (1),     and .    Since  is the same at corresponding points of Cz0
 and 

0
C  we

have,

              
0 0

    
zC C

d d …(2)

But in the z-plane, w = – m log(z – z0) and dw = – mdz/(z – z0). Then, using Cauchy-Residue
theorem, we have

               
00 0

– – (2 ),
–z zC C

dzdw m m i
z z

      …(3)

since the integrand has a residue of 1 at z = z0. Also, w i    .dw d i d    So, (3)
reduces to

      
0

( ) – (2 )    
zC

d id m i                           
0

– 2  
zC

d m …(4)

The numerical value of this is clearly the volume of fluid crossing unit thickness of 0zC
per unit time. Thus, (2) and (4) show that the same volume crosses unit thickness of 0

C  per unit
time which implies an equal line source of strength m per unit length at 0 .  

Theorem II. Under conformal transformation a uniform line vortex maps into another uniform
line vertex of the same strength. [Nagpur 2003, 05]

Proof. Let there be a uniform line vortex of strength k per unit length through z = zo. Also
assume that the conformed transformation ( )f z   is made from the z-plane to the -plane so

that the point z = zo maps into 0.    Let 0zC  be a closed curve containing z = zo and let 
0

C
be its map in the -plane. Then 

0
C  contains 0.    The complex potential w is clearly the

same for both the systems and has the forms

    
, for the z-plane
, for the -plane.

w i
i

   
     

…(1)

From (1),     and .    Since  is the same at corresponding points of 
0zC  and

0
,C  we have         

0 0
    

zC C
d d     …(2)

Now, in the z-plane,         log ( – )
2 o
ikw z z


       so that       
2 ( – )o

ikdw dz
z z




[Using result (14) of Art. 11.4 of chapter 11]

            
00 0

2 – ,
2 – 2z zC C

ik dz ikdw i k
z z

    
    …(3)

since the integrand has a residue of 1 at z = z0.
Also,         w i                    .dw d i d          Hence, (3) reduces to

      
0

( ) –
zC

d i d k                                     – 
0zC

d k  …(4)

The integral on the L.H.S. of (4) is the circulation round 0
.zC  Equations (2) and (4) show that

the circulation round 
0

C  is also k. Since 0zC  and 
0

C  are arbitrary, it follows that the line source
through z = z0 of strength k per unit length maps into an equal line source thorugh 0.  

Theorem III. Under conformal transformation a uniform line doublet maps into another
uniform line doublet of different strength. [K.U.Kurukshetra 2003]

Proof. Let there be a uniform doublet of strength   per unit length through P where
z = z0. Also assume that under conformal transformation ( ),f z   P maps into Q where 0.  
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MOTION IN TWO-DIMENSIONS AND SOURCES SINKS 5.33

Let the doublet be replaced by equivalent line sources of strengths – m, + m per unit length
through P, P  where ,PP z   | |m z    and PP  is in the direction of the axis of the line
doublet. Suppose P  maps into Q . Then by the theorem I, the line sources of strengths – m, + m

per unit length through P, Pmap into ones of strengths –m, +m per unit length through Q, .Q
If ,QQ    then ( ) ,f z z    so that | | | ( ) | | |f z z     and arg g arg ( ) arg ,f z z   

showing that the two line sources through Q, Q  give a line doublet at Q of strength   where
| | | ( ) | .m f z       The inclination of the axis of the line doublet to the real axis is increased

by arg ( ).f z
5.19D. Summery of important results regarding applications of conformal transfor-
mations in fluid dynamics [Kanpur 2000]

(i) In a conformal transformation a source is transformed into an equal source, a sink into
an equal sink and a doublet into an equal doublet.

(ii) The complex potential w i    is invariant under a conformal transformation.
(iii) Let ( )f z   be the conformal transformal transformation. Then

total K.E. of fluid in z-plane (per unit depth) = Total K.E. of the liquid in -plane (per unit depth)
(iv) Under a conformal transformation, a stream line in z-plane is transtormed into, a

stream line in -plane.
(v) While using conformal transformation  = zn, n is found by dividing /2 by half the

angle contained between the rigid boundaries.
5.20. Illustrative solved examples.

Ex. 1. Between the fixed boundaries / 6 – / 6and       there is a two-dimensional
liquid motion due to a source at the point ( , )r c     and a sink at the origin absorbing water
at the same rate as the source produces. Find the stream function and show that one of the stream
lines is a part of the curve r3 sin 33 sin 3 .c  

 [Kanpur 2000, 07; Meerut 2002 Garhwal 2003, 04; Rohilkhand 2003, 04]
Sol. Consider the following conformal transformation from z-plane (xy-plane) to -plane (-

plane) :
        3* z               where            iz re              and           iRe  

This                  3 3i iRe r e                   R = r3        and        3   .

Hence the boundaries / 6     in z-plane transform to / 2,     i.e., imaginary axis in
-plane. The point (c, ) in z-plane transforms to (c3, 3) in -plane. Hence the image system
with respect to imaginary axis ( / 2)     in -plane consists of

  (i) a source of strength m at (c3, 3),          (ii) a sink of strength – m at (0, 0),
(iii) a source of strength m at (c3,  – 3)     (iv) a sink of strength – m at (0, 0)

( – )c ,  33 p a ( , 3 )c a3

3a 3a
O (–2m)

x

h

( )m ( )m

Y

O
– m

X

q = p /6

q = p /6
–

c
( )m

c3 c3A c,( a)


* Refer result (v) of Art. 5.19D. Take  = zn. Here, half the angle contained by boundaries = /6.
     Therefore, n = (/2)/(/6) = 3 and hence we take  = z3.

Created with Print2PDF. To remove this line, buy a license at: http://www.software602.com/

SuccessClap: Best Coaching for UPSC Mathematics : For Info- 9346856874
Checkout ->22 Weeks Study Plan, Videos, Question Bank Solutions, Test Series

Succ
ess

Clap



5.34 FLUID DYNAMICS

  3 3 3 ( –3 )– log ( – ) – log{ – } 2 log( – 0)i iw c e m c e m      

      3 3 3 3 3 –3 3– log ( – ) – log( ) 2 logi iz c e m z c e m z   

3[ and cos sin –1]iz e i      
3 3 3 3 3 –3– log[( – ) ( )] 6 logi im z c e z c e m z    6 6 3 3– log ( – – 2 sin 3 ) 6 logm z c ic z m z  
6 6 3 3

6 – 6 3 –3
6

– – 2 sin 3– log – log (1– – 2 sin 3 )z c ic zm m c z ic z
z

 
    

 
6 –6 – 6 3 –3 – 3– log (1– – 2 sin 3 )i im c r e ic r e  

    w 6 – 6 3 –3 6 – 6 3 –3– log[1– cos 6 – 2 sin 3 sin 3 ( sin 6 – 2 sin 3 cos3 )]m c r c r i c r c r       

Writing w i    and equating imaginary parts, we get 

     
6 –6 3 –3

–1
6 –6 3 –3

sin 6 – 2 sin 3 cos3– tan ,
1– cos6 – 2 sin 3 sin 3

c r c rm
c r c r

  
 

  
…(1)

which is the required stream function.The stream lines are given by  = constant. The stream line
corresponding to  = 0 is given by [putting  = 0 in (1) and noting that tan–1 = 0]

6 –6 3 –3sin 6 – 2 sin 3 cos3 0c r c r              or         3 3sin 6 2 sin 3 cos3c r   

or   3 32 sin 3 cos 3 2 sin 3 cos3c r                 or           3 3sin 3 sin 3 .c r  
Ex.2. Between two fixed boundaries  = /4 and  = – /4, there is two-dimensional liquid

motion due to a source of strength m at the point (r = a,  = 0) and an equal sink at the point
(r = b,  = 0). Show that the stream function is

4 4 4
–1

8 4 4 4 4 4
( – ) sin 4– tan

– ( )cos 4
r a bm

r r a b a b


  [I.A.S. 1998; Garhwal 1996; Meerut 2006;

             Rohilkhand 2000; U.P.P.C.S 2000; Kanpur 1999]
and show that the velocity at ( , )r   is

          
4 4 3

8 4 4 8 1/ 2 8 4 4 8 1/ 2
4 ( – )

( – 2 cos 4 ) ( – 2 cos 4 )
m a b r

r a r a r b r b  
[I.A.S. 1991, 94]

Sol. Consider the following conformal transformation from z-plane (xy-plane) to -plane
(-plane).

        2z  ,           where             iz re             and            iRe  

This                  2 2i iRe r e                    R = r2         and        2 .  

O

Y

z - PLANE

m – m X

A B




=
/4




= –

/4

 - PLANE


– m m m – m

B  A A B 

  = /2

  = – /2



O

*log(x + iy) = (1/2) × log(x2 + y2) + i tan–1(y/x),    log(x – iy) = (1/2) × log(x2 + y2) – i tan–1 (y/x)
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MOTION IN TWO-DIMENSIONS AND SOURCES AND SINKS 5.35

Hence the boundaries / 4     in z-plane transform to / 2    i.e., imaginary axis of

-plane. The points A (a, 0) and B (b, 0) in z-plane transform to A (a2,0) and B (b2,0) respectively
in -plane. Then, the image system with respect to imaginary axis ( / 2)     in -plane consists of

(i) a source of strength m at A (a2, 0) (ii) a sink of strength – m at B (b2, 0)
(iii) a source of strength m at A (– a2, 0) (iv) a sink of strength – m at B (– b2, 0)

  2 2 2 2– log ( – ) log( – ) – log ( ) log ( )w m a m b m a m b        

2 4 2 4 4 4 4 4– log( – ) log ( – ) – log( – ) log ( – )m a m b m z a m z b      , as 2z  …(2)

4 4 4 4 4 4– log ( – ) log( – )i im r e a m r e b   , as  iz re 

               w 4 4 4 4 4 4– log( cos 4 – sin 4 ) log ( cos 4 – sin 4 )m r a ir m r b ir              …(3)

Writing w i    in (3) and equating imaginary parts, we get

     
4 4

–1 –1
4 4 4 4

sin 4 sin 4– tan – tan
cos 4 – cos 4
r rm

r a r b
  

   
  

or  
4 4 4

–1
8 4 4 4 4 4

( – ) sin 4– tan
– ( )cos 4 –


 

 
r a bm

r r a b a b
,  

–1 –1 –1 –on using tan – tan tan
1




x yx y
xy

From (2), 
3 3

4 4 4 4
4 4–
– –

dw z zm m
dz z a z b

  
3 4 4

4 4 4 4
–4 ( – )

( – ) ( – )
mz a b

z a z b


3 3 4 4

4 4 4 4 4 4
–4 ( – )

( – ) ( – )

i

i i
mr e a b

r e a r e b



 
3 4 4

4 4 4 4 4 4 4
–4 (cos3 sin 3 ) ( – )

( cos 4 – 4 sin 4 ) ( cos 4 – 4 sin )
mr i a b

r a ir r b ir
 


     

Hence the required velocity | / |q dw dz  is given by

           
3 4 4

8 4 4 8 1/ 2 8 4 4 8 1/ 2
4 ( – )

( – 2 cos 4 ) ( – 2 cos 4 )
mr a bq

r a r a r b r b


 
Ex. 3. Use the method of images to prove that if there be a source m at the point z0 in a

fluid bounded by the lines  = 0 and / 3,   the solution is
3 3 3 3

0 0– log{( – ) ( – )}i m z z z z         where     z0 = x0 + iy0      and    0 0 0– .z x iy 
[Agra 2000; Garhwal 2005; Kanpur 2002, 04; I.A.S. 1997]

Sol. Consider the following conformal transformation from z-plane (xy-plane) to -plane
(-plane) :

      3z              where             iz re             and            iRe   …(1)

This                 3 3i iRe r e                  R = r3        and        3 .  
Hence the boundaries  = 0 and  = /3 in z-plane transform

to  = 0 and  =  i.e., real axis in -plane. The point z0 in z-plane
transforms to point 0 in z-plane such that 3

0 0 .z   Hence the image
system with respect to real axis in -plane consists of

(i) a source m at 3
0 0z       (ii) a source m at 3

0 0z  
Hence,                 0 0log ( ) log ( )w m m       

or                              w 33 3 3
0 0– log ( – ) – log ( – )m z z m z z 

or      3 3 3 3
0 0– log{( – ) ( – )}.i m z z z z   

O



 = 0
  =

(  = )  0 0z
3

(  = )0 0z
3

S m( )

S m ( )

iz re 
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5.36 FLUID DYNAMICS

Ex. 4. If fluid fills the region of space on the positive side of the x-axis, which is a rigid
boundary and if there be a source m at the point (0, a) and an equal sink at (0, b) and if the
pressure on the negative side be the same as the pressure at infunity, show that the resultant
pressure on the boundary is 2 2( – ) / 2 ( ),m a b ab a b   where   is the density of the fluid.

[U.P.P.C.S. 1995; I.A.S. 1995, 2008]
Sol. Here the image system with respect to x-axis in z-plane consists of
(i) a source m at (0, a) i.e., at z = ai (ii) a sink – m at (0, b) i.e., at z = bi

(iii) a source m at (0, – a) i.e., at z = – ai (iv) a sink – m at (0, –b) i.e., at z = – bi
Clearly this image system does away with the boundary y = 0 (i.e., x-axis). Thus, the complex

potential of this entire system is given by
         w = – m log (z – ai ) + m log (z – bi) – m log (z + ai) + log (z + bi)

or               w = – m log (z2 + a2) + m log (z2 +b2)

  velocity = 2 2 2 2
2 2dw zm zm

dz z a z b
  

 

The velocity q at a point on the boundary (i.e., y = 0) is given by (setting z = x + iy = x as y = 0)

   
2 2

2 2 2 2 2 2 2 2
2 2 2 ( – )–

( ) ( )
xm xm xm a bq

x a x b x a x b
  

    ... (1)

Let p0 be the pressure at infinity. Then by Bernoulli’s theorem, the pressure p at any piont is
given by

           2 2 01 1 0
2 2

ppq    
 

                 or                 20 – 1 .
2

p p
q


... (2)

 The resultant pressure on the boundary

           
2 2 2 2

2 2
0 2 2 2 2 2 20 0 0

1 ( – )( – ) 2 , by (1)and (2)
2 ( ) ( )

x a bp p dx q dx m dx
x a x b

  
    

   

       
2 2 2 2

2
2 2 2 2 2 2 2 2 2 2 2 20

1 12 – – – –
– ( ) ( )

             
 a b a bm dx

a b x a x b x a x b
(on resolving into partial fractions)

          
2 2

2
2 22 – – – ,

2 2 4 4–

           
   

a bm
a b a bb a  on simplification

       
2 2 2 2 2 22( ) – ( ) ( – ) .

2 ( ) 2 ( )
m a b a b m a b
ab a b ab a b

    
  

  
Ex. 5. Parallel line sources (perpendicular to xy-plane) of equal strength m are parallel at

the points z = nia where n = …, – 2, – 1, 0, 1, 2, … . Prove that the complex potential is
w = – m log sinh ( / )z a . Hence, show that the complex potential for two dimensional doublets
(lines doublets), with their axes parallel to the x-axis, of strength µ at the same points is given by
w = µ coth (z/a).

Sol. The complex potential due to sources of strength  m situated at the points z = 0, ia, –ia,
2ia, –2ia, … is given by

w = – m log (z – 0) – m log (z – ia) – m log (z + ia) – m log (z –2ia) – m log (z + 2ia) – …
   = – m log z – m log {(z – ia) (z + ia)} – m log {z – 2ia) (z +2ia)} – .....
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MOTION IN TWO-DIMENSIONS AND SOURCES AND SINKS 5.37

= – m log z – m log (z2 + a2) – m log (z2 +22a2) – …
= – m log [z (z2 + a2) (z2 + 22 a2) (z2 + 32 a2)…]

2 2 2

2 2 2 2 2– log 1 1 1
2 3

z z zm z
a a a a

                     

2 2 2 2 2– log (2 ) (3 )am a a a       

                w = – m sinh ( / )z a + constant.
The complex potential w1 for the doublets at the same point is

            1 – coth coth ,w m z zw
z a a a

                
      where      .m

a


 

Ex. 6. In the case of the motion of liquid in a part of a plane bounded by a straight line
due to a source in the plane, prove that if m is the mass of fluid (of density ) generated at the
source per unit of time the pressure on the length 2l of the boundary immediately oppostite to the
source is less than that on an equal length at a great distance by

2
–1

2 2 2
1 1 tan – ,m l l

c c l c
  

    
where c is the distance of source to the boundary..

       [Rohilkhand 2005; Indore 1998; Meerut 1996; Kanpur 2000]
Sol. Let y-axis be the bounding line and let the given

source of strength (µ, say) be situated at S where OS = c.
Now, by the definition of strength µ of the source, we have
2µ = m so that / 2m   . Now, the image system
consists of

(i) a source of strength m/2 at S (c, 0)

(ii) a source of strength m/2 at S  (– c, 0)

Here S   is image of S such that .OS OS c 

The complex potential w is given by

      2 2– ( / 2 ) log ( – ) – ( / 2 ) log ( ) – ( / 2 ) log ( – ).w m z c m z c m z c     

The velocity is given by 2 2 2 2
2 .

2 – –
   

 
dw m z m z
dz z c z c

Hence velocity q at any point P (where z = iy) is given by

      2 2 2 2 .
– – ( )

m iy myq
y c y c

 
   …(1)

Bernoulli’s equation for steady motionis given by

       2/ / 2p q  = constant = c, say..      ... (2)

Let p0 be the pressure on y-axis at great distance from O so that p = p0 and q = 0 when
.y    Then (2) reduces to 0 /p  = c and hence (2) becomes

             
2

0

2
pp q

 
 

                   or                      20 – 1
2

p p
q



y

y

+ m

+ m

2ia

ia

+ m

+ m

– ia

– 2 ia

xx 
O

y

y 

x  x
(– 0)c, ( 0)c, 

P z = iy( )

A

SS

A

O
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5.38 FLUID DYNAMICS

or        
2 2

2
0 2 2 2 2– ,

2 2 ( )
m yp p q
y c

 
  

 
 using (1). …(3)

Let 2 ,AA l   where .OA OA l   Then pressure on the length AA  of the boundary (i.e. y-

axis) 
2 2 2 2

0 2 2 2 2 2 2 2 2– – 0
( – )

2 ( ) ( )

l l l

l l

m y dy m y dyp p dy
y c y c

 
  

     
[  The integrand is an even function of y]

2 2 2 2

2 4 40

tan sec
sec

m c c d
c

    


  [Putting y = c tan  so that dy = c sec2  d .

Here let  =  when y = l so that l = c tan  ]

2 2
2

2 20 0
sin (1– cos 2 )

2
m md d

c c

  
     

    
2 2

02 2
0

1– sin 2 – sin cos
22 2

m m
c c


           

2 2 2
1 –1

2 2 2 2 2 2 2
1[ sin cos ] tan tan – .

2 2 2
m m ml lc l l

c c cc c l c l c
                      

     2 2 1/ 2 2 2 1/ 2tan / sin /( ) and cos /( )l c l l c c l c          

Ex. 7. The space on one side of an infinite plane wall y = 0, is filled with inviscid,
incompressible fluid, moving at infinity with velocity U in the direction of the axis of X. The
motion of the fluid is wholly two dimensional, in the (x, y) plane. A doublet of strength µ is at a
distance a from the wall and points in the negative direction of the axis of X. Show that if µ is

less than 4a2U, the pressure of the fluid on the wall is a maximum at points distant 3a from O,
the foot of the perpendicular from the doublet on the wall, and is minimum at O.

If µ is equal to 4a2U, find the point where the velocity of the fluid is zero, and show that the
streamlines include the circle x2 + (y – a)2 = 4a2, where the origin is taken at O.

Sol. We know that the complex potential for a doublet of
strength µ at z = z0 inclined at an angle  to the x-axis is given
by µ ei/(z - z0).

Here the given doublet AB points in the negative direction
of x-axis and so the given doublet makes an angle  with OX.
Now the given doublet is situated at Q where z = ia.  Hence
the image of the given doublet AB will be an equal doublet of
strength µ, similarly oriented, and will be situated at R where z
= ia (note that here OR = OQ = a).

Let w be the complex potential for the system, consisting of original doublet AB, image
doublet CD and the stream U.

             w =







  




e

z ia
e

z ia Uz z
z a

Uz
i i  2

2 2 . ...(1)

From (1),            
2 2 2 2

2 2 2 2 2 2
1 ( ) 2 2 ( )2 .

( ) ( )
dw z a z z a zU U
dz z a z a

     
      

  ...(2)

Let P be any point on the wall X X.  Then, at P, z = x. Hence the velocity q on the wall is
given by

               q dw
dz

a x
x a

U
a x

x a
U  

 


 
 




2 22 2

2 2 2

2 2

2 2 2
( )

( )
( )

( ) . ...(3)

Q

a

a
(+) (–)

(+) (–)
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MOTION IN TWO-DIMENSIONS AND SOURCES AND SINKS 5.39

By Bernouilli’s theorem, we have
p/ + q2/2 = constant = C, say. ...(4)

Now,       when z = ,       p =        and       q = U.        Then (4) becomes
/ + U2/2 = C. ...(5)

Subtracting (4) from (5),               ( p)/ + (U2  q2)/2 = 0
or p = (/2)×(q2  U2)

or  p =

22 2
2

2 2 2
2 ( )

,
2 ( )

a x
U U

a x

            
 using (3)

or  p = 2
2 2 2

2 2 4

2 2

2 2 2
 







L
NMM

O
QPP


( )
( ) ( )

a x
a x

U
a x

a x

or         p =   



 



2 22
2 2 2

2 2 4

2 2

2 2 2
( )
( ) ( )
a x
a x

U a x
a x

...(6)

   
dp
dx =  









L
NMM

O
QPP

2
4 82

2 2

2 2 4

2 2 2

2 2 5
x a x
a x

x a x
a x

( )
( )

( )
( )

 







L
NMM

O
QPP

2 2 4
2 2 2

2 2

2 2 3U x
a x

x a x
a x( )
( )

( )

or     
dp
dx

x a x U a x a x
a x

 
     


4 2 32 2 2 2 2 2

2 2 5
{ ( ) ( ) } ( )

( )
...(7)

The pressure will be maximum or minimum if dp/dx = 0 i.e., if
       x (3a2 x2) = 0            or           2µ(a2  x2) + U(a2 + x2)2 = 0, by (7)
If x(3a2  x2) = 0,       then we have         x = 0,         x = a 3          and x =a 3 .
Now on the wall XX  (y = 0) at x = a 3 , by (2), we have

      dw
dz U a a

a a
  

 


2 3
3

2 2

2 2 2
( )

( )
= U + 




 
4

4
42

2

2a
a U

a
. ...(8)

If µ < 4a2 U, the value of d2p/dx2 at x = a 3  is negative and hence the pressure of the fluid
at the wall is a maximum when x = a 3 .

Again, d2p/dx2 at x = 0 is positive and hence the pressure of the fluid at the wall is a
minimum when x = 0.

Now, if µ = 4a2U, then dw/dz = 0 from (8). So (2) reduces to
         8a2 U(a2  z2)/ (a2 + z2)2  U = 0

or    z4  6a2z2 + 9a4 = 0,         so that          (z2  3a2)2 = 0        or       z = ± a 3 .
Hence the stragnation points are given by       ( a 3 , 0)         and        ( a 3 , 0).
Writing     µ = 4a2U,     w =  + i     and     z = x + iy, (1) may be re written as

                    + i = 


  
 

8
2

2

2 2 2
a U x iy

x a y ixy
U x iy( )

( )
( )

or           + i 
   

     
 

8 2
2 2

2 2 2 2

2 2 2 2 2 2
a U x iy x a y ixy

x a y ixy x a y ixy
U x iy( ) [( ) ]

[( ) ] [( ) ]
( ). ...(9)

Equating the imaginary parts on both sides of (9), we have

       
  

  


L
NMM

O
QPP


8 2
4

2 2 2 2 2

2 2 2 2 2 2
a U y x a y x y

x a y x y
Uy{ ( ) }

( ) ...(10)
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5.40 FLUID DYNAMICS

The streamlines are given by  = constant. Taking constant = 0, the streamlines given by 
= 0 are

          8 2
4

2 2 2 2 2

2 2 2 2 2 2
a Uy x a y x

x a y x y
Uy[( ) ]

( )
  

  
 = 0

or     8a2[a2  (x2 + y2)] + [(x2  y2) + a2]2 + 4x2y2 = 0
or       8a4  8a2(x2 + y2) + (x2  y2)2 + 2a2(x2  y2) + a4 + 4x2y2 = 0
or                9a4  8a2(x2 + y2) + (x2 + y2)2 + 2a2(x2  y2) = 0
or    9a4 + (x2 + y2)2  6a2x2  6a2y2  4a2y2 = 0        or        [(x2 + y2)  3a2]2  4a2y2 = 0
or                 (x2 + y2  3a2  2ay) (x2 + y2  3a2  2ay) = 0,
which includes the circle       x2 + y2  3a2  2ay = 0       or        x2 + (y  a)2 = 4a2.

EXERCISE 5 (C)
1. Obtain the image of a simple source with respect to a plane (or a straight line).

[Kanpur 2003]
Hint. Proceeed as in Art 5.18 by replacing line by plane to get the same result.
2. A two-dimensional source of strength m is situated at the point (a, 0), the axis of y being

a fixed boundary. Find the points in the boundary at which the fluid velocity is a maximum. Show
that the resultant thrust on the part of the axis of y which lies between y = ± b is

    2 –1
0 2 2

12 – 2 tan – ,b bp b m
a a a b

   
 where p0 is the pressure at infinity..

Particular Case. When b = a, the thrust = 2
02 – ( / ) ( / 2 –1)p a m a  

3. OX and OY are fixed rigid boundaries and there is a source at (a, b). Find the stream lines
and show that the dividing line is xy (x2 – y2 – a2 + b2) = 0.

4. The irrotational motion in two-dimensions of a fluid bounded by the lines y = ± b is due to
a doublet of strength µ at the origin, the axis of the doublet being in the positive direction of the
axis of x. Prove that the motion is given by

                    
( )coth

2 2
x iyi

b b
       

 
Show also that the points where the fluid is moving parallel to the axis of y lie on the curve

coth ( / )x b = sec ( / ).y b
5. In liquid bounded by the axes of x and y in the first quadrant there is a source of strength

m at distance a from the origin on the bisector of the angle XOY. Prove that the complex potential
is –m log (x4 + a4).
5.21. Image of a source with regard to a circle.    [Meerut 2000, 06; Rajasthan 2000, 2010;

     Agra 2005; Garhwal 1999; G.N.D.U. Amritsar 2000,  Kanpur 2002, 2010]
Let us determine the image of a source of strength m at a point A with respect to the circle

with O as centre. Let OA = f and let B be inverse point of A with respect to the circle. If a be the
radius of the circle, then OA.PB = a2 so that OB = a2/f. Let P(z) be an arbitrary point in the plane of
the circle.

Let there be a source of strength m at B. If w be the complex
potential due to sources at A and B, then we get

w = – m log (z – f) – m log (z – a2/f)
  2– [log ( cos – sin ) log ( cos – / sin )]m r r ir r a f ir       

        [ (cos sin ) cos sin ]iz re r i r ir      
O B

m( )
A
m( )

Q
r

r2
r1

P


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 Image of a source with regard to a circle.    [Meerut 2000, 06; Rajasthan 2000, 2010;
     Agra 2005; Garhwal 1999; G.N.D.U. Amritsar 2000,  Kanpur 2002, 2010]

Let us determine the image of a source of strength m at a point A with respect to the circle
with O as centre. Let OA = f and let B be inverse point of A with respect to the circle. If a be the
radius of the circle, then OA.PB = a2 so that OB = a2/f. Let P(z) be an arbitrary point in the plane of
the circle.

Let there be a source of strength m at B. If w be the complex
potential due to sources at A and B, then we get

w = – m log (z – f) – m log (z – a2/f)
  2– [log ( cos – sin ) log ( cos – / sin )]m r r ir r a f ir       

        [ (cos sin ) cos sin ]iz re r i r ir      
O B

m( )
A
m( )

Q
r

r2
r1

P


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MOTION IN TWO-DIMENSIONS AND SOURCES AND SINKS 5.41

Writing w i    and equating real parts, we get

          2 2 2 2 2– ( / 2) log ( cos – ) ( sin ) log ( cos – / ) ( sin )           m r f r r a f r

         
4 2

2 2 2
2

2– log( – 2 cos ) log – cos
2
m a rar f fr r

ff

  
           

   
2

2 2 2 4 2 2
2( – cos ) 2{ – ( / )cos }–

2 – 2 cos / – 2 ( / )cos
m r f r a f

r r f fr r a f r a f
   

  
     

Hence normal velocity at any point Q on the circle

     2 2 2 2 2 2
– cos ( / ) ( – cos )–

– 2 cos ( / ) ( – 2 cos )r a

a f a f f am
r a f fa a f f a af

               

          
2

2 2
– cos / – cos

– 2 cos
a f f a f mm

aa f fa
   

    
  

Now, if we place a source of strength – m at O, the normal velocity due to it at Q will be
–(m/a) and hence the normal velocity of the system will reduce to zero.

Hence the image system for a source outside a circle consists of an equal source at the
inverse point and an equal sink at the centre of the circle. [Kanpur 2002, 08]
5.22. Image of a doublet with regard to a circle.

[Kanpur 2003, 06; Kurukshetra 2000; Rajasthan 1998]
Let us determine the image of a doublet AA with its axis making an angle   with OA,

outside the circle, there being a sink – m at A and a source m at A. Join OA and OA. Let B and
B be the inverse points of A and A with regard to the circle with O
as centre.

Then              2 ,OA OB OA OB a     …(1)

where a is the radius of the circle.
Now the image of source m at A consists of a source m at B

and and a sink – m at O. Similarly, the image of sink – m at A
consists of a sink at B and a source m at O. Compounding these, we see that source m and sink
– m at O cancel each other and hence the image of the given doublet AA is another doublet BB.

Let the strength of the given doublet AA be µ.
Then                  lim ( )

A A
m AA


   …(2)

From (1)      OA/OA = OB/OB, …(3)
showing that triangles OAA and OBB are similar. From these similar triangles, we have

   
2BB OB OB OA a

AA OA OA OA OA OA
   
   

  
…(4)

   µ = strength of doublet BB
2

lim ( ) lim ( ),
B B A A

am B B m AA
OA OA  

     


 by (4)

        2 2/ , using (2)    a f and taking OA OA f
Thus the image of a two-dimensional doublet at A with regard to a circle is another doublet

at the inverse point B, the axes of the doublets making supplementary angles with the radius
OBA.

O B A – m( )

B
 

A  m ( )
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5.42 FLUID DYNAMICS

5.23A. The Milne-Thomson circle theorem or simply the circle theorem.
Statement : Let f(z) be the complex potential for a flow having no rigid boundaries and

such that there are no singularities of flow within the circle | z | = a. Then, on introducing the
solid circular cylinder | z | = a into the flow, the new complex potential is given by

2( ) ( / ) w f z f a z for | | .z a

[Rohilkhand 2002, 03, 05; Kanpur 2000, 09; Garhwal 2003, 05; Meerut 1998]

Proof. Let C be the cross-section of the circular cylinder | z | = a. Then on C, 2zz a  or
2 / .z a z  Hence for points on the circle, we have
    2( ) ( / ) ( ) ( )w f z f a z f z f z             or          ( ) ( )i f z f z    …(1)
Since the quantity on R.H.S. of (1) is purely real, equating imaginary parts (1) gives

 = 0 on C. Hence C is a streamline in the new flow..
By hypothesis all the singularites of f (z) (at which sources, sinks, doublets or vortices may

be present) lie outside the circle | z | = a and so the singularities of 2( / )f a z  lie inside the circle
| z | = a. Hence the singularities of 2( / )f a z  also lie inside the circle | z | = a. Thus we find that the
additional term 2( / )f a z  introduces no new singularities into the flow outside the circle | z | = a.

Hence | z | = a is a possible boundary for the new flow and 2( ) ( / )w f z f a z   is the
appropriate complex potential for the new flow.

Remark 1. In the above proof of circle theorem we have used the following important
results :

Let u(t) and v(t) be real functions of a real variable t. Let f(t) = u(t) + iv (t) so that f(t) is a
complex function of the real variable t.  Then conjugate of f(t) is denoted and defined as

             ( ) ( ) – ( ).f t u t i t v

On replacing real variable t by the complex variable z (= x + iy), f(z) and ( )f z  are defined
as follows :

                        ( ) ( ) ( ),f z u z i z  v                  ( ) ( ) – ( )f z u z i zv

Again,                ( ) ( ) ( ),f z u z i z  v                  ( ) ( ) – ( )f z u z i z v

On comparing the forms of f(z) and ( ),f z  we find that, since z = x + iy, – ,z x iy  the

value of ( )f z  is obtained from f(z) by replacing i throughout by – i. It then follows that ( )f z  is

merely the complex conjugate of f(z) and accordingly, we write ( ) ( ).f z f z
Remark 2. When a circular cylinder is present in the field of sources, sinks, doublets or

vortices, the above theorem provides an easy method for determining the image system. Furthermore
the theorem can also be used to determine modified flows when a long circular cylinder is
introduced into a given two-dimensional flow. Consider the following application of “Circle
theorem”.
523B. To determine image system for a source outside a circle (or a circular
cylinder) of radius a with help of the circle theorem.

Refer figure of Art. 5.21. Let OA = f. Suppose there is a source of strength m at A where
z = f, outside the circle of radius a whose centre is at O. When the source is alone in the fluid the
complex potential at a point P (z) is given by

       f (z) = – m log (z – f)                Then            ( ) – log ( – )f z m z f

                    2 2( / ) – log ( / – )f a z m a z f
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MOTION IN TWO-DIMENSIONS AND SOURCES AND SINKS 5.43

When the circle of section | z | = a is introduced, then the complex potential in the region
| |z a  is given by

2( ) ( / )w f z f a z  = – m log (z – f) – m log (a2/z – f)

   = – m log (z – f) – m log 
2 –a zf

z
 
  
 

   = – m log (z – f) – m log (a2 – zf) + m log z
   = – m log (z – f) – m log [(– f) (z – a2/f)] + m log z
   = – m log (z – f) – m log (z – a2/ f) + m log z – m log ( – f)

 w = – log (z – f) – m log (z – a2/f) + m log z + constant, …(1)
the constant (real or complex, – m log (– f )) being immaterial from the view point of analysing
the flow. (1) shows that w is the complex potential of

(i) a source m at A, z = f      (ii)a source m at B, z = a2/f      (iii) a sink – m at the origin
Since OA · OB = a2, A and B are the inverse points with respect to the circle | z | = a and so

B is inside the circle.
Thus the image system for a source outside a circle consists of an equal source at the

inverse point and an equal sink at the centre of the circle.
5.24. The Theorem of Blasius.     [Agra 2005, 08, 09, 11; I.A.S. 1985; Kanpur 2000;

 Meerut 2001, 02, 04, 08, 09, 10, 11, 12;  G.N.D.U. Amritsar 2003, 05; Rohilkhand 2003]
In a steady two-dimensional irrotational motion of an incompressible fluid under no external

forced given by the complex potential w = f(z), if the pressure thrusts on the fixed cylinder of any
shape are represented by a force (X, Y) and a couple of moment M about the origin of co-
ordinates, then

      
21– ,

2
    
 C

dwX iY i dz
dz

          M = Real part of  
21– ,

2

     
   

C

dwi z dz
dz

where  is the fluid density and integrals are taken round the contour C of the cylinder.
Proof. Figure shows the section C of the cylinder

in plane XOY. Let P (x, y) and Q (x + x, y + y) be
two neighbouring points on C such that arc PQ = s . If
  be the angle which the tangent PT at P on the
contour C makes with x-axis, then

cos / , sin / ,dx ds dy ds      …(1)

and the normal at P makes an angle ( / 2)   with the
x-axis. Now, if p denotes the pressure at p, the force on
unit length of the section s  is ps normal to C. Then
using (1), we have

               cos ( / 2) – sin –
C CC

X p ds p ds p dy         , using (1) …(2)

    sin ( / 2) cos       C C C
Y p ds p ds p dx, using (1) …(3)

       sin ( / 2) – cos ( / 2)
C

M x p ds y p ds         ( cos sin )
C

p x ds y ds   
or     M ( )

C
p x dx y dy  , using (1) …(4)

O

Y

C

( )x, y  P

T N X

Q

90°



( )x + x, y + y 

( /2 + ) 

s

p s
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5.44 FLUID DYNAMICS

Now Bernoulli’s equation in this context is

           21
2

pq B 


                 so that               21– ,
2

p B q   …(5)

where q is the fluid velocity,  the density. Since  is constant for an incompressible fluid, take
B = A (a contant). Again q2 = u2 + v2 where u and v  are the velocity components. Then (5)
reduces to

     2 2– ( / 2) ( )p A u    v …(6)

Also,             / –dw dz u i  v               or              – / –dw dz u i v …(7)
Using (6), (2), (3) and (4) reduce to

     
2 2 2 21 1– ( ) ( )

2 2C C
X A u dy u dy          v v …(8)

     
2 2 2 21 1A – ( ) – ( ) ,

2 2C C
Y u dx u dx         v v …(9)

and          2 2 2 21 1– ( ) ( ) – ( ) ( )
2 2C C

M A u x dx y dy u xdx ydy           v v …(10)

While simplifying (8), (9) and (10), we have to use the following results

           0      C C C C
dy dx x dx x dy

which hold good because C is a closed contour.
Now the contour of the cylinder is a streamline. Hence we have         / /dx u dy v .

Now, –
–

dx dy dx idy dx idy
u u i u i


  

v v v
  or  

2 2– ( – ) ( – )
( ) ( – )


  

   
dx idy u i u i u i
dx idy u i u i u i 2 2

v v v
v v v u v

             2 2 2( – ) ( ) ( ) ( – )u i dx idy u dx idy  v v …(11)
From (8) and (9), we have

        
2 2 2 21 1 1– ( ) ( ) ( )

2 2C C
X iY u dy idx i u dx dy

i
         
  v v

       2 2 21 1( ) – ( – ) ( ),
2 2C C

i u dx idy i u i dx idy      v v  by (11)

                 
21

2 C

dwi dz
dz

    
  , using (7) and the fact z = x + iy    dz = dx + idy;

Re-writing (10), we have

   M = Reat part of 2 21– ( ) ( – ) ( )
2 C

x iy dx idy u   v

      = Real part of 21– ( ) ( – ) ( ),
2 C

x iy u i dx idy   v  using (11)

      = Real part of 
21– ,

2 C

dwz dz
dz

     
   

  using (7)
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MOTION IN TWO-DIMENSIONS AND SOURCES AND SINKS 5.45

Remark 1. The above integrals are to be taken over the contour of the cylinder. If however,
we take a large contour surrounding the cylinder such that between this contour and the cylinder
there is no singularity of the integrand, then we can take the integrals round such large contours.
The singularities of the integrand occur at sources, sinks, doublets etc.

Remark 2. In what follows, we shall often use the following important definitions and results
of functions of complex variables.

A point at which a function f(z) ceases to be analytic is known as a singular point or
singularity of the function. If in the neighbourhood of the point z = a, f (z) can be expanded in
positive and negative powers of (z – a), say

        f (z) = … + A2 (z – a)2 + A1 (z – a) + A0 + 1 2
2– ( – )

B B
z a z a

 

then the point z = a is a singular point of f(z). If only a finite number of terms contain negative
powers of z – a, the point z = a is called a pole. In this case the coefficient of 1/(z – a) is called
the residue of the function at z = a.

Cauchy’s Residue theorem. If f(z) is analytic, except at a finite number of poles within a
closed contour C and continuous on the boundary C, then

  ( ) 2
C

f z dz i   × [sum of the residues of f (z) at its poles within C]

5.25. Illustrative solved examples.
Ex. 1(a). In the region bounded by a fixed quadrantal arc and its radii, deduce the motion

due to a source and an equal sink situated at the ends of one of the bounding radii. Show that

the streamline leaving either end at an angle   with the radius is 2 2sin( ) sin( – )r a     .

[Kanpur 2011; P.C.S. (U.P.) 2000; Rohilkhand 2003; I.A.S. 1986; Meerut 2002, 07]
(b) In a region bounded by a fixed quadrant arc and its radii, deduce the motion due to a

source and an equal sink situated at the ends of one of the bounding radii. Show that the streamline
leaving either end at an angle / 6 with radius is r2 sin ( / 6 )   = a2 sin ( / 6 – )  , where a is
radius of the quadrant. [I.A.S. 1996]

Sol. (a). Let AOB be the circular quadrant of radius a
with OA and OB as bounding radii. Consider a source of strength
m at A and a sink of strength – m at O. Then the image system
consists of (i) a source m at A (a, 0)

(ii) a source m at A (– a, 0)
(iii) a sink –m at O (0, 0).

Hence the complex potential w for the motion of the fluid
at any point P ( )iz x iy re    is given by

w = – m log (z – a) – m log (z + a) + m log z = – m log 
2 2

2 –1– – log( – )z a m z a z
z



or 2 –1 –– log( – )i iw m re a r e  ,        as       iz re 

or     2 –1– log[ (cos sin ) – (cos – sin )]w m r i a r i    

or      
2 2– log[( – / )cos ( / )sin ]i m r a r i r a r     

Equating imaginary parts, we obtain

            
2 2 2

–1 –1
2 2 2

( / ) sin– tan – tan tan
( – / )cos –
r a r r am m
r a r r a

        
   

O A m( )
X

B

Y

A  m ( )
( )– m

 
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5.46 FLUID DYNAMICS

The streamline leaving the end A and O at an angle   is given by

       – ( – )m               i.e.,           
2 2

–1
2 2– tan tan – ( – )

–
r am m
r a

      
  

or       
2 2

2 2
( )sin sintan ( – ) – tan –

cos( – )cos
r a
r a

  
     



or       2 2 2 2( ) sin cos – ( – )cos sinr a r a             or      2 2sin( ) sin( – ).r a    

(b) Hint. Proceed as in part (a) by taking / 6   .
Ex. 2. In the case of the two-dimensional fluid motion produced by a source of strength m

placed at a point S outside a rigid circular disc of radius a whose centre is O, show that the
velocity of slip of the fluid in contact with the disc is greatest at the points where the lines
joining S to the ends of the diameter at right angles to OS meet the circle, prove that its magnitude
at these points is (2m × OS)/(OS2 – a2)

Sol. Let S  be the inverse point of S with respect to the circular disc, with O as its centre.
Let    OS = c. Then OS × OS  = a2     so that    OS = a2/c.

The equivlent image system consists of
(i) a source of strength m at S (c, 0),
(ii) a source of strength m at S  (a2/c, 0),
(iii) a sink of strength – m at O (0, 0).
Let OS be taken as x-axis. Then the complex potential for the motion of the fluid at any

point ( )iz x iy re     is given by
     w = – m log (z – c) – m log (z – a2/c) + m log z

         2–
– – /

  
dw m m m
dz z c zz a c

Let q (= | dw / dz |) be the velocity at any point z. Then

      2 2
1 1 1 ( – ) ( )–
– – / ( – ) ( – / )

z a z aq m m
z c zz a c z z c z a c


  

Hence the velocity at any point iz ae  on the boundary of the circular disc is given by

        2
( – ) ( ) ( –1) ( 1)
( – ) ( – / ( – ) ( – )

i i i i

i i i i i i
ae a ae a c e eq m m

ae ae c ae a c e ae c ce a

   

     
 

 

or    
–

2 2
(1– ) (1 ) 2 sin

( – ) ( – ) – 2 cos

i i

i i
e e mcq mc

ae c ce a a c ac

 

 
 

 
 

…(1)

For maximum q, / 0.dq d   Hence (1) gives

    
2 2

2 2 2
( – 2 cos )cos – sin (2 sin )2 0

( – 2 cos )
a c ac acmc

a c ac
    


 

or       2 2( )cos – 2 0a c ac                  or               2 2cos (2 ) /( )ac a c   …(2)
Since  = 0 gives the minimum velocity [q becomes zero at  = 0 by (1)], the value of 

given by (2) must correspond to the maximum value of velocity q. Moreover (2) gives the same
angles which the diameter through the point where the line joining S to the end of the diameter at
right angle to OS cuts the circle, will make with OS.

O S  S

– m m m
X
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MOTION IN TWO-DIMENSIONS AND SOURCES AND SINKS 5.47

From (2),                 2 2 2 2 2sin 1– cos ( ) /( )c a c a      …(3)

Using (1), (2) and (3), the maximum value of q is given by

     

2 2

2 2 2 2

2 2 2 2 2 2 2
2 2

2 2

–2
2 ( – )

4 ( ) – 4–

c amc
c a mc c aq

a c a c a ca c
a c

 
    




        or       2 2 2 2
2 2

– –
mc m OSq

c a OS a


 

Since the boundary of the circular disc is a streamline, the velocity on the boundary is the
velocity of the slip.

Ex. 3. A source S and a sink T of equal strengths m are situated within the space bounded
by a circle whose centre is O. If S and T are at equal distances from O on opposite sides of it and
on the same diameter AOB, show that the velocity of the liquid at any point P is

             
2 2

2 ,OS OA PA PBm
OS PS PS PT PT
 

   

where S and T are the inverses of S and T with respect to the circle. [Rohilkhand 2001]
Sol. Let OS = OT = c. Then, we have OA = a, OS · OS = a2 and OT · OT  = a2 so that

                            OS = a2/c                  and                OT = a2/c. …(1)
Now the image system of source m at S consists of a source m at S and a sink – m at O.

Again the image system of sink – m at T consists of a sink – m at T and a source m at O.
Compounding these, we find that source m and sink – m at O cancel each other. Hence the
equivalent image system finally consists of

(i) a source of strength m at S (c, 0)
(ii) a source of strength m at S (a2/c, 0)
(iii) a sink of strength – m at T (– c, 0)
(iv) a sink of strength – m at T (– a2/c, 0)
Taking OS as the x-axis, the complex

potential at any point z (= x + iy) is given by

         
2 2

– log( – ) – log – log ( ) loga aw m z c m z m z c m z
c c

   
          

   

                                 2 2– –
– – / /

dw m m m m
dz z c z cz a c z a c

  
 

The velocity q (= | dw/dz |) at any point is given by
2 2 2 2 2 2

2 2 2 4 2 2 2 2 4 2
2 (2 / ) ( – ) ( / ) ( – )– – 2
– – ( / ) ( – ) ( – / )
c a c c z a a c z aq m m

z c z a c z c z a c


 

         
2 2 2 2

2 2 2 4 2

–2
( – ) – /

c a z am
c z c z a c



2 2

2 2
| – | | |2

| – | | | | – | | |

c a z a z am
c a az c z c z z

c c

 


 

    
2 2

2 OS OA PA PBm
OS PS PS PT PT
 

 
   

OT S A S  x
( )m ( )m( )– m

BT x 
( )m

( )– m

P z( )

( )– m
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5.48 FLUID DYNAMICS

Ex. 4. In the part of an infinite plane bounded by a circular quadrant AB and the production
of the radii OA, OB, there is a two-dimensional motion due to the production of the liquid at A
and its absorption at B, at the uniform rate m. Find the velocity potential of the motion and show
that the fluid which issues from A in the direction making an angle µ with OA follows the path

whose polar equation is             2 2 1/ 2sin 2 [cot (cot cosec 2 )] ,      r a

the positive sign being taken for all square roots.

Sol. The image system of source / 2m   at A with respect to the circular boundary consists
of a source / 2m   at A (since A is the inverse point of itself ) and a sink – / 2m   at O, the centre
of the circle. Next, the image of system of the above mentioned image system with respect to the
line OA and OB consists of

(i) a source of strength / 2 / 2m m   i.e. /m   at A (a, 0)
(ii) a source of strength / 2 / 2m m   i.e. /m   at A (– a, 0)

(iii) a sink of strength –
2
m


 at O (0, 0)

O

B

P z( )

m
2

– –

m
2

m
2A

m
2B 

A
m
2

m
2

m
2

m
2

m
2

– – m
2

+

–

+

Again there is a sink of strength – / 2m   at B. The image system of this sink with respect
to the circular boundary consists of a sink –m/2 at B (since B is the inverse point of itself) and
a source m/2 and O. Again the image of the system of the above mentioned image system with
respect to lines OA and OB as before consists of

(i) a sink of strength ( / 2 ) ( / 2 )m m                i.e.           ( / ) m  at B (0, a)

(ii) a sink of strength ( / 2 ) ( / 2 )   m m           i.e.           ( / ) m  at B (0, – a)

(iii) a source of strength / 2m   at O (0, 0)

Compounding these we find that source / 2m   and sink – / 2m   at O cancel each other..
Taking OA as the x-axis, the complex potential at any point P ( )iz x iy re     is given by

           – log ( – ) – log ( ) log ( – ) log ( )m m m mw z a z a z ai z ai    
   

                2 2 2 2– log ( – ) log ( )m mi z a z a    
 

…(1)

Equating real parts, (1) gives

  2 2 2 2 2– log – log –m mz a z i a  
 

   – – log –m mz a z a z ia z ia    
 
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MOTION IN TWO-DIMENSIONS AND SOURCES AND SINKS 5.49

or log ( ) log( ) log


        
   

m m m BP B PAP A P BP B P
AP A P

Putting iz e   in (1) and equating imaginary parts, we get

     
2 2

–1 –1
2 2 2 2

sin 2 sin 2– tan tan
cos 2 – cos2

m r m r
r a r a

 
  

   

                     

2 2

2 2 2 2
–1

4 2

4 2 4

sin 2 sin 2–
cos2 – cos 2– tan

sin 21
cos 2 –

r r
m r a r a

r
r a

 
  

 


2 2
–1

4 4
2 sin 2– tan

–
m a r

r a





The required streamline that leaves A at an inclination   is given by –( / ) ,m    i.e.,
2 2

–1
4 4

2 sin 2– – tan
–

m m a r
r a


 

 
          or          4 2 2 4– 2 sin 2 cot – 0r a r a  

      2 2 4 2 2 4[2 sin 2 cot (4 sin 2 cot 4 )] 2      r a a a

wherein negative sign has been omitted because r2 is non-negative quantity. Thus, we have

                 2 2 1/ 2sin 2 [cot (cot cosec 2 )] .r a      

Ex. 5. Prove that in the two-dimensional liquid motion due to any number of sources at
points on a circle, the circle is a streamline provided that there is no boundary and that the
algebraic sum of the strengths of sources is zero. Show that the same is true if the region of flow
is bounded by a circle which cuts orthogonally the circle in question.

[Kanpur 1997, 2000; Rohilkhand 2000]
Sol. Let A1, A2, A3,… be the positions of the sources of strengths m1, m2, m3,… respectivly.

Let P be any point on the circle and let the diameter through P be taken as the initial line.

Let 1 ,A PA   2 1 1,A PA   3 2 2A PA    and so on. Then the stream function   of the
system is given by

1 2 1 3 1 2– – ( ) – ( ) –m m m           …

   1 2 3– ( )m m m     – 2 1 3 1 2[ ( ) ]m m      = –   (m1 + m2 + m3 + ...) – constant,

since 1 2 3,, ,     do not depend on the position of P. If we take m1 + m2 + m3 + … = 0, then
 = constant is a streamline i.e. the circle is a stream line.

OO1

B1

RP

S Q
A1

A2

A3

O
 AP

A1

A2

A3

A4
A5









Second Part. Let O1 be the centre of a circle which cuts the above circle (with centre O)
orthogonally. The image of m1 at A is m1 at B1, the inverse point of A and a sink  – m1 at O1. If the
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5.50 FLUID DYNAMICS

barriers are omitted, we see that the system reduces to a source 2 (m1 + m2 + …) on the boundary
of the given circle and a sink – (m1 + m2 + …) at O1. Since m1 + m2 + … = 0, the result follows.

Ex. 6. A line source is in the presence of an infinite plane on which is placed a semi-
circular cylindrical boss, the direction of the source is parallel to the axis of the boss, the source
is at a disdtance c from the plane and the axis of the boss, whose radius is a. Show that the
radius to the point on the boss at which the velocity is a maximum makes an angle  with the
radius to the source, where

       
2 2

–1
4 4

cos
{2( )}

a c

a c


 


[Agra 1999, 2000]

OR    If the axis of y and the circle x2 + y2 = a2 are fixed boundaries and there is a two-
dimensional source at the point (c, 0) where c > a, show that the radius drawn from the origin to
the point on the circle, where the velocity is a maximum, makes with the axis of x an angle

                        
2 2

–1
4 4

cos .
{2 ( )}

a c

a c





When c = 2a, show that the required angle is –1cos (5 / 34).
Sol. Let there be a source of strength m at

L (c, 0). Let L be the inverse point of L with respect

to the circular boundary so that 2 OL OL a  i.e.
2' / .OL a c  The image of source m at L in the

circular boundary (cylindrical boundary) is a source
m at L and a sink – m at O.

For the above system the equivalent image
system with respect to the y-axis (i.e. the line x = 0)
consists of

(i) a source m at L (c, 0) and L (– c, 0)

(ii) a source m at L (a2/c, 0) and 2(– / , 0)L a c

(iii) a sink – m – m i.e. – 2m at O (0, 0)

Thus, if P ( )iz x iy re     is any point in the fluid, the complex potential at P due to the
above system is given by

w = – m log (z – c) – m log (z + c ) – m log (z – a2/c) – m log (z + a2/c) + 2m log z
or                      w = 2m log z – m log (z2 – c2) – m log (z2 – a4/c2)

     
2 2 2 4 2

2 2 2– –
– – /

dw m mz mz
dz z z c z a c

       or      
4 4

2 2 2 4 2
2 ( – )–

( – ) ( – / )
dw m z a
dz z z c z a c



The velocity ( | / |)q dw dz  at any point P ( )iz ae   on the circular boundary is given by

4 4

2 2 2 2 2 4 2
2 | –1 |

| ( – ) ( – / ) |

i

i i i
m a eq

ae a e c a e a c



           or        
2

4 4 2 2
4 sin 2

– 2 cos 2
macq

a c a c



 

or         2 4 4 2 2(4 / ) ( – 2 cos 2 ) / sin 2mac q a c a c    …(1)
Let f = 4mac2/q. When q is maximum, then f will be minimum. From (1), we have

          4 4 2 2( )cosec2 – 2 cot 2f a c a c    …(2)

O L LLL
mm– m

– m
mmx  x

y

y 

P z( )
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MOTION IN TWO-DIMENSIONS AND SOURCES AND SINKS 5.51

      4 4 2 2 2/ – 2( )cosec2 cot 2 4 cosec 2df d a c a c       …(3)

      2 2 4 4 2 2 2 2 2/ 4( )cosec2 (cosec 2 cot 2 ) – 8 cosec 2 cot 2d f d a c a c        

               2 2 2 4 2 4 24cosec2 [( cosec 2 – cot 2 ) cot 2 cosec 2 ]a c a c       

Since / 2,    clearly 2 2/d f d  is positive and hence f will be minimum and consequently

q will be maximum. From (3), setting / 0,df d   we get

  4 4 2 2 2( )cosec 2 cot 2 4 cosec 2a c a c             or       2 2 4 4cos 2 2 /( )a c a c  

      2 2 2 4 42cos – 1 2 / ( ),a c a c           or      2 2 2 2 4 4cos ( ) / 2 ( )a c a c   

so that                           2 2 4 4cos ( ) / {2( )}.a c a c   

Ex. 7. A source of fluid situated in space of two dimensions, is of such strength that 2
represents the mass of fluid of density  emitted pet unit of time. Show that the force necessary to
hold a circular disc at rest in the plane of source is 2 2 2 22 / ( – ),a r r a  where a is the radius
of the disc and r the distance of the source from its centre. In what direction is the disc urged by
the pressure ? [Kanpur 2005, 06; Meerut 2005, 11; Rohilkhand 2002]

Sol. Since the mass of fluid emitted is 2  per unit
of time, by definition the strength of the given source is µ.
Let this source be situated at A such that OA = r and let B be
the inverse point of A. Then, OA · OB = a2 so that
OB = a2/r. Here the equivalent image system consists of
(taking OA as x-axis and using Art. 5.21)

(i) a source of strength µ at A (r, 0)
(ii) a source of strength µ at B (a2/r, 0)
(iii) a sink of strength µ at O (0, 0)
Hence the complex potentioal at any point P (z = x + iy) is given by

          2– log( – ) – log( – / ) logw z r z a r z    

           
2–

– – /
  

  
dw
dz z r zz a r

…(1)

If the pressure thrusts on the given circular disc are represented by (X, Y), then by Blasius’

theorem, we have                   
21–

2 C

dwX iY i dz
dz

    
      …(2)

where C is the boundary of the disc. Again, by Cauchy’s residue theorem, we have

          
2

2
C

dw dz i
dz

    
  × [sum of the residues], …(3)

wherein the indicated sum of the residues is calcualated at poles of (dw/dz)2 lying within the
circular boundary. Using (3), (2) reduces to

              X – iY = –  × [sum of the residues] …(4)
We proceed to find the residues of (dw/dz)2. From (1), we have

   
2dw

dz
   
 

2
2 2 2 2 2 2

1 1 1 2 2 2– –
( – )( – ) ( – / ) ( – / ) ( – ) ( – / )

 
    

 z z rz r z a r z z z a r z r z a r

O B A

P z( )
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5.52 FLUID DYNAMICS

       = 2
2 2 2 2 2 2

1 1 1 2 2 2– –
( – )( – ) ( – / ) ( / ) ( – / )


   

 z z r rzz r z a r z a r z a r

                   
2 2 2 2
2 2 2

( / ) ( – / ) ( – ) ( / – ) ( – / )a r z r a r z r a r r z a r


   


…(5)

[Resolving R.H.S. into partial fractions]
From (5), we find that the poles inside the circular contour C are z = 0 and z = a2/ r.
 The required sum of the residues

         = the sum of the coffecients of z– 1 and 2 –1( / )z a r  in R.H.S. of (5)

        
2 2 2 2 2 2

2 2 2 2 2
2 2 2 2 2

/ / / – ( – )
a

r a r a r a r r r a r
    

     …(6)

Using (6) in (4) and then equating real and imaginary parts, we have

     2 2 2 22 / ( – )X a r r a               and      Y = 0.
Thus the disc is attracted towards the source along OA. Hence the disc will be urged to move

along OA.
Ex. 8. Within a circular boundary of radius a there is a two-dimensional liquid motion due

to source producing liquid at the rate m, at a distance f from the centre, and an equal sink at the
centre. Find the velocity potential and show that the resultant pressure on the boundary is

2 3 2 2 2/ 2 ( – ),m f a a f where  is the density. Deduce as a limit velocity potential due to a
doublet at the centre. [Rohilkhand 2000; Agra 2004; Kanpur 1997; Meerut 1999, 2005]

Sol. Since the rate of production of liquid is m, by definition the strength of the given
source is / 2 .m   Let this sources be situated at B such that OB = f (refer figure of Ex. 7). Let A
be the inverse point of B. Then                OA.OB = a2       so      that     OA = a2/f.

Taking OA as x-axis, the equivalent image system consists of
(i) a source of strength / 2m   at B (f, 0)    (ii) a source of length / 2m   at A (a2/f, 0)

(iii) a sink of strength – / 2m   at O (0, 0)
Hence the complex potential w at any point P (z = x + iy) is

         2– ( / 2 ) log ( – ) – ( / 2 ) log ( / ) ( / 2 ) logw m z f m z a f m z      …(1)

                   2
1 1 1– –

2 – – /
dw m
dz z f zz a f

 
  

  


2 2

2 2 2 2 2 2 2
1 1 1 2 2 2– –

( – )4 ( – ) ( – / ) ( – ) ( – / ) ( – / )
dw m
dz z z fz f z a f z z f z a f z z a f

        
   

     
2

2 2 2 2 2 2 2 2
1 1 1 2 2

4 ( – ) ( – / ) ( – / ) ( – ) ( / – ) ( – / )
m

z f z a f z f a f z f a f f z a f


    
 

                                 
2 2 2
2 2 2 2– –

( – )/ ( / ) ( – / )


  
f z f fzza f a f z a f

…(5)

[Resolving R.H.S. into partial fraction]
If the pressure thrusts on the given circular disc are represented by (X, Y), then by Blasius’

theorem, we have
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MOTION IN TWO-DIMENSIONS AND SOURCES AND SINKS 5.53

        
21–

2 C

dwX iY i dz
dz

    
  …(6)

where C is the boundary of the disc. Again, by Cauchy’s residue theorem, we have

           
2

2
C

dw dz i
dz

    
  × [sum of the residues] …(7)

Using (7), (6) reduces to                  –X iY    × [sum of the residues] …(8)

From (5), we find that poles inside the circular contour C are at z = 0    and    z = f.
 The required sum of the residues

          = the sum of the coefficients of z– 1 and (z – f)– 1 in R.H.S. of (5)

          
2 2 3

2 2 2 2 2 2 2
2 2 2 2–

4 ( – / ) / 2 ( – )

 
    

  

m m f
f ff a f a f a f a

Using this in (8) and equating real and imaginary parts, we have

             2 3 2 2 2/ 2 ( – )X m f a a f                  and               Y = 0, …(9)
giving the required pressure.

We now obtain the velocity potential. Note that real part of log z = log | z |. Writing w i   
(1) and equating real parts, we have

      – [log | – | log | | – log | |]
2
m z f z f z   


                   – [log log – log ] – log .
2 2
m m PB PAPB PA PO

PO


  
 

Second part. In order to obtain the doublet at the centre, make 0,f  ( / 2 )m f    so

that 2 / .a f    Then, (1) reduces to

    2– log 1 – log 1– ,
2
m f fzw

z a
              

where we have rejected the constant term. Using the expansions of log (1 ± x) and rejecting
powers of f higher than the first, we get

     22
m f fzw

z a
     

             or             
2
zi

z a
 

              
2
mf    



or            –
2 ,i iri e e

r a
  

           as       iz re 

Equating real parts, the velocity potential due to doublet at centre is given by

         –1 –2( )cosr a r    

Ex. 9. Find the velocity potential when there is a source and an equal sink within a circular
cavity and show that one of the stream lines is an arc of the circle which passes through the
source and the sink and cuts orthogonally the boundary of the cavity.

Sol. Let the source m and the sink – m be situated at the P and Q within the circular cavity
with centre at O (0, 0). Let P and Q be the inverse points of P and Q respectively. Now, to do
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5.54 FLUID DYNAMICS

away with the circular cavity, we proceed to get an equivalent system. The image system of source
m at P consists of a source m at P and a sink – m at O. Similarly, the image system of sink – m at
Q consists of a sink – m at Q and a source m at O. The source and sink at O cancel each other and
then the resulting equivalent system consists of

(i) a source of strength m at P (z = c)
(ii) a source of strength m at P (z = a2/c)

(iii) a sink of strength – m at ( )iQ z be 

(iv) a sink of strength – m at 2[ ( / ) ]iQ z a b e  

wherein OP = c, OQ = b, a = radius of circle with centre O, OP.OP = a2 so that OP = a2/c, OQ.OQ

= a2 so that OQ = a2/b and .QOP  

Hence the complex potential at any point P (z) is

   2 2– log ( – ) – log ( – / ) log( – ) log[ – ( / ) ]i iw m z c m z a c m z be m z a b e   

       
2

2
( – )[ ( / ) ]log

( – ) ( – / )

i iz be z a b ei m
z c z a c

 
    …(1)

The desired velocity potential  and stream function  may be obtained by equating real and
imaginary parts in (1).

Since OP.OP = 2OQ OQ a  , the points P, Q, P Q are concyclic. Let the circle
passing through P, Q, P, Q cut given circle (with centre O) at N and M. Since OP  OP = a2 = ON2,
ON must be tangent to the circle through N. Hence the two circles cut orthogonally. Again the
circle PQMN passes through P and Q (i.e. source and sink) and so it is a streamline.

Ex. 10. With a rigid boundary in the form of the circle 2 2 2( ) ( – 4 ) 8 ,x y       there is
a liquid motion due to a doublet of strength µ at the point (0, 3) with its axis along the axis of
y. Show that the velocity potential is

       2 2 2 2
4 ( – 3 ) – 3

( – 3 ) ( – 3 )
x y

x y x y
      

     
[Meerut 2008]

Sol. The given circle has centre (– , 4 )O    and radius = 2(8 ) 2 2 .    Let the given
doublet be at P (0, 3).

Gradient of 3 – 4 3– 1 tan
0 – ( – ) 4

O P       


Hence OP makes an angle  /4 with OY. Let P be the image
of P. Then the axis of doublet at P will make an angle of 45°with
PP and hence it will be parallel to x-axis.

We now show that P lies on x-axis. We have
28O P O P           or     2( ) 8O P O P PP     …(1)

But     2 2[(– – 0) (4 – 3 ) ] 2O P        …(2)

 From (1),   22( 2 ) 8PP        or   3 2 3 sec 45 sec 45PP OP       

O P

Q

M

N
Q 

P 


(– , 4 ) 

P 

135°3

O

x

y

P


L O
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MOTION IN TWO-DIMENSIONS AND SOURCES AND SINKS 5.55

This shows that P lies on the x-axis and that co-ordinates of P are (3 , 0).  Let µ be the
strength of P.

Then, the strength of doublet at P
2 2

2 2
(radius) 8 4
( ) 2O P


       

 

Thus the equivalent image system consists of doublets at P and P. Hence the complex
potential of motion at point z (= x + iy) is given by

    
/ 2 0.4 , cos sin

– 3 – 3

i i
ie ew where e i

z i z


 

    
 

or  2 2 2 2
4 ( – 3 ) – { – ( – 3 )}4

– 3 – 3 ( – 3 ) ( – 3 )
i x iy i x i yi

x iy x iy i x y x y
    

                    
    ... (3)

Equating real parts, (3) gives   2 2 2 2
4( – 3 ) – 3 .

( – 3 ) ( – 3 )
x y

x y x y
  

    
    

Ex. 11. Find image of a line source in a circular cylinder.
Sol. Let there be a uniform line source of strength m per unit length through the point

z = c, where z > a. Then the complex potential at a point z is given by
                        f (z) = – m log (z – c)

Then             f (z) = – m log (z – c)

and so                   f (a2 / z) = – m log {(a2 / z) – c}

Let a circular cylinder of section | z | = a be introduced. Then the new complex potential by
Milne-Thomson’s circle theorem is given by

   w = f (z) + f (a2 / z)                   for                 | |z a
i.e.          w = – m log (z – c) – m log {(a2 / z) – c}
or        w = – m log (z – c) – m log {z – (a2 /c)} + m log z + constant, …(1)
the constant (real or complex) being immaterial for the discussion of the flow. The point
z = a2/c is the inverse point of the point z = c with regard to the circle | z | = a. Hence (1) shows
that the image of a line source in a right circular cylinder is an equal line source through the
inverse point in the circular section in the plane of flow together with an equal line sink through
the centre of the section.

Ex. 12. Determine image of a line doublet parallel to the axis of a right circular cylinder.
Sol. Let there be a uniform line doublet of strength µ per unit length through the point

z = c > a. Furthermore let the axis of the line doublet be inclined at an angle  to x-axis. Then the
complex potential at a point z is given by

             ( ) ( ) /( – )if z e z c 

Then   –( ) ( ) /( – )if z e z c 

and so              
–

2
2( / )

( / ) –


 

ief a z
a z c

Let a circular cylinder of section | z | = a be introduced. Then the new complex potential by

Milne-Thomson’s circle theorem is given by   
– –

2 .
– ( / ) –

i ie ew
z c a z c

  
 
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5.56 FLUID DYNAMICS

Ex. 13. A source and sink of equal strength are placed at the points (± a/2, 0) within a fixed
circular boundary x2 + y2 = a2. Show that the streamlines are given by
(r2 – a2 / 4) (r2 – 4a2) – 4a2 y2 = ky (r2 – a2). [Bhopal 1999, 2000; I.A.S. 1984, 86]

Sol. Corresponding to a source of strength m, say at (a/2, 0) and an equal sink of strength
– m at (– a /2, 0), the complex potential f(z) in absence of the given circular boundary x2 + y2 =
a2, is given by             f(z) = – m log (z – a/2) + m log (z + a/2)     …(1)

(1)                  f(a2/z) = – m log (a2/z – a/2) + m log (a2/z + a/2)
When the circular boundary x2 + y2 = a2 is inserted, the complex potential w at any interior

point of the boundary is given by
                      w = f(z) + f(a2/z),                       that is,
w = m log (z + a/2) – m log (z – a/2) + m log {(z + 2a)/2z} – m log {(2a – z)/2z}

or  w = m log (z + a/2) – m log (z – a/2) + m {log (2a + z) – log 2z} – m{log (2a – z) – log 2)}

or  i   = m log (x + a/2 + iy) – m log (x – a/2 + iy) + m log (2a + x + iy ) – m log (2a – x – iy)
Using results              log (x + iy) = (1/2) × log (x2 + y2) + i tan–1 (y/x)                          and

log (x – iy) = (1/2) × log (x2 + y2) – i tan–1 (y/x) on R.H.S. of the above equation and then
equation imaginary parts on both sides, we obtain

        
–1 –1 –1 –1tan – tan tan – – tan

/ 2 – / 2 2 2 –
y y y y

m x a x a a x a x
 

      

              
–1 –1

2 2

2 2 2 2

–
/2 – /2 2 2 –tan tan

1 1–
– /4 4 –

y y y y
x a x a a x a x

y y
x a a x


  


             = 1 –1
2 2 2 2
4tan – tan ,

4 – – /4
ay ay

a r r a
    

   
   

 where              r2 = x2 + y2

        

2 22 2 2 2–1 –1
2 2 2 2 2 2 2 2

2 2 2 2

4 – 5 ( – )4 – – / 4tan tan
4 (4 – ) ( – / 4)  41

(4 – ) ( – / 4)

ay ay
ay r aa r r a

a y a r r a a y
a r r a

 


The required streamlines in the desired form can be obtained by choosing  = constant
= m tan–1 (–5a/k). Thus, the required streamlines are given by

2 2

2 2 2 2 2 2
5 5 ( – )–

(4 – ) ( – / 4) 4
a ay r a
k a r r a a y




      or     
2 2

2 2 2 2 2 2
1 ( – )

( – / 4) ( – 4 ) – 4
y r a

k r a r a a y


or                   (r2 – a2/4) (r2 – 4a2) – 4a2y2 = ky (r2 – a2).
Ex. 14. Verify that w = ik log {(z – ia) / (z + ia)} is the complex potential of a steady flow

of liquid about a circular cylinder the plane y = 0 being a rigid boundary. Find the force exerted
by the liquid on unit length of the cylinder. [Bhopal 1993; Rohilkhand 1998]

Sol. We have                     log | ( – ) /( ) |w i ik z ia z ia     …(1)

Hence,                        log | ( – ) /( ) |  k z ia z ia

and so the streamlines are given by  = constant = k, say i.e.,

       | ( – ) /( ) | ,z ia z ia                 or              | – | | |,z ia z ia   …(2)
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MOTION IN TWO-DIMENSIONS AND SOURCES AND SINKS 5.57

which are non-intersecting co-axial circles having z = ± ia as the limiting points. In particular, for
1,   (2) represents the straight line | – | | |,z ia z ia   i.e., | ( – ) | | ( ) |,x i y a x i y a     i.e., x2

+ (y – a)2 = x2 + (y + a)2, i.e., y = 0, showing that y = 0 is a rigid boundary.
From (1),                       w = ik {log (z – ia) – log (z + ia)}

so that    2 2
1 1 2–
–

dw kaik
dz z ia z ia z a

     
…(3)

The adjoining figure shows that circular section C of the cylinder and
the rigid plane.

If the pressure thrusts on the given circular disc are represented by (X,
Y) then by Blasius theorem, we have

             
2

2 2
2 2 2

1– 2
2 ( )C C

dw dzX iY i dz k a i
dz z i

     
   …(4)

Again, by Cauchy’s residue theorem, we have

2 2 2 2
( )C

dz i
z a

  
  (sum of the resides)

 (4) becomes,        2 2– – 4X iY k a    (sum of the residues) …(5)
where the indicated sum of the residues is calculated at poles of 1/(z2 + a2)2 lying within the circular
boundary C.

We now proceed to find the residues of 1/(z2 + a2)2. The only poles of 1/(z2 + a2)2 are at
z = ± ia. But only z = ia lies within the boundadry C as shown in the figure. Hence we shall find
residue at z = ia.

Now,            2 2
1 1 1 1 1–

( – ) ( ) 2 –z ia z ia ia z ia z iaz a
      

        2 2 2 2 2 2
1 1 1 1 2–

( – ) ( )( ) 4 ( – ) ( ) z ia z iaz a a z ia z ia
     

   

                     2 2 2
1 1 1 1 1 1– – –

2 –4 ( – ) ( ) ia z ia z iaa z ia z ia
          

Hence,  Reissue of 1/(z2 + a2)2 at z = ia is 1/(8ia3).

 (5) becomes                 2 2 3 2– – (4 ) (1/8 ) {( ) / 2 }X iY k a ia k a i    

                X = 0                 and                    2– ( / 2 ),Y k a 

showing that the liquid exerts a downward force on the cylinder of numerical value 2( / 2 )k a  per
unit length.

Ex. 15. In the two-dimensial motion of an infinite liquid there is a rigid boundary consisting
of that part of the circle x2 + y2 = a2 which lies in the first and fourth quadrants and the parts of
y-axis which lie outside the circle. A simple source of strength m is placed at the point (f, 0)
where f > a. Prove that the speed of the fluid at the point (a cos , a sin ) of the semi-circular
boundary is (4 a m f2 sin 2/(a4 + f 4 – 2a2 f 2 cos 2). Find at what point of the boundary the
pressure is least ?

O
x

y

(0, )a
C
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5.58 FLUID DYNAMICS

Sol. Refer solution of Ex. 6. Here f = c. Then equation (1) gives the required value of speed of
the fluid.

Second part. By Bernoulli’s equation. 2( ) / 2 p q = constant. So it follows that p is least
when q is maximum. Hence as explained in solution of Ex. 6 at a point P (a cos , a sin ),
where is given by cos  = (a2 + f 2)/[2(a4 + f 4)]1/2, the pressure is least. At every other point, p
is greater than that at P.

Ex. 16. A circular cylinder is placed in a uniform stream, find the forces acting on the
cylinder.

Sol. For undisturbed motion, the complex potential is given by                 ( – ) .w u i z v

Then by circle theorem, complex potential for the disturbed motion is
2( – ) ( ) ( / ).w u i z u i a z  v v

so that                 2 2/ ( – ) – ( )( / ).dw dz u i u i a z v v …(1)
If the pressure thrusts on the given cylinder are represented by a force (X,Y) and a couple of

moment M about the origin of co-ordinates, then by Blasius’s throrem, we have

                  21– ( / )
2 C

X iY i dw dz dz  …(2)

and              N = Real part of 21– ( / )
2 C

z dw dz dz …(3)

where  is the fluid density and integrals are taken round the contour C of the cylinder.
From (1) and (2), we have

     22 2– (1/ 2) ( ) ( ) ( / )
C

X iY i u i u i a z      v v dz = 0    X = 0    and    Y = 0

From (1) and (3), we have

           N = Real part of 
22 21– ( – ) – ( ) ( / )

2 C
u i u i a z z dz    v v

   = Real part of 2 2 2 21– ( – ) – 2( ) ( / )
2

     C
u i u a z z dz2v v

   = Real part of – 2 2 2(1/ 2) {–2( ) }2 0u a i   v

Thus, we find that no force or couple acts on the cylinder.
Ex. 17. Prove that for liquid circulating irrotationally in part of the fluid between two non-

intersecting circles the curves of constant veloctity are Cassini’s Ovals.
[U.P.P.C.S 1997; Rohilkhand 1994; I.A.S. 1993]

Sol. Let O and O be the centres of the two non-
intersecting circles. Let A (a , 0) and
B (– a, 0) be the inverse points with respect to both the
circles. Let P be any point on one of the given circles
such that PA = r and PB = r.

Since A and B are inverse points of the circle with centre O, so by defintion, we have

         2 OA OB OP

OO 
r 

B

r

A

P
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MOTION IN TWO-DIMENSIONS AND SOURCES AND SINKS 5.59

Now, from similar triangles OPA and OPB, we have
     PA/PB = OP/OB = constant                          r/r = constant.

Hence the equations of the two circles may taken as r/r = c1 and r/r = c2, where c1 and c2
are constants. Since these circles are two streamlines, it follows that the stream function   is of
the form  f (r/r and it being a harmonic, we take  = k log (r/r ) because log r is the only
function of r which is plane harmonic. Here k is a constant.

Now, if  is the conjugate harmonic of r, i    or – i   must be an analytic function of

z, so that     – ( – ).k    

     – log( / ) ( – ) [log – log – ]w i k r r ik k r r i i             

                  = [(log ) – (log )] [log( ) – log( )]i ik r i r i k re r e        

or [log( – ) – log( )],w k z a z a         as       –ire z a         and      ir e z a  

             
1 1 2 2–
– | – | | |

dw ak akq k
dz z a z a z a z a rr

         

Hence the curves of equal velocity are given by q = constant or (2ak) /rr  = constant or
rr= constant, which are Cassini’s ovals.

EXERCISE 5 (D)
1. Show that the image system of a source outside a circle consists of an equal source at the

inverse point and an equal sink at the centre of the circle. [Meerut 2000]
2. Show that the force per unit length extered on a circular cylinder, radius a, due a source

of strength m, at a distance c from the the axis is 2 2 2 2 2(2 ) / ( – )m a c c a [Kanpur 2005]
Hint. Refer Ex. 7 of Art. 5.25. Here µ = m, r = a.
3. The boundary of a semi-infinite liquid consists of an infinite plane surmounted by the

cylinder boss of semi-circular cross-section of radius a and the liquid contains a line source
everywhere at a distance c from the plane and the axis of the boss, where c = a tan. Show that
the velocity at points on the boss is a maximum along the generators lying in the axial planes,
making an angle an angle  with the axial plane containing the line source, given by
tan cos 2 .   

4. A source is situated at the point (c, c) on the region bounded by the x-axis and the circle
x2 + y2 = a2, the source being outside the circle. Show that the fluid velocity vanishes at the
points (± a, 0) and that it will vanish at any other point on the circle provided that 2 (2 2)c a  .

5. If a circle be cut in half by the y-axis, forming rigid boundary and a source of strength m
be on the x-axis at a distance a, equal to half the radius, from the centre, prove that the stream

lines are given by                     4 4 2 2 4 4(16 )cos 2 –17 (16 – )sin 2 cot ( / ).a r a r a r m    

Show that stream line / 2m    leves the source in a direction perpendicular to OX and
entres the sink at and angle /4 with OX.

6. Within a rigid circular boundary of radius a there is a source of strength m at a point P
distance b from the centre; at Q, R the extremities of the diameter through P are equal sinks.
Find the velocity potential and stream function of two dimensional fluid motion.

7. A simple source, of strength m, is fixed at the origin O in a uniform stream of incompessible
fluid moving with velocity U. Show that the velocity potential  at any point P of the stream is
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5.60 FLUID DYNAMICS

(m/r) – U r cos, where OP = r and  is the angle OP makes with the direction i. Find the differential
equation of the stream lines and show that they lie on the surfaces

    Ur2 sin2– 2m cos= constant.

OBJECTIVE QUESTIONS ON CHAPTER 5
Choose the correct alternative from the following questions

1. The image of source + m with respect to a circle is a source + m at the inverse point and
(i) a source + m at the centre (ii) a source + m at the same point

(iii) a sink – m at the centre (iv) None of these. [Kanpur 2003]
2. The relation between   and   is

  (i) / /x y      and / /y x       (ii) / /x y      and / /y x    

  (iii) / /x y      and / /y x       (iv) None of these [Kanpur 2002]
3. With usual notations complex potential of a doublet is

(i) /( )ie z a  (ii) /( )ie z a  

(iii) /( )ie z a  (iv) None of these. [Kanpur 2002]
4. If w be the complex potential, then the magnitude of the velocity of the fluid is given by

(i) /dw d         (ii) /dw d (iii) /dw dz         (iv)  None of these

5. The complex potential due to a source m at z z  is
   (i) log ( )m z z  (ii) log ( )m z z (iii) log ( )m z z    (iv) log ( )m z z

6. How many sinks are there if the complex potential is given by 2log { ( / )}w z a z  ?
(i) 1                  (ii) 2 (iii) 3                   (iv)  None of these

7. The family of curves given by  = constant and  = constant intersect at
  (i) 30°               (ii) 45° (iii) 60°               (iv)  90°

8. The velocity vector q is everywhere tangent to the lines in xy-plane along which
  (i) ( , )x y = const.  (ii) ( , )x y = const.  (iii) w = const.  (iv) None of these

9. A two-dimensional flow field is given by xy  . Then flow is
  (i) rotational        (ii)  irrotational (iii) laminar           (iv) None of these

10. The stream function is contant along a particular stream line flow
  (i) false statememnt   (ii)  true statement    (iii) both of above         (iv) None of these

11. In a conformal transformation, a source is transformed into
(a) an equal source   (b)  an equal sink    (c) an equal doublet       (d) None of these

[Agra 2005]
12. Cauchy–Riemann equations in polar form are

   (a) 1,r
r r r

   
  

   
      (b) 

1 1,
r r r r

   
  

   

   (c) 1 , r
r r

   
  

   
        (c) 1,r

r r r
   

  
   

    [Agra 2008]

Answer/Hints to objective type questions
1. (iii). Refer result of Art. 5.21 2. (ii). See Eq. (3), Art 5.6
3. (i). See note 3, Art. 5.14  4. (iii). See Art. 5.8
5. (i). See Art. 5.13  6. (ii). See Ex. 1, Art. 5.15
7. (iv). See Art. 5.6  8. (ii). See Ex. 8, Art. 5.10
9. (ii). See Ex. 22, Art. 5.10 10. (i) Refer Art. 5.2

11. (a). See Art. 5.19B 12. (b). See Art. 5.7A
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MOTION IN TWO-DIMENSIONS AND SOURCES AND SINKS 5.61

Miscellaneous Problems on Chapter 5

1. Show that at the points of fields of flow the equipotential surfaces cut streamlines
orthogonally. (Agra 2009)

Hint : Use Ex. 1, page 5.6
2. Explain velocity potential and stream function and derive expressions for velocity

components in terms of  and . Also, prove that   and  satisfy Laplace’s equation.
(Meerut 2010)

Hint : Refer Art. 2.26 on page 2.56, Art. 5.2 on page 5.1 and Art. 5.6 on page 5.3.
3. Find complex potential of a two-dimensional source. (Meerut 2012)
Hint : Refer Art. 5.13, page 5.20
4. Write ‘T’ for true and ‘F’ for false statements :
The stream function  exists only in irrotation motions. (Agra 2004, 11)
Ans. ‘F’. Refer Art.5.2
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6.1. Connectivity. Definition.
A region of space is said to be connected if a continuous curve joining any two points of the

region lies entirely in the given region.
Thus the region interior to a sphere, or the region between two coaxial infinitely long cylinders

are connected.
Reducible and irreducible circuits.

Definition. A closed circuit, all of whose points lie in the region, is said to be reducible if
it can be shrunk to a point of the region without passing outside of the region.

The circuit PRQS in figures (i) and (ii) are reducible; the circuit PQRS in figure
(ii) is irreducible, for it cannot be made smaller than the circumference of the inner cylinder.

P Q
S

R

( )i

QP
S

R
P  S 

Q
R

( )ii
Simply connected region.

Definition. A region in which every circuit is reducible is known as simply connected.
Thus the region interior to a sphere, the region exterior to a sphere,

the region between two concentric spheres, unbounded space etc. are simply
connected regions. The region between the concentric cylinders in figure
(ii) above is not simply connected, for it contains irreducible circuits. This
region can be made simply connected by inserting one boundary or barrier
which may not be crossed, such as AB containing a generating line of each
cylinder as shown in figure (iii).

With the insertion of this barrier each circuit in the modified region
becomes reducible and hence the modified region is simply connected.
Doubly connected and n-ply connected regions.

Definition. A region is said to be doubly connected, if it can be made simply connected by
the insertion of one barrier. Similarly, a region is said to be n-ply connected, if can be made
simply connected by the insertion of n – 1 barriers.

Thus the region between two coaxial infinitely long cylinders, the region exterior to an infinitely
long cylinder, the region interior (or exterior) to an anchor ring etc. are doubly connected regions.

A
B

Fig. ( )iii

General Theory of
Irrotational Motion
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6.2 FLUID DYNAMICS

Reconcilable or irreconcilable paths and circuits.
Definition. The paths joining two points P and Q of the region are said to be reconcilable,

if either can be continuously deformed into the other without ever passing out of the region.
Thus the paths PRQ and PSQ in figures (i) and (ii) are reconcilable and the paths P R Q  

and P S Q    in figure (ii) are irreconcilable.
Note that two reconcilable paths taken together form a reducible circuit.
Two closed circuits are said to be reconcilable, if either can be continuously deformed into

the other without ever passing out of the region.
Clearly reconcilable circuits are not always reducible.

6.2. Flow and circulation. [Himachal 2003]
If A and P be any two points in a fluid, then the value of the integral

           ( ),
P

A
udx vdy wdz 

taken along any path from A to P, is called the flow along that path from A to P.
When a velocity potential  exists, the flow from A to P is

       = .
P P

A P
A A

dx dy dz d
x y z

   
             

The flow round a closed curve is known as the circulation round the curve. Let C be closed
curve and   be the circulation. Also, let x y z  r i j k and .u v w  q i j k Then,

   ( ) ,
CC

udx vdy wdz d       q r

where the line integral is taken round C in a counter clockwise direction and q is the velocity vector.
Remark. When a single-valued velocity potential exists the circulation round any closed

curve is clearly zero. Again, in what follows, we shall prove that if the velocity potential is many-
valued there are curves for which the circulation is zero, though it is not zero for all such paths.
6.3. Stokes’s theorem. [Kanpur 2000, 01; Meerut 2000, 02, 09]

Let q be the velocity vector, Ω  the vorticity vector and S be a surface bounded by a closed
curve C. Then

      Curl
C S

d d   q r q S                 i.e.               ,
S

d   n S

where   is the circulation round C and the unit normal vector n at any point of S is drawn in the
sense in which a right-handed screw would move when rotated in the sense of description of C.

Proof. As shown in figure we observe that the given surface S can be divided up into a
network of infinitesimally small triangles S. Let lines be drawn from the vertices of such triangles
parallel to the x, y, and z-axes.

E

Q2

Q1

C

P1

P2 P3

Q1

Q2

F

P3

P2P1

O

P dS

n

q
dr

r d r+r

D

Then we obtain a series of elementary tetrahedrons. Let PABC be one of these tetrahedrons,
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GENERAL THEORY OF IRROTATIONAL MOTION 6.3

with edges, PA, PB and PC equal to dx, dy and dz, respectively, as shown in the following figure.
Let D, E, F be the mid-points of the AB, BC and CA, respectively. Let q = ui + vj + wk

From right-angled triangle PAB, we have
         cos /dx AB                      and                      sin /dy AB 

so that                                        / cos / sinAB dx dy    ...(1)
Similarly,                             / cos / sinBC dy dz    ...(2)

and                             / cos / sinCA dz dx    ...(3)

v 1
2
v
x dx 1

2
v
y++ dy = vyx

u 1
2
u
x

dx 1
2
u
y++ dy  u= xy

u 1
2
u
x dx 1

2
u
z++ dz  u = xz

v v
x dx+

u u
x dx+

w w
x dx+



w 1
2
w
x dx 1

2
w
z++ dz  w= zxu u

z dz+
w w

z dz+

v v
z

dz+

w 1
2
w
y dy 1

2
w
z++ dzwzy =

v 1
2
v
y dy 1

2
v
z++ dzvyz =

w w
y dy+

v v
y dy+ u u

y dy+



x

z

y



D

F
dz

w

v
dy

u
E

C

B

dx
Ap

Let co-ordinates of P be (x, y, z). Also, we have
Velocity at P parallel to x-axis = u = f(x, y, z), say ..(4)

Then velocity at A parallel to x-axis = f(x + dx, y, z) = f (x, y, z) + dx ( / )f x 

  [To first order of approximation by using Taylor’s theorem]

        = ( / ),u dx u x    using (4)
Proceeding likewise, the velocity components at D, E and F (which contribute to the desired

circulation can be calculated from those at the vertices P, A, B and B and are given by

       
1 1
2 2xy

u uu u dx dy
x y
 

  
  ...(5)

       
1 1
2 2xz

u uu u dx dz
x z
 

  
 

...(6)

       
1 1
2 2yx dy dx

y x
 

  
 
v v

v v ...(7)

       
1 1
2 2yz dy dz

y z
 

  
 
v v

v v ...(8)

       
1 1
2 2zx

w ww w dz dx
z x
 

  
 

...(9)

       
1 1
2 2zy

w ww w dz dy
z y
 

  
  ...(10)

Let the circulation be taken as positive if it rotates according to the right-handed screw rule
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6.4 FLUID DYNAMICS

with normal outward. Then the circulation along the sides of the triangle ABC is given by

cos ( ) sin ( ) cos ( ) sin ( ) cos ( ) sin ( )xy yx yz zy zx xzd u AB AB BC w BC w CA u CA             v v

     ,xy yx yz zy zx xzu dx dy dy w dz w dz u dx      v v  using (1), (2) and (3)

       ( ) ( ) ( )xz xy yx yz zy zxu u dx dy w w dz     v v

1 1 1
2 2 2

u u w wdz dy dx dx dz dy dy dx dz
z y x z y x

                           

v v
, using (5) to (10)

1 1 1
2 2 2

w u w udy dz dz dx dx dy
y z z x x y

                           

v v
...(11)

But, Curl w u w u
y z z x x y

                           
q i j kv v

and 1 1 1
2 2 2

d dy dz dz dx dx dy            
     

S i j k

        
1 1 1Curl
2 2 2

w u w ud dy dz dz dx dx dy
y z z x x y

                            
q S v v

...(12)

Using (12), (11) reduces to                            Curld d  q S ...(13)
Proceeding likewise we can obtain the circulation around all other elementary triangles,

dS, of the entire surface S. We observe that the circulation along the elementary sides common to
two triangles cancels and hence the remaining circulation will be that round the closed contour C.
Thus, circulation round C is equal to the sum of the circulation in all elementary triangles, i.e.,

                         Curl
S

d   q S ...(14)

But           C
d   q r                     and               CurlΩ q

                          S
C S S

d d d      q r Ω S Ω n ...(15)

6.3A. Stakes’ theorem (Alternative form with proof)
The circulation   round any closed curve C drawn in a fluid is equal to the surface

integral of the normal component of spin (i.e. vorticity vector ) taken over any surface S,
provided the surface lies wholly in the fluid, that is,

C q · dr = S curl q dS   so that   = S  · n dS,
where n is the unit normal vector at any point of S.

Proof. Let the given surface S be divided into small
meshes by drawing a net work of lines across it as shown
in the adjoining figure. Then the circulation round the
edge of any finite surface is equal to the sum of the
circulations, taken all in the same sense, round the
boundaries of the infinitely small meshes into which the
surface has been divided.

Suppose an elementary mesh be in the form of an elementary rectangular lamina PQRS
whose sides are x, y. Let the positive direction of circulation for PQRS be taken from the axis
of X to that of Y. Let q (u, v, w) be the velocity at the centre of intertia O (x, y, z) of the rectangle.
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GENERAL THEORY OF IRROTATIONAL MOTION 6.5

Now, the circulation due to the two sides QR and SP

=
1 1 .
2 2

dx dy dx dy dx dy
x x x x x
                    

v v v v v

Similarly, the circulation due to sides RS and
PQ = – (u/y) dx dy.
  The circulation PQRS = (v/dx – u/dy) dx dy. ...(1)

It follows that the circulation round the boundary C of S

          =
S

w u w udy dz dz dx dx dy
y z z x x y

                               v v
...(2)

While computing the L.H.S. of (1), we find that no contribution to

  Rectangles
. d q r

...(3)

will be made by boundary lines (such as PQ between two adjoining rectangles PQRS and PQRS )
because each of such a line will give equal and opposite contribution to the two rectangles adjoining

it. It follows that the result of the sum (3) will be simply C
d q r  taken over the boundary curve

C. Hence , we have

      S
=

C

w u w ud dy dz dz dx dx dy
y z z x x y

                               q r v v

or         C  q·dr = S curl q dS,
where the surface integral  is taken over given surface S bounded by closed curve C and the line
integral is taken once round the curve.
6.4. Kelvin’s circulation theorem. [Garhwal 2001, 03, 05; Rohilkhand 2001

Agra 2006, 08; Himanchal 2007; Garhwal 2005; Kanpur 1999; Meerut 2005, 09, 10, 12]
When the external forces are conservative and derivable from a single valued potential

function and the density is a function of pressure only, the circulation in any closed circuit
moving with the fluid is constant for all time.

Proof. Let C be a closed circuit moving with the fluid so that C always consists of the same
fluid particles. Let q be the fluid velocity at any point P of the circuit and let r be its position
vector. Then the circulation along the closed circuit C is given by

          C
d   q r                    or                

C

D D d
Dt Dt

  q r ...(1)

Since the above integration is performed at constant time, reversing the order of integration
and differentiation is justified. Then (1) may be re-written as

         ( )
C

D D d
Dt Dt

  q r ...(2)

But           ( )D D Dd d d
Dt Dt Dt

    
qq r r q r D d d

Dt
   

q r q q ...(3)

The Euler’s equation of motion is

     
1D p

Dt
  


q F ...(4)

Let the external forces be conservative and derivable from a single valued potential function
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6.6 FLUID DYNAMICS

V. Then  F V   and hence (4) becomes

            
1D p

Dt
   


q V ...(5)

            
1D d d p d

Dt
      


q r V r r dpd  


V ...(6)

Also              21 1( ) ,
2 2

d d dq   q q q q ...(7)

where q denotes the magnitude of the velocity vector q.

Using (6) and (7), (3) reduces to               
21 1( )

2
D d d dp dq
Dt

    


q r V ...(8)

Using (8) and assuming that  is a single-valued function of p, (2) reduces to

          
21

2 C C

D dpq
Dt

 
    V ...(9)

where [ ]C  denotes change in the quantity enclosed within brackets on moving once round C.
Since q, V and p are single-valued functions of r, so R.H.S. of (9) vanishes. Equation (9) gives
the rate of change of flow along any closed circuit moving with the fluid. Thus, it follows that the
circulation in any closed circuit moving with the fluid is constant for all time.
6.5. Permanence of irrotational motion.     [G.N.D.U. Amritser 2000, 04;

 Meerut 1999, 2002; Garhwal 2001, 02; Kurkshetra 1998; Rohilkhand 2002]
When the external forces are conservative and derivable from a single valued potential,

and density is a function of pressure only, then the motion of an inviscid fluid, if once irrotational,
remains irrotational even afterwards.

Proof. From Stokes’ theorem, the circulation is given by

                   Curl .
C S

d d     q r q S ...(1)

At any time t, let the motion be irrotational so that curl q = 0. Then (1) shows that 0 
at that instant. Hence it follows from Kelvin’s circulation theorem that 0   for all time. Hence
at any subsequent time, (1) shows that

     Curl 0
S

d  q S ...(2)

Since S is arbitrary, (2) shows that       Curl q = 0   at all subsequent time
i.e. the motion remains irrotational even afterwards.
6.6. Green’s theorem. (Agra 2012)

If ,    are both single-valued and continuously differentiable scalar point functions such
that   and   are also continuously differentiable, then

       2( )
V S V

d d
n
       

  V S dV

  2 ,
S V

d
n
       
 S dV

where S is closed surface bounding any simply-connected region, n  is an element of inward
normal at a point on S, and V is the volume enclosed by S.

Proof. From vector calculus, we have               ( ) ( ) ( ),        a a a ...(1)
where   is a scalar point function and a is a vector point function.
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GENERAL THEORY OF IRROTATIONAL MOTION 6.7

Replacing a by   in (1), we get                 ( ) ( ) ( ) ( )              ...(2)
Integrating both sides of (2) over volume V, we get

( ) V ( ) ( ) V ( ) V
V V V

d d d              ...(3)

By Gauss divergence theorem, we have ( ) V ( ) S ,
V S

d d         n

where n  is the unit vector drawn to the surface S.

or      ( ) V ( ) S
V S

d d         n      or      ( ) V S
V S

d d
n
     

 
...(4)

Again,            2                   and                   ...(5)
Using (4) and (5), (3) reduces to

                   2S ( ) V V
S V V

d d d
n
        

  
or      2( ) V S V

V S V
d d d

n
       

   ...(6)

Interchanging   and   in (6), we have

     2( ) V S V
V S V

d d d
n
          
  

or      2( ) V S V
V S V

d d d
n
          
   ...(7)

(6) and (7) together prove the Green’s theorem
6.7. Deductions from Green’s theorem.

Deduction I. Let ,    be the velocity potentials of two liquid motions taking place within
S. Then 2 20       and hence Green’s theorem yields

S ' S
S S

d d
n n
 

  
             or         S ' S

S S
d d

n n
                 ...(1)

But / n    is the normal velocity inwards and   is the impulsive pressure at any point

on the surface which will produce velocity potential   from rest. Hence (1) shows that if there be
two possible motions inside S by means of two different impulsive pressures on the boundary,
then the work done by the first in acting through the displacement produced by the second must
be equal to the work done by the second in acting through the displacement produced by the first.

Deduction II. Let  = constant ( = k, say). Then 2 ' 0 / n       everywhere. If   be
the velocity potential of a liquid motion within S, then by Green’s theorem, we have

         S 0
S

k d
n



                   or                  S 0.

S
d

n



 ...(2)

Since / n   is the normal velocity outwards, ( / )n  dS represents the flow across dS
per unit time. Then (2) shows that the total flow across S is zero, i.e., the quantity of a liquid
inside S remains constant.

Deduction III. Let     and let   be the velocity potential of a liquid motion within S.
Then 2 0    and hence Green’s theorem gives
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6.8 FLUID DYNAMICS

( ) V S
V S

d d
n


   
    or  

22 2

V S
V S

d d
x y z n

                          
  ...(3)

Let q be the velocity and   the density of the liquid, then (3) reduces to

     21 1V S
2 2V S

q d d
n


   
  ...(4)

Clearly the L.H.S. of (4) represents the kinetic energy T of the liquid within S. Hence (4)

reduces to        
1 S.
2 S

T d
n


  
     ...(5)

Now   is the impulsive pressure that would set up the motion instantaneously from rest,
and / n   is the inward normal velocity at the surface. Hence (5) shows that the kinetic
energy set up by impulses, in a system starting from rest, is the sum of the products of each
impulse and half the velocity of its point of application. From (5), we also find that the kinetic
energy of a given mass of liquid moving irrotationally in simply-connected region depends only
on the motion of its boundaries.

Suppose on the boundary / 0n   . Then (4) reduces to
       2 V 0

V
q d  ...(6)

Since q2 is positive, (6) implies that q = 0 everywhere. Hence the liquid is at rest. Thus a
cyclic irrotational motion is impossible in a liquid bounded by fixed rigid boundary.
6.8. Kinetic energy of infinite liquid.    [Meerut 2007]

Consider an infinite mass of liquid moving irrotationally, at rest at infinity, and bounded
internally by a solid surface S and externally by a large surface S  . Let   be the single-valued
velocity potential. Then from deduction III of Art. 6.7, the kinetic energy T of the liquid contained
in the region bounded by S and S  is given by

1 1S S
2 2S S

T d d
n n

        
   ...(1)

Since there is no flow into the region across S, the equation of continuity takes the form

                         S S 0
S S

d d
n n

   
   ...(2)

Multiplying (2) by C/2, a constant, and subtracting from (1), we get
1 1( ) S ( ) S 0
2 2S S

T C d C d
n n

          
   ...(3)

Since for the solid boundary S, S 0,
S

d
n



  it follows from (2) that S 0,

S
d

n

  
  i.e.,

S
S

d
n

 
  is independent of S  . Let C  at infinity and let the surface S   be enlargedged

indefinitely in all directions. Then the second integral in (3) vanishes and hence the required
kinetic energy of infinite liquid is given by

               
1 ( ) S
2 S

T C d
n


   


i.e.,           1 S
2 S

T d
n


   
                  as                  S 0

S
d

n



 ...(4)

Remark. For the motion of liquid to exist, T must not vanish. Hence all internal boundaries
must not be at rest.
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GENERAL THEORY OF IRROTATIONAL MOTION 6.9

6.9A. Acyclic and cyclic motions.
The motion in which the velocity potential is single-valued is called acyclic whereas the

motion in which the velocity potential is not a single-valued is called cyclic.
6.9B. Some uniqueness theorems related to acyclic irrotational motion.

In what follows, we shall use the following equivalence of the expressions for the kinetic

energy                     21 1V S
2 2V S

T q d d
n


     
      ...(1)

where the symbols have their usual meaning.
Theorem I. There cannot be two different forms of acyclic irrational motions of a confined

mass of incompressible inviscid liquid, when the boundaries have prescribed velocities.
Proof. If possible, let 1 2,   be the velocity potentials of two different motions subject to the

condition
           1 2/ /n n      at each point of S ...(2)

Also       2 2
1 2 0      ...(3)

Let               1 2 ,                  then              2 2 2
1 2 0.        

Hence   is a solution of Laplace’s equation and so it represents irrotational motion in which

         1 2
1 2( ) 0,

n n n n
  

      
   

 by (2).

Hence q = 0 by (1). But 2 2( ) .q    Thus, we have

   2( ) 0          so that          = constant         or        1 2     = constant.
Since the constant is of no significance, it follows that the two motions are the same.
Theorem II. There cannot be two different forms of irrotational motion for a given confined

mass of incompressible inviscid liquid whose boundaries are subject to the given impulses.

Proof. If possible, let 1 2,   be the velocity potentials of two motions subject to the conditions

                 1 2    at each point S …(4)

Also,                                        2 2
1 2 0      ...(5)

Let               1 2 ,                 then            2 2 2
1 2 0.       

Hence   is a solution of Laplace’s equation and so it represents irrotational motion in which

                              1 2( ) 0,       by (4)

Hence q = 0 by (1). But 2( ) .q    Thus, we have
2( ) 0            so that            = constant         i.e.      1 2    = constant,

showing that the two motions are the same.
Theorem III. Acyclic irrotational motion is impossible in a liquid bounded entirely by

fixed rigid walls.
Proof. Since at every point of the rigid boundary walls / 0,n    it follows by (1) that

        0.
V

q dV 
Since q2 cannot be negative, q = 0 everywhere and hence the motion will be impossible.
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6.10 FLUID DYNAMICS

Theorem IV. Acyclic irrotational motion of a liquid bounded by rigid walls will instantly
cease if the boundaries are brought to rest.

Proof. This is an immediate corollary to Theorem III.
Theorem V. Acyclic irrotational motion is impossible in a liquid which is at rest at infinity

and is bounded internally by fixed rigid walls.
Proof. Since the liquid is at rest at infinity and there is no flow over the internal boundaries,

the kinetic energy is still given by (1). Hence here / 0n    at each point of S. Hence as shown
in theorem III, the motion is impossible.

Theorem VI. The acyclic irrotational motion of a liquid at rest at infinity and bounded
internally by rigid walls will instantly cease if the boundaries are brought to rest.

Proof. This is an immediate corollary to Theorem V.
Theorem VII. The acyclic irrotational motion of a liquid at rest at infinity, due to the

prescribed motion of an immersed solid, is uniquely determined by the motion of the solid.

Proof. If possible, let 1 2,   be the velocity potentials of two different motions.Then

                 2 2
1 2 0      ...(6)

Also given 1 2/ / ,n n      at each point of surface ...(7)
and                  q1 = q2      at infinity ...(8)

Let 1 2      and q = q1 – q2 Then, we have 2 2 2
1 2 0        by (6). Hence  must

be the velocity potential of a possible motion. Furthermore,

        1 2/ / / 0,n n n             at each point of surface      ... (9)
and                  q = q1 – q2 = 0        at infinity.     ... (10)

From (1) and (7), we have q = 0. But 2 2( )q   . Thus, we have
2( ) 0             so that                 = constant          or            1 2 constant  

Since the constant is of no significance, it follows that the two motions are the same.
Theorem VIII. If the liquid is in motion at infinity with uniform velocity, the acyclic

irrotational motion, due to the prescribed motion of an immersed solid, is uniquely determined
by the motion of the solid.

Proof. Let us superimpose on the whole system of solid and liquid a velocity equal in
magnitude and opposite in direction to the velocity at infinity. The relative kinematical conditions
remain unchanged and the liquid is reduced to rest at infinity. The resulting motion is then
determined by theorem VII and we return to the given motion by reimposing the velocity at
infinity.“
6.10. Kelvin’s minimum energy theorem.     [Meerut 2003, 05, 08]

The irrotational motion of a liquid occupying a simply connected region has less kinetic
energy than any other motion consistent with the same normal velocity of the boundary.

Proof. Let T1 be the kinetic energy, q1 the fluid velocity of the actual irrotational motion
with a velocity potential   Then          1  q ...(1)

Let T2 be the kinetic energy, q2 the fluid velocity of any other possible state of motion
consistent with the same normal velocity of the boundary S.

Continuity equations for the above two motions give
             1 0 q                      and                    2 0 q ...(2)

Let n denote the unit normal at a point of S. Then using the fact that the boundary has the
same normal velocity in both motions, we have
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GENERAL THEORY OF IRROTATIONAL MOTION 6.11

                1 2  n q n q ...(3)

Now,      2 2
1 1 1

1 1
2 2V V

T q dV dV     q      and      2 2
2 2 2

1 1
2 2V V

T q dV dV     q

            2 2
2 1 2 1

1 ( )
2 V

T T dV    q q  2
1 2 1 2 1

1 2 ( ) ( )
2 V

dV      q q q q q

         2
1 2 1 2 1

1( ) V ( ) V
2V V

d d       q q q q q

                    2
2 1 2 1

1( ) ( ) V ( ) V
2V V

d d        q q q q , using (1) ...(4)

But     2 1 2 1 2 1 2 1[ ( )] [ ( )] ( ).( ) ( ) ( ),              q q q q q q q q  using (2)

 2 1 2 1 2 1( ).( ) [ ( )] ( ) ,
V V S

dV dV dS            q q q q n q q by divergrnce Theorem

       Thus,       2 1( ) ( )
V

dV   q q  = 0, Using (3)     ...(5)

Making use of (5), (4) reduces to

        2
2 1 2 1

1 ( )
2 V

T T dV    q q ...(6)

Since R.H.S. of (6) is non-negative, we have 2 1 0,T T   i.e., 1 2 .T T  Hence the result.

6.11. Mean potential over spherical surface.
The mean value of  over any spherical surface, throughout whose interior 2 0,    is

equal to the value of  at the centre of the sphere.
Proof. Describe a sphere S of radius r with P as its centre. Let P and   denote the value

of   at P and the mean value of   over S. Describe another concentric sphere S   of radius unity..
Then we know that a cone with vertex P which intercepts dS from S also intercepts d  (the solid
angle) from S  . We then have

2 2/ /1dS d r         so that       2dS r d  ...(1)

Now,    
2

1
4 S

dS
r

  
 

2
2

1 1
44 S S

r d d
r  

     
  

          2
1 1
4 4S S

d dS
r r rr

  
  

     ...(2)

Let n denote unit normal at any point of S. Then, we have

     
S S V

dS dS dS
r n
 

  
    n 2

V
dV   , by Divergence theorem

        = 0,     as      2 0    (given)

Hence (2) reduces to / 0r    so that   is independent of r. It follows that   has the
same value over all concentric spheres with P as centre. Hence, by shrinking S to a point P, we
have ,   . Hence the result.

Cor. 1.   cannot be a maximum or minimum in the interior of any region throughout
which 2 0.  

dS

dS 
S

P
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6.12 FLUID DYNAMICS

Proof. If possible, let P  be a maximum value of   at a point P. Describe a sphere S of radius
r with P as its centre such that r is very small. Let   be the mean value of   over S. Then in our
case ,P  which contradicts the above theorem. Similarly, we can show that   cannot be a
minimum.

Cor. 2. In irrotational motion the maximum values of the speed must occur at the boundary.
OR

In irrotational motion the velocity cannot be a maximum in the interior of the fluid.
Proof. Let P be a point interior to the fluid. Take P as origin and the axis of x in the direction

of motion at P. Let Q be a point near to P and let q and q  be the speeds at P and Q respectively..
Then we have

           
2

2 ,
P

q
x
    

                  
22 2

2

Q QQ

q
x y z

                   

Now                        2 2( ) 0,
x x
         

showing that / x   satisfies Laplace’s equation and hence cannot be a maximum or minimum at P.
It follows that there exist points such as Q very near to P such that

         
2 2

Q Px x
           

                  so that                  2 2.q q 

Thus q cannot be a maximum in the interior of the fluid, and its maximum value, if any, must
occur only on the boundary.

Remark. q2 may be minimum in the interior of the fluid, for q = 0 at a stagnation point.
Cor. 3. In steady irrotational motion the hydrodynamical pressure has its minimum values

on the boundary.
Proof. By Bernoulli’s theorem in absence of external forces, we have

             p/ + q2/2 = constant
Thus p is least when q2 is greatest, and this cannot occur inside the fluid by corollary 2.

Hence the minimum value of p, if any, must occur on the boundary.
Remark. The maximum value of p occurs at the stagnation points.

6.12. Mean value of velocity potential in a region with internal boundaries.
If  is the sold boundary of a large spherical surface of radius R, containing fluid in motion

and also enclosing one or more closed surfaces, then the mean value of   on  is of the from.
                  ( / )M R C  

where M, C are constants, provided that the fluid extends to infinity and is at rest there.
Proof. Let the volume of fluid crossing each of the internal surfaces contained within  per

unit time is a finite quantity 4 .M  Then the equation of continuity gives

4 .dS M
R

     
Let dS subtends a solid angle d at the centre of   Then dS = R2d and hence

      2
1

4
Md

R R


  

                  or               2
1

4
Md

R R


   

  
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GENERAL THEORY OF IRROTATIONAL MOTION 6.13

Integrating, 1 ,
4

Md C
R

   
  C being an arbitrary constant

or                    2
1 ,

4
MdS C
RR 

  
     as    dS = R2 d  ...(1)

or                                          / ,M R C   ...(2)

where   is the mean value of   on S and C is independent of R.
We now prove that C is an absolute constant. For this we must prove that C is independent

of the coordinates of the centre of  To prove this, let the sphere be displaced a distance x  in
any direction, keeping R constant. Then (1) and (2) give

             2
1

4
Cx x dS x

x x xr 

  
    

    ...(3)

Since the liquid is at rest at infinity, / 0x    on  when .R  Hence for large R, (3)

shows that / 0.C x    Thus we see that C is an absolute constant and the required result follows
from (2).
6.13. Illustrative solved examples.

Ex. 1. (i) A velocity field is given by q = (– i y + j x)/(x2 + y2). Determine whether the flow
is irrotational. Calculate the circulation round (a) a square with its corners at (1, 0), (2, 0),
(2, 1), (1, 1); (b) a unit circle with centre at the origin.

[Agra 2008; Rohilkhand 2003; 04; Meerut 2002 04, 05, 07, 08; Kanpur 2002]
(ii) Find the circulation about the square enclosed by the lines x = ± 2, y = ± 2 for the flow

u = x + y, v = x2 – y.
Sol. Part (i) We have,

2 2 2 2

2 2 2
2 2 2 2

( ) ( )Curl / / /
( )

/( ) /( ) 0

y x x yx y z
x y

y x y x x y

             
    

i j k
q k 0

Hence curl q = 0 every where except at the origin. Thus the flow is irrotational. It has a
singularity at the origin where the velocity becomes infinite.

(a) Draw a square in the cartesian plane as
follows : A(1, 0), B(2, 0), C(2, 1), D(1,1). Then
circulation  around the square ABCD is given by

d  q r

  .
B C D A

A B C D
d d d d          q r q r q r q r  ...(1)

Now,   
2 22 2 –1

0
1 1

[( ) /( )] ( ) ( ) ( )
B x

y
A x

d y x x y dx x dx





         q r i j i j i

 [  along AB (i.e. x-axis), y = 0 so dy = 0 and hence dr = dx i + dy j = dx i]
      = 0, as  j  i = 0 ...(2)

Next,  
1 2 2

1
2
[( ) /( )] ( )

D x
y

C x
d y x x y dx






      q r i j i
2

1 1
2

1

tan 2 tan 1
1

dx
x

   
 ...(3)

D (1, 1)
C (2, 1)

B (2, 0)A (1, 0)

X
O

Y
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6.14 FLUID DYNAMICS

Also,
1 2 2

2
0
[( ) /( )] ( )

C y
x

B y
d y x x y dy






      q r i j j        [  along BC (i.e.

parallel to y-axis), x = 2 so dx = 0 and hence dr = dx i + dy j = dy j]

          
1 1

1 1
2

00

2 1 12 tan tan
2 2 24

dy y
y

         ...(4)

and       
0 2 2

1
1

[( ) /( )] ( )
A y

x
D y

d y x x y dy





      q r i j j
0

1
2

1

tan 1
1

dy
y

  
 ...(5)

Using (2), (3), (4) and (5), (1) becomes

    1 1 1 1tan (1/ 2) tan 2 tan 1 tan 1        1 1cot 2 tan 2 / 4 / 4      

     / 2 / 4 / 4 0       , as 1 1tan 2 cot 2 / 2   
Since curl q = 0 everywhere inside the square path, we could have got the same result

directly from Stokes’s theorem.
(b) To obtain circulation around the unit circle with its centre at the origin, we use polar

coordinates for convenience. Writing x = r cos  , y = r sin  , we have

2
sin cos sin cosr r

r rr
     

   
i jq i j                  and             q = ui + vj

so that                  
sinu

r


                      and                   
cos

r


v

         cos sin 0rq u    v              and               sin cos 1/ .q u r     v  

         
2

0
(1/ ) 2 .d r r d


        q r

Note. The answer indicates the following facts :
1. Unlike part (a),  is not equal to zero, because the circle encloses the origin where a

singularity exists (i.e., the continuity conditions for Stokes’s theorem do not hold there).
2. The circulation is independent of the radius of the circle ; in fact, it can be shown that

2    for every curve enclosing the origin.

Part (ii) Proceed like part (a) of part (i).

Ex. 2. Show that if 2 2 2( ) / 2,ax by cz    2 2 2( ) / 2V lx my cn    where a, b, c; l, m,
n are functions of time and a + b + c = 0, irrotational motion is possible with a free surface of
equi-pressure if

22( ) ,
adt

l a a e     22( ) ,
bdt

m b b e     22( )
cdt

n c c e   are constants.

Sol. Given               2 2 2( ) / 2ax by cz     ...(1)

              2 2 2( ) / 2V lx my nz   ...(2)
and         a + y + z = 0 ...(3)

From (1),         / ,x ax              / ,y by              / z cz    ...(4)

and        2 2/ ,x a                  2 2/ ,y b                 2 2/ .z c     ...(5)

   2 2 2 2 2 2 2/ / / ( ) 0,x y z a b c                    by (3)
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GENERAL THEORY OF IRROTATIONAL MOTION 6.15

Thus the Laplace equation 2 0    is satisfied and hence   is velocity potential for a
possible irrotational motion.

Bernoulli’s equation for non-steady irrotational motion under conservative external forces
with potential V is given by

      
21 ( )

2
p q V F t

t


   
   where F(t) is an arbitrary function of t. ...(6)

Let dot denote differentiation w.r.t. ‘t’. Then (1) gives

   21
2

a x
t

  


 ....(7)

Also                          2 2 2 2( / )q x a x      ...(8)
In order that a free surface of a equal pressure may exist, we have p = const. so that

Dp/Dt = 0.

                      0p p p pu w
t x y z
   
   

   
v ...(9)

Using (2), (7) and (8), (6) gives

2 2 2 21 1 1 ( )
2 2 2

p a x a x lx F t       




            2 2 21 [ 2 ] ( )
2

p a x a a x l x F t
t
        




and          
2 2( ).p pu ax a a l

x x x
                  



Similarly, we have

         
2 2( ),p by b b m

y

   




v                2 2( ).pw cz c c n
z

   




Substituting these in (9), we obtain

               2 2 21 ( 2 ) ( ) ( ) 0,a a a l x a a a l x F t         


 

which is an identity in t and so the coefficients of x2, y2, z2 and the constant must vanish separately.
Thus, we obtain

   2(1/ 2) ( 2 ) ( ) 0a a a l a a a l      
  ...(10)

   2(1/ 2) ( 2 ) ( ) 0b bb m b b b m      
  ...(11)

   2(1/ 2) ( 2 ) ( ) 0c cc n c c c n        ...(12)

         ( ) 0F t  ...(13)
Now (13) gives F (t) = const. (= C, say). Thus F (t) is an absolute constant.
Re writing (10), we have

2
2 2 0a a a l dt adt

a a l
 

 
 

 



Integrating, 2log ( ) log 2a a l c adt      

or        22( ) /
adt

a a l c e


                  or            22( )
adt

a a l e c   

Similarly, (11) and (12) also yields two similar expressions.
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6.16 FLUID DYNAMICS

Ex. 3. A space is bounded by an ideal fixed surface S drawn in a homogeneous incompressible
fluid satisfying the conditions for the continued existence of a velocity potential   under
conservative forces. Prove that the rate per unit time at which energy flows across S into the

space bounded by S is                    ,dS
t n
 


 

where   is the density and n  an element of the mormal to S  drawn into the space considered.

Sol. The kinetic energy T is given by                           1
2

T dS
n


   


     
21

2
dT dS dS
dt t n n t

    
     

    
 ...(1)

But   dS dS
n n
   

   ...(2)

Taking / ,t     (2) reduces to                 
2

dS dS
n t t n
   

 
     ...(3)

Using (3), (1) reduces to           .dT dS
dt t n

 
 

 
Ex. 4. Prove that if the velocity potential at any instant be  xyz, the velocity at any point

( , , )x y z       relative to the fluid at the point (x, y, z) where , ,    are small, is normal to
the quadratic x y z     = contant, with centre at (x, y, z).    [Meerut 2006]

Sol. Let q = (u, v, w) and ( , , )u w   q v  be the fluid velocities at P(x, y, z) and

( , , )P x y z        respectivley..

Given velocity potential = ,xyz    say Hence     /u x yz     

Similarly,                          xz v                 and .w xy 

Again              ( )u u uu u u z y
x y z
               
  

Similarly, ( )x z      v v           and          ( ).w w y x     

  velocity of P  relative to P i.e. ( , , )u u w w    v v is given by

         ( ), ( ), ( )z y x z y x            ...(1)

Let                   const.F x y z      ...(2)

Then direction ratios of the normal at P  are       F/ ,      / ,F     /F 

i.e. , , .y z x z x y        ...(3)
From (1) and (3), it follows that the velocity at P  relative to that at P is normal to the

quadratic (2).
Ex. 5. Deduce from the principle that the kinetic energy set up is a minimum that, if a mass

of incompressible liquid be given at rest, completely filling a closed vessel of any shape and if
any motion of the liquid be produced suddenly by giving arbitrarily prescribed normal velocities
at all points of its bounding surface subject to the condition of constant volume, the motion
produced is irrotational.
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GENERAL THEORY OF IRROTATIONAL MOTION 6.17

Sol. Let T be the kinetic energy and let u, v, w be the components of velocity at any point.

Then,                2 2 21 ( )
2

T u w dxdydz   v

Since T is minimum, 0T   and so we get

     ( ) 0u u w w dxdydz      v v ...(1)

Since normal velocity lu + mv + nw is prescribed on the bounding surface, we have
0l u m n w     v    on the boundary S. ...(2)

Equation of continuity / / / 0u x y w z        v  gives

           0,u w
x y z
  
     

  
v       which holds at each point within the fluid.

Since   is finite, we have everywhere

0u w dxdydz
x y z

   
           v

or     ( ) ( ) ( )u w dxdydz
x y z

   
         v 0u w dxdydz

x y z
   

           v

or             ( )l u m n w dS       v 0u w dxdydz
x y z

   
           v ..(3)

Making use of (2), we have everywhere

          0u w dxdydz
x y z

   
          v ...(4)

Adding (1) and (4), we have

0u u w w dxdydz
x y z

                            v v

              / 0,u x                 / 0,y   v              / 0,w z   

showing that u, v and w can be obtained from   and hence the motion is irrotational.
Ex. 6. Show that the theorem that under certain conditions, the motion of a frictionless

fluid, if once irrotational, will always be so, is true also when each particle is acted on by a
resistance varying as the velocity.

Sol. Let P  be a point very near to P such that .PP s  
Let flow along PP  be Q. Then, we have Q u x y w z     v

         ( )DQ D u x y w z
Dt Dt

     v ...(1)

But   ( ) .D Du D x Duu x x u x u u
Dt Dt Dt Dt


        ...(2)

Let the components of the resistance be (– ku, – kv, – kw). Then the equation of motion
along x-axis is
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6.18 FLUID DYNAMICS

1Du V p ku
Dt x x

 
   

  
...(3)

Using (3), (2) reduces to

        
1( )D V pu x x ku u u

Dt x x
  

           
...(4)

Similarly,         
1( )D V py y k

Dt y y
  

           
v v v v ...(5)

and                   
1( )D V pw z z kw w w

Dt z z
  

           
...(6)

Using (4), (5) and (6), (1) reduces to

  
2 2 21 1 ( ) ( )

2
DQ V p u w k u x y w z
Dt

              


v v

Let  be the circulation along the closed curve APA. Then

         ( )
A

A
u x y w z       v

    
21 ( )

2

A A

AA

D dpV q k u x y w z
Dt

 
             v

                    = – k [when p is a function of   and V is a single valued function]

       0 ,kte     where 0  is independent of t.

Let initially the motion be irrotational so that 0.       Thus 0   when t = 0. Hence

0 0   and so 0   is always true. Therefore by Stokes’s theorem, we always have

   ( ) 0,l m n d    S        so that         0              is always true.

Thus if the fluid motion is once irrotational, it will be always so.
Ex. 7. Obtain Cauchy’s integral using circulation theorem.
[Note : For the alternative method of getting Cauchy’s integrals, refer Art. 3.12]
Sol. Let a, b, c be the initial co-ordinates of a particle and x, y, z the co-ordinates of the

same particle at time t. Let C0 be the initial position of the closed curve C in yz-plane.
From circulation theorem, we have

 zC0
(v0db + w0dc) =C (udx + vdy + wdz),

where  u, v, w are velocity components at any time t and u0, v0, w0 are initial velocity components.
Let ,   be the vorticity components at any time t and 0, 0, 0 be the initial vorticity

components.
Let l, m, n be direction cosines of normal to surface S which was initially in shape S0.

Then, by Stokes’ theorem, we have

    
0

0 0
S S

w w u w udS l m n dS
b c y z z x x y

                                           
v v v
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GENERAL THEORY OF IRROTATIONAL MOTION 6.19

or 
S0
zz 0 db dc = S (l + m + n) dS

or 
S0
zz 0 db dc =   












RST
UVWzz ( , )

( , )
( , )
( , )

( , )
( , )

y z
b c

z x
b c

x y
b c dbdc

S
, as ldS = dydz =



( , )
( , )
x y
b c db dc etc.

 0 = 
( , )
( , )
y z
b c


  +  



( , )
( , )
z x
b c  + 



( , )
( , )
x y
b c . ...(1)

Similarly, 0 =   











( , )
( , )

( , )
( , )

( , )
( , ) .y z

c a
z x
c a

x y
c a ...(2)

and 0 =   











( , )
( , )

( , )
( , )

( , )
( , ) .y z

a b
z x
a b

x y
a b

...(3)

Multiplying  (1), (2) and (3) by x/a, x/b and x/c respectively and then adding, we have

 
   0 0 0


 


 


 





 




 




RST
UVW

x
a

x
b

x
c

x
a

y z
b c

x
b

y z
c a

x
c

y z
a b

( , )
( , )

( , )
( , )

( , )
( , )

or          0 0 0


 


 







x
a

x
b

x
c

x y z
a b c

( , , )
( , , ) , on simplification. ...(4)

In Lagrangian coordinates, the equation of continuity is

        




( , , )
( , , )
x y z
a b c 0             so that            





( , , )
( , , )
x y z
a b c



0 . ...(5)

Using (5), (4) may be re-written as

     

 =










0

0

0

0

0

0



 


 


x
a

x
b

x
c . ...(6)

Proceeding likewise, we also obtain

     

 =










0

0

0

0

0

0



 


 


y
a

y
b

y
c ...(7)

and      

 =










0

0

0

0

0

0



 


 


z
a

z
b

z
c · ...(8)

Relations (6), (7) and (8) are known as Cauchy’s integrals.
Ex. 8. A rigid envelope is filled with homogeneous frictionless liquid; show that it is not

possible, by any movements applied to the envelope, to set its contents into motion which will
persist after the envelope has come to rest.

Sol. Liquid motion is produced by movements on the boundary. Equations of motion are
given by [Refer Art. 3.7]

        u  u =  (1/ ) ( / ),w x    ...(1)

v v = (1/ ) ( / )w y     ...(2)

and          ww = (1/ ) ( / ),w z     ...(3)
where u, v, w and u, v, w are the velocity components at the point P(x, y, z) just before and just
after the impulsive action and ~w  is the impulsive pressure at P. Here, we have  u = v = w = 0.
Hence, (1), (2), (3) reduce to

u = (1/ ) ( / ),w x     v = (1/ ) ( / ),w y                and            w = (1/ ) ( / ).w z    
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6.20 FLUID DYNAMICS

        u dx + v dy + wdz =  


 


 


L
NM

O
QP   1 1

 


~ ~ ~ ~ ,w
x dx w

y dy w
z dz dw d say

When the density  is constant and therefore the motion produced is irrotational. Since the
pressure at any point is single valued,  is single valued, i.e., the motion is acyclic, then

   q dx dy dz n dS2zzz zz 



 . ...(4)

If /n = 0 on the boundary, then (4) shows that q is zero everywhere, that is, the liquid
comes to rest.

Ex. 9. Prove that in a cylic irrotational motion of a homogeneous fluid the total momentum
of the fluid contained within the sphere of any radius is equivalent to a single vector through the
centre of the sphere.

Sol.  Let S and V denote surface and volume of the given sphere whose centre is O. Let  be
the density and q the velocity of the fluid. Let M be the momentum of the fluid contained within

the sphere. Then, we have          M = .
V

dV q     ...(1)

Let N be the moment of momentum M about O.  Then, we have

N = ( ) ( )
VV

dV dV     r q r q . ...(2)

Since the motion is irrotational, velocity potential  exists such q = . Hence (2) becomes

N =   z r dV
V

. ...(3)

Now,   (r) = r + ( r),    [Refer Art. 1.6 for vector identities] ...(4)
Also,             r =  (xi + yj + zk).

  r =






F
HG

I
KJ 



 


FH IK 


 


F
HG

I
KJ

z
y

y
z

x
z

z
x

y
x

x
yi j k = 0

Hence    (4)   r) =  r = r         r =  (r). ...(5)

Using (5), (3)   N =   z ( )r dV
V

 or   N =     ( ) (  ) ,n r n r  zzzz dS dS
SS

...(6)

where n  is the inward drawn normal unit vector. Again n  and r are parallel vectors on the surface
of the sphere and so n  r = 0. Then, by (6), N = 0. Hence the moment of momentum N about O
is zero and therefore N must pass through the centre O of the sphere.

Ex. 10. If p denotes the pressure, V the potential of the external forces and q the velocity of
a homogeneous liquid moving irrotationally, show that 2q2 is positive and 2p is negative
provided 2V = 0. Hence prove that the velocity cannot have a maximum value and the pressure
cannot have a minimum value at a point in the interior of the liquid.

Sol. Since the motion is irrotational, the velocity potential  exists such that
                q = – [( / ) ( / ) ( / ) ].x y z          i j k

    q2 = ( / ) ( / ) ( / )       x y z2 2 2 . ...(1)
From vector calculus (Refer vector identities in Art. 1.6, we have


 ··

or ····
or · ...(2)
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GENERAL THEORY OF IRROTATIONAL MOTION 6.21

Replacing  and  by x in result (2), we have

        


F
HG

I
KJ  



 



F
HG

I
KJ 








F
HG

I
KJ 

2
2

22 2
x x x x x

...(3)

But 



F
HG

I
KJ

2
x =



 x

2 0 . ...(4)

Also,               

 


 

 


F
HG

I
KJ








 



 x x y z x x y x z xi j k i j k

2

2

2 2   .

            








F
HG

I
KJ 


 

F
HG

I
KJ 


 

F
HG

I
KJ 

x x x y x z x

2

2

2 2 2 2 2
   ...(5)

Using (4) amd (5), (3) reduces to

     



F
HG

I
KJ 




F
HG

I
KJ 


 

F
HG

I
KJ 


 

F
HG

I
KJ

L
N
MM

O
Q
PP 

2
2 2

2

2 2 2 2 2

2 0x x y x z x
   . ...(6)

Similarly,   2(y)2 > 0             and 2(z)2 > 0. ...(7)
Now,            (6) and (7)    2[(x)2 + (y)2 + (z)2]> 0. ...(8)
Then           (1) and (9)  2q2 > 0, as required. ...(9)
From Bernoulli’s equation, we have

     (p/)  – (/t) + q2/2 + V = f(t).

            
F
HG

I
KJ 



     2 2 2 2 2 21

2
p

t
q V f t


( ) ( ).

Now, 2 = 0           and 2f(t) = 0.        Also given that 2V = 0.

 From (10),  2p
1
2

   2q2 < 0            as 2q2 > 0, using (9)

Second part. From Gauss’ theorem, we have

        ( ) ,      











F
HG

I
KJzzzzz l U m V n W dS U

x
V
y

W
z

dxdydz
VS

...(1)

where l, m, n are the direction cosines of the inward normal to an element S of surface S and V
is the volume enclosed by S.

Let         U = x,         V = y,         W = z.         Then (1) reduces to

     


 



 




F
HG

I
KJ  












F
HG

I
KJzzzzz l x m y n z dS

x y z
dx dy dz

VS

2

2

2

2

2

2
  

or      



  zzzzz n
dS dxdydz

VS

2 ,  where n is an element of inward normal. ...(12)

If   = q2,            (12)            


  zzzzz q
n dS q dxdydz

VS

2
2 2 , ...(13)

We now apply the above result (13) to the case of a liquid contained
in a small sphere (See figure) Then, since 2q2 > 0, (13) shows that

  
zz q

n dS
S

2
 < 0. ...(14)

S

V

P
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6.22 FLUID DYNAMICS

Since n = r,             (14)                  

zz q

r dS
S

2
 > 0. ...(15)

If q2 is maximun at P, then q2/r is negative on the surface of a small sphere surrounding P,

that is,     
zz q

r dS
S

2
< 0,    ...(16)

which contradicts the results (15) and hence q2 cannot have a maximum within the liquid. Thus  q2

can be maximum only on the boundary.
Similarly, putting = p in (12), we have

   



  zz zzzp
n dS p dx dy dz

S V
2 . ...(17)

Since 2p < 0,                (17)             

zz p

n dS
S

 > 0. ...(18)

Now proceeding as before, we find that p cannot have a minimum at a point within the liquid.
Hence the pressure can be minimum only on the boundary.

Ex. 11. Prove that irrotational acyclic motion of a liquid contained in a boundary cannot
be created or destroyed by application of impulses.

Sol. The equations of motion under inpulsive forces are
       u  u = Ix   ( / ) ( ~ / )1   w x ...(1)

v v = Iy    ( / ) ( ~ / )1  w y ...(2)

and       ww = Iz    ( / ) ( ~ / ),1  w z ...(3)
where u, v, w and u, v, w are the velocity components at any point P(x, y, z) just before and just
after the impulsive action, Ix, Iy, Iz are the components of external impulsive forces per unit mass
of the fluid and ~w  is the impulsive pressure at P.

Multiplying (1), (2) and (3) by, dx, dy and dz respectively and then adding, we have
       (udx + vdy + wdz)  (udx + vdy + wdz)

    = (Ix dx + Iydy + Izdz)  (1/) ( ~ / ) ( ~ / ) ( ~ / )       w x dx w y dy w z dz

    = dV  (1/) dw~, if V is potential of the external impulses

    = d(V + ~w /), if  is constant
     (udx + vdy + wdz)  (udx + vdy + wdz) = d(V + ~w /). ...(4)
Now R.H.S. of (4) is an exact differential and hence L.H.S. of (4) must be an exact differential.

Hence if udx + vdy + wdz is not an exact differential, then udx + vdy + wdz will also be not an
exact differential, that is, when the motion is not irrotational we cannot make it irrotational by
application of impulses.

Let             udx + vdy + wdz =  d, ...(5)
then, clearly                         udx + vdy + wdz =  d, say ...(6)

Then (4) becomes  d + d =  d(V + ~w /).
Integrating,    = (V + ~w /)  C      or  = V + ~w /+ C, ...(7)

where C is an arbitrary constant.
Thus, if V and ~w  be single valued, then from (7) we see that  is also single-valued. It

follows that if  be single valued,  must be single valued and if  be many valued,  must also
be many valued so that  is single-valued. Hence the required result follows.
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GENERAL THEORY OF IRROTATIONAL MOTION 6.23

Ex. 12.  Liquid of density  is flowing in two dimensions between the oval curves r1r2 = a2

and r1r2 = b2 where r1, r2 are the distances measured from two fixed points. If the motion is
irrotational and quantity m per unit time crosses any line joining the bounding curves, then
prove that the kinetic energy is m2)/log(b/a).

Sol. Here we have two-dimensional irrotational motion in a region bounded by the given
curves      r1r2 = a2          and        r1r2 = b2.

Let the complex potential w be
      w = iE log {(z  z1)(z  z2)}. ...(1)

But     z  z1 = r1
1ie     and     z  z2 = r2 ei2

       (z  z1) (z  z2) = (r1r2) ei( ) 1 2 ...(2)
Using (2), (1) reduces to
 + i = iE [log (r1r2) + i()].
  = E(1 + 2)                 and  = E log r1r2. ...(3)
Let the barrier be taken at 1 = 2 = 0. On the positive side 1 = 2 = 0 and hence  = 0. Again,

on the negative side 1 = 2 = 2 and so  = 4E.
If k is the circulation, we have             k = 4E           so that        E = k/4.
 From (3),  = (k/4) (1 + 2)         and  = (k/4) log r1r2. ...(4)
Now, m = B  A = (k/4) log b2  (k/4) log a2, by (4)

or m =  (k/4) log (b2/a2) = (k/4) log (b/a)2 = (k/2) log (b/a)
and so              k = (2m)/log (b/a). ...(5)

Let T be required the kinetic energy. Then, we have

    T =
1 1 ,
2 2

k dS km
n


     
               as              m dS

n


  


      =
21 2 ,

2 log ( / ) log ( / )
m mm

b a b a
 

    using (5).

Ex. 13. Incompressible fluid of density  is contained between two co-axial circular cylinders,
of radii a and b (a < b), and between two rigid planes perpendicular to the axis at a distance l
apart. The cylinders are at rest and the fluid is circulating in irrotational motion, its velocity V
at the surface of the inner cylinder. Prove that the kinetic energy is la2V2 log (b/a).

Sol. For the case of irrotational two-dimensional fluid motion, we have

2 =











2

2 2

2

2
1 1 

r r r r
= 0. ...(1)

Here  is function of r only. So          22 = 0.

Then (1) becomes    
2

2
1 0d d
r drdr

 
     or    

2

2 0d dr
drdr

 
     or    d{r(d/dr)} = 0.

Integrating,             r(d/dr) = C            so that             d/dr = C/r. ...(2)
But given that d/dr = V when r = a. So (2) gives V = C/a and hence         C = Va.
Thus,                          transverse velocity = d/dr = (Va)/r.
Again, the radial velocity is zero as  = 0, being a function of r only.
Hence,     q = resultant velocity = (Va)/r.
Let T be the required kinetic energy of the fluid. Then, we have

T =
2 2

2
2

1 1(2 ) (2 )
2 2

b b

a a

V ar dr l q r l dr
r

      = la2V2 1 2 2
r dr la V b a

a

b
z   log ( / ).

o 21

1 2
21
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6.24 FLUID DYNAMICS

Ex. 14. In a two-dimensional flow the velocity components are u = Cy, v = 0 (where C is a
constant). Find the circulation about the circle x2 + y2 – 2ay = 0 situated in the flow.

Sol. We know that                                    ,A   ...(1)

where                    A = area of circular boundary of radius 2a a 

and         = vorticity ( / ) ( / ) 0x u y C C         v

         2 2( )C a C a        square meters per second.

EXERCISES
1. Show that the kinetic energy of a volume V of liquid of constant density   that is moving

irrotationally with velocity potential   is      1 ,
2 S

dS
n


  


where S denotes the surface of V and n the normal into the liquid.    [Meerut 2007]
[Hint. Refer deduction III of Art 6.7]
2. Prove that the circulation in any closed path moving with the fluid is constatnt for all

time, provided that the fluid is barotropic and the external forces are conservative. Deduce the
theorem of the permanence of irrorational motion.

3. Prove that acyclic irrotatinal motion produces in an infinite liquid bounded intermally and
extermally by given velocities on the boundary may not cease when the boundaries are brought to
rest.

4. State and prove uniqueness, theorem. [Kanpur 2001, G.N.D.U. 1998]
[Solution : Statment of uniqueness theorem. There cannot be two diffeent forms of irrotational

motion for a given confined mass of liquid when boundaries have prescribed velocities or are
subject to given impulses.

Proof. Give proofs of theorem I and theorem II given in Art. 6.9 B.
5. State and prove Kelvin’s circulation theorem. Also prove that the irrotational motion is

permanent. [Agra 2008; Meerut 1999; 2002]
[Hint. Refer Art. 6.4 and Art 6.5]
6. State and prove Kelvin’s theorem of constancy of circulation. [Meerut 2001, 02]
[Hint. Refer Art 6.4]
7. State and prove Stokes’ theorem for circulation. [Agra 2005]

OBJECTIVE QUESTIONS ON CHAPTER 6
Multiple choice questions
Choose the correct alternative from the following questions

1. Let C be a closed curve and  be the circulation, then

 (i)
C

d   q r   (ii) 
C

d   q r (iii) | |
C

dr   q     (iv)  None of these

2. In usual notations, Stoke’s theorem is

  (i) curl
C S

d d   q r q S                                  (ii)  curl
C S

d dS   q r q

(iii) curl
C S

d dS   q r q               (iv) curl
C C

d dS   q r q

3. The motion in which the velocity potential is single–valued is called
 (i) Laminar     (ii) Turbulent    (iii) Cyclic          (iv)  Acyclic                 (Agra 2011)
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14.1. The Navier-Stokes equations of motion of a viscous fluid. (Agra 2005, 07, 08,
09, 10, Garhwal 2005; Himanchal 2000, 01, 02, 03, 09; Kanpur 2004, 09;

          Meerut 2000, 01, 08, 09, 10, 12)
With P(x, y, z) as centre and edges of lengths ,x ,y z  parallel to fixed coordinate axes,

construct an elementary rectangular parallelepiped as shown in the figure. We consider the motion
of above mentioned parallelepiped of viscous fluid. We suppose that the element is moving with
the fluid and mass x y z     of the fluid remains constant. Let coordinates of points P1 and P2 be

( / 2, , )x x y z   and ( / 2, , )x x y z   respectively..

z

y

x

Oii jj

kk

A

A2 B2

A1 B1

D2 C2

D1 C1

CD

B

P

P2

xz
xyxx

P1

At P, the force components parallel to OX, OY, OZ on the rectangular surface ABCD of area
y z   through P and having i as unit normal are

[ , , ].xx xy xzy z y z y z        

At P2, since i is the unit normal measured outwards from the fluid, the corresponding force
components on the rectangular surface A2B2C2D2 (parallel to ABCD) of area y z   are

    , ,
2 2 2

xyxx xz
xx xy xz

x x xy z y z y z
x x x

                                 
    ...(1)

The Navier-Stokes
Equations And The Energy

Equation
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14.2 FLUID DYNAMICS

At P1, since – i is the unit normal measured outwards from the fluid, the corresponding force
components on the rectangular surface A1B1C1D1 (parallel to ABCD) of area y z  are.

, ,
2 2 2

xyxx xz
xx xy xz

x x xy z y z y z
x x x

                                    
  ...(2)

Hence the forces on the parallel planes A2B2C2D2 and A1B1C1D1 passing through P1 and P2
are equivalent to a single force at P with components

   , ,xyxx xzx y z x y z x y z
x x x

  
            

...(3)

together with couples whose moments*. (to the third order of smallness) are

   xz x y z  about OY          and           xy x y z     about OZ.
...(4)

Similarly, the forces on the parallel planes perpendicular to the y-axis are equivalent to a
single force at P with components

, ,yx yy yzx y z x y z x y z
y y y

   
            

...(5)

together with couples whose moments are

   yx x y z  about OZ and yz x y z     about OX. ...(6)
Again, the forces on the parallel planes perpendicular to the z-axis are equivalent to a single

force at P with components

, ,zyzx zzx y z x y z x y z
z z z

  
            

...(7)

together with couples whose moments are

zy x y z     about OX      and zx x y z     about OY. ...(8)
Thus, the surface forces on all the six faces of the rectangular parallelepiped (A1B1C1D1,

A2B2C2D2) are equivalent to a single force at P having components

, ,
              

                                   

yx xy yy zy yzxx zx xz zzx y z x y z x y z
x y z x y z x y z  ...(9)

together with a vector couple having components

( ) , ( ) , ( ) .yz zy zx xz xy yxx y z x y z x y z                   ...(10)
Let q = ui + vj + wk and B = Bx i + By j + Bx k        ...(11)

be the velocity of the fluid at P(x, y, z) at any time t and external body force at P per unit mass
respectively.

Clearly the total body force on the elementary rectangular parallelepiped has components

* Convention of sign of a couple. If a couple in the plane XOY causes rotation from OX towards
OY, then it shall be represented by a positive length along OZ. Similarly, a couple in the plane YOZ
which would cause rotation from OY towards OZ will be represented by a positive length along OX
and a couple in the plane ZOX causing rotation from OZ towards OX will be represented by a positive
length along OY.
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THE NAVIER-STOKES EQUATIONS AND THE ENERGY EQUATION 14.3

( , , ).x y zB x y z B x y z B x y z           
Taking account of surface forces and body forces, we find that the total force component in

the i-direction on the element of fluid under consideration is

  .
  

          
   

yxxx zx
xx y z B x y z

x y z
Since the mass x y z     of the element is treated to be constant, the equation of motion of

the element in the i-direction (i.e. OX) is

( ) yxxx zx
x

Dux y z x y z B x y z
Dt x y z

  
               

   

or .xyxx xz
x

Du B
Dt x y z

 
     

  
Thus by cyclic permutation we obtain three equations of motion in the i, j, k directions

(i.e. OX, OY, OZ) :

xyxx xz
x

Du B
Dt x y z

 
     

   ...(12a)

yx yy yz
y

D B
Dt x y z

  
     

  
v

...(12b)

zyzx zz
z

Dw B
Dt x y z

 
     

   ...(12c)

The constitutive equations for a Newtonian (viscous) compressible fluid are given by [refer
equation (32a) to (32f) in Art. 13.14]

     
 
 

2 ( / ) (2 / 3)
2 ( / ) (2 /3)
2 ( / ) (2 / 3)

/ /
/ /
/ /

xx

yy

zz

xy yx

yz zy

zx xz

u x p
y p

w z p
u y x

z w y
w x u z

          
         
         
          
         


          

q
q
q

v

v

v
...(13)

Using (13), equations (12a) to (12c) may be expressed in terms of the velocity derivatives
as follows :

22 ( )
3x

Du p u u w uB
Dt x x x y y x z x z

                                                        
q v

...(14a)

22 ( )
3y

D p w uB
Dt y y y z z y x y x

                  
                                         

qv v v v
...(14b)

22 ( )
3z

Dw p w w u wB
Dt z z z x x z y z y

                                                        
q v

...(14c)

The above three equations are called the Navier-Stokes equations of motion for a viscous
compressible fluid in cartesian coordinates.

Particular Case: Incompressible viscous fluid flow. (Himanchal 2007)
The above system of equation (14a), (14b) and (14c) become further simplified in the case

of incompressible fluids ( = constant) even if the temperature in not constant. First, as already
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14.4 FLUID DYNAMICS

shown in Art.2.8 we have 0. q  Secondly, since temperature variation are, generally, speaking,
small in this case, the viscosity may be taken to be constant. Writing the acceteration terms in full,
the equations of motion for incompressible flow are

         
2 2 2

2 2 2x
u u u u p u u uu w B
t x y z x x y z

         
                       

v ...(14a')

         
2 2 2

2 2 2y
pu w B

t x y z y x y z
         

                       

v v v v v v v
v ...(14b')

       
2 2 2

2 2 2z
w w w w p w w wu w B
t x y z z x y z

         
                        

v ...(14c')

Deduction of equations of motion for some particular cases :
In what follows, we shall use the following result :

D u w
Dt t t x y z

    
      
    

q v ...(15)

(i) Viscous compressible fluid with constant viscosity (Vector form) (Meerut 2000)
Let the coefficient of viscosity, ,  be constant. Then equations (14a) to (14c) may be expressed

in vector form

          2/ ( ) ( / 3) ( )dt p            q q q B q q ...(16)

Now,       ( ) ( ) ( )      q q q q q q      or      2( ) ( / 2) ( )     q q q q q

         2( ) ( / 2) ( )     q q q q q ...(i)

Again,    ( ) ( ) ( )       q q q     or      2( ) ( )     q q q

 2 ( ) ( )      q q q ...(ii)
Using (i) and (ii), (16) may be re-written as

    21 ( ) [ ( ) ( )] ( )
2 3

p
t

                         

q q q q B q q q

or     21 4( ) ( ) ( ).
2 3

p
t

                    

q q q q B q q ...(16)

(ii) Viscous incompressible fluid with constant viscosity. Let   and   be constants for
the given incompressible fluid. Further, for such a fluid 0. q  If /     be the kinematic
viscosity, then (16) reduces to

  2/ ( ) (1/ ) .t p        q q q B q ...(17)
(iii) Non-viscous incompressible fluid. For such fluid µ = 0 and hence (16) further reduces to

       / ( ) (1/ ) ,       t pq q q B                                ...(18)
which is the well known Euler’s equation* Note that (18) is valid for both incompressible flows
and compressible flows. For incompressible flows   is constant while for compressible flows, 
is usually a function of both pressure and temperature.

* It was obtained independently in Art. 3.1 of chapter 3.  Refer equation (7) of that article.
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THE NAVIER-STOKES EQUATIONS AND THE ENERGY EQUATION 14.5

For viscous incompressible fluid, 0 q  and so (16)' reduces to

 / ( ) ( ).t p         q q q B q ...(18a)

where we have also used relation (i).
Comparing the above equation (18a) with (18), we find that for incompressible flow the

equation of motion differs from Euler’s equation of motion for non-viscous flow by the term
( ). q  This term, due to viscosity, increases the complexity by increasing the order of the

differential equation of the motion. Hence an additional boundary condition is required. This is
provided by the condition that there must be no slip between a viscous fluid and its boundary. It
follows that we cannot arrive at the solution of the corresponding non-viscous flow problem by
solving (18a) and then letting 0.

(iv) Plane two-dimensional flow of incompressible viscous fluid.

Here we have w = 0 and / 0.z    Then (14a) to (14c) reduce to

        
2 2

2 2 ,x
u u u p u uu B
t x y x x y

       
                    

v ...(19a)

        
2 2

2 2
v v v v v

v
       

                   
y

pu B
t x y y x y ...(19a)

and          0 .zB  ...(19c)

14.2. The energy equation-conservation of energy. [Himanchal 1999, 2000, 03, 06]
Consider motion of a viscous compressible (Newtonian) fluid. We propose to consider

conservation of energy on the basis of the first law of thermodynamics. According to this law the
total energy added to the system (both by heat and by work done on the fluid) increases the
internal energy per unit mass of the fluid. Let Q be the heat added per unit mass of fluid through
conduction and E be internal energy per unit mass of fluid. Then the rate of work done W by the
normal and shearing stresses on a unit volume of the fluid is given by

             xx xx yy yy zz zz xy xy yz yz zx zxW                   ...(1)
Then the first law of thermodynamics (in terms of variation of energy) may be re-written as

   ( / ) ( / ).dQ dt W dE dt    ...(2)
The relations between the stresses and the rates of strain (constitutive equations) are given

by [see (32a) to (32 f) in Art. 13.14]

      
2 (2 / 3)
2 (2 / 3)
2 (2 / 3)

xx xx

yy yy

zz zz

p
p
p

      
      
      

q
q
q

...(3a)

and                 ,   xy xy               ,   yz yz                  zx zx ...(3b)

Also      / ,xx u x                / ,yy y   v         /zz w z    ...(4a)

and    
/ /
/ /
/ /

xy

yz

zx

u y x
z w y

w x u z

       
       
       

v

v ...(4b)

Using results (3a) and (3b), (1) reduces to
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14.6 FLUID DYNAMICS

 2 (2 / 3)     xx xxW pq  + two similar terms + xy xy   + two similar terms
2 2 2 2 2 22 ( ) (2/3) ( ) ( ) ( ) ( )                      xx yy zz xx yy zz xx yy zz xy yz zxpq

2 2 2( / / / ) [2{ / ) ( / ) ( / ) }v v                   p u x y w z u x y w z
2 2 2 2(2 / 3) ( / / / ) ( / / ) ( / / ) ( / / ) }u x y w z u y x z w y w x u z                           v v v

[Using 4 (a) and 4 (b) and the fact that ( ) u wu w
x y z x y z

       
                   

q i j k i j k v
v

Thus, W ,p   q Φ ...(5)
where Φ  denotes the dissipation function and it represents the time rate at which energy is being
dissipated per unit volume through the action of viscosity. Hence we have

         2 2[ 2{( / ) ( / ( / ) } (2 / 3) ( / / /2 2v y) v y + w z)                  u x w z u xΦ
2 2 2( / / ) ( / / ) ( / / )u y x z w y w x u z                 v v ] ... (6)

Using (5), (2) reduces to ( / ) ( / )dQ dt dE dt p      Φ q ...(7)
The equation of continuity, for compressible (viscous) fluid is given by [Refer Equation (5)

in Art. 2.7]

          0D
Dt

   q                           so that                  

2
p p D

Dt


   
 

q ...(8)

Now, 2
1 ,D p D p D

Dt Dt Dt
   

     
        so that       2

1p D D p Dp
Dt Dt Dt

 
      

  ...(9)

From (8) and (9), we have

1p D p Dp
Dt Dt

 
       

q or D p Dpp
Dt Dt

 
      

q ...(10)

Using (10), (7) reduces to

     
dQ dE D p Dp D p DpE
dt dt Dt Dt Dt Dt

   
                

Φ ,Dh Dp
Dt Dt

   ...(11)

where /h E p    is the enthalpy* of the fluid per unit mass.
We now evaluate Q. According to the Fourier’s heat-conduction law, heat flux f crossing

an area (i.e., quantity of heat per unit time) is proportional to the temperature gradient along the
surface. Hence, ( / ),f k T n   
where k is the thermal conductivity of the fluid, and the negative sign signifies that the direction
of the flux is opposite to that of the temperature gradient.

Refer figure of Art 2.9, Chapter 2. Let there be a fluid particle at P(x, y, z). Let T and   be
the temperature and density of the fluid at P. Construct a small parallelepiped with edges of
length  parallel to their respective coordinate axes, having P at one of the angular points as
shown in the figure just referred. Then we have

The heat flow through the face PQRS per unit time ( / ) ( , , ),      k T x y z f x y z    ...(12)

* It is also known as the total heat content (heat introduced into the system).
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THE NAVIER-STOKES EQUATIONS AND THE ENERGY EQUATION 14.7

 The heat flow through the opposite face P Q R S     per unit time

( , , )f x x y z   ( , , ) ( , , ) ,f x y z x f x y z
x


   


by Taylor’s theorem ...(13)

Hence the net gain in energy per unit time within the fluid element in the x-direction (due
to flow through faces PQRS and P Q R S    ) from (12) and (13) is

( , , ) ( , , ) ( , , )       
f x y z f x y z x f x y z

x
( , , )

  


x f x y z
x

[to the first order of approximation]
                        

T Tx k y z x y z k
x x x x

Similarly, the net gains in energy per unit time within the fluid element in y- and z-directions

are given by  Tx y z k
y y
  

      
        and            

Tx y z k
z z
        

           respectively..

Hence the total quantity of heat introduced in the fluid element during time t  is

  .T T Tt x y z k k k
x x y y z z

                              
Hence the rate of heat added by conduction per unit volume is given by

T T Tk k k
x x y y z z

                       
...(14a)

i.e.          ( )k T   ...(14b)

Thus,     ( / ) ( )dQ dt k T     ...(15)
Using (15) and assuming that there is no direct heating from chemical reaction and radiation

heating, the required energy equation from (11) is given by
( ) ( / ) ( / ).k T Dh Dt Dp Dt     Φ ...(16)

In cartesian coordinates the energy equation for viscous compressible fluid reduces to

( )
,pD C TT T T Dpk k k

x x y y z z Dt Dt
                           

Φ ...(17)

where k = cp T and cp is specific heat at constant pressure. Using the kinetic theory of gases
together with experiments,   and k are found to be functions of the temperature only for gases
having ordinary densities.

Energy equation for special cases :
(i) Viscous incompressible fluid. [Himanchal 2003, 09]
When the fluid is taken as incompressible viscous fluid, then k = constant and  = constant.

Further-more, the equation of continuity for such a fluid is given by
/ / / 0.u x y w z        v ...(18)

Hence the dissipation function Φ  for the present problem is given by [on using (6)]
2 2 22 2 2

2 u w u w w u
x y z y x z y x z

                                                                 
Φ v v v ...(19)

If cv be the specific heat at constant volume, then cp = cv= c for an incompressible fluid.
Here c is the specific heat of the fluid. With the above mentioned discussion, the energy equation
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14.8 FLUID DYNAMICS

(17) assumes the form
2 2 2 2 2 2( / / / ) ( / ) ( / )k T dx T y T z c DT Dt Dp Dt          Φ ...(20)

(ii) Non-viscous fluid. Since 0   for such fluids, 0Φ  by (6). Then (17)  yields

   
( )pD C T DpT T Tk k k

x x y y z z Dt Dt
                          

...(21)

(iii) Non-viscous incompressible fluid. As before k = constant and 0   (hence 0Φ ).
Also cp = cv= c. Hence the energy equation (21) assumes the following form

     2 2 2 2 2 2( / / / ) ( / ) ( / )k T x T y T z c DT Dt Dp Dt           ...(22)
14.3. Equation of state for perfect fluid.

The equation of state of a substance is a relation between its pressure, temperature and
specific volume. There exist an equation of state corresponding to a given homogeneous substance,
solid, liquid or gas. The relationship may be expresses as

       ( , , ) 0, f p T ...(1)
which is known as the equation of state. The exact nature of the function f is, in general, very
complicated and varies from fluid to fluid. However, for a perfect gas or an ideal gas the equation
of state is given by p RT    ...(2)

or        ( ) ,pp c c T  v ...(3)
where R is called the gas constant and cp and cv are specific heats at constant pressure and
volume respectively. Relation (2) is also known as Boyle’s law.
14.4. Diffusion of vorticity. [Agra 2005, 06; Kolkata 2006; Himanchal 2001]

The Navier-stokes equation for viscous incompressible fluid is given by

     
2 21

2
            

dp
t
q q q B q ...(1)

where     = vorticity vector = .q ...(2)
Let the body forces be conservative so that . B 0 ...(3)
On taking the curl of both sides of (1) and using (3), we obtain

      2( / ) ( ) ( )t       q q q

or 2( / ) ( ) [( ) ( ) ] ( )t         q q q q 

or 2/ ( ) ( ) ( ),        t q q     using (2)

or     2/ ( )D Dt    q   , ...(4)
which is known as vorticity transport equation.

The first term on R.H.S of (4) represents the rate at which   varies for a given particle
when the vortex lines move with the fluid, strengths of the vortices remaining constant. Since
this term is negligible for slow motion, approximate form of (4) is

   2/ .D Dt    ...(5)
In the special case of two-dimensional flow, with reference to fixes axes, we have

  q = u(x, y) i + v(x, y) j
Then ( / / )x u y       q kv       and       ( ) / / ( / ) ,v       dx u y d zq q 0

showing that (4) reduces to (5) for a two dimensional case.
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THE NAVIER-STOKES EQUATIONS AND THE ENERGY EQUATION 14.9

It follows that for slow three-dimensional motion, or for two-dimensional motion, (3) describes
the manner in which vorticity is transmitted throughout a viscous fluid.

Remark Equation (5) is of the same form as the equation of heat conduction in a liquid.
Hence vorticity diffuses through a liquid in almost the same way as heat does. By analogy it
follows that vorticity cannot be generated within the interior of a viscous fluid. In fact it is
transmitted from the boundaries into the fluid. As an example, a sailing ship will generate vortices
in its wake, arising from the hull which is a moving boundary. As time passes, the disturbance is
soon damped out as the vortices diffuse through the water.

14.5. Equations for vorticity and circulation.To prove that 2/ =d dt  

(Himanchal 2003, 09; Meerut 1998)
The equations of motion for viscous fluid are given by

2

2

2

1
3

1
3

1
3

Du Q u w u
Dt x x x y z

D Q u w
Dt y y x y z

Dw Q u w w
Dt z z x y z

     
               

                     
                     

v

v v
v

v

...(1)

where       .dpQ V 


The above equations (1) can also be re-written as
2/ 2 ( ) ( / )Du Dt w x u          v ...(2)
2/ 2( ) ( / )D Dt w u y          v v ...(3)
2/ 2 ( ) ( / )Dw Dt u z w         v ...(4)

where 2/ / 2 .p q V   
Differentiating (3) and (4) partially w.r.t.‘z’, and ‘y’ respectively and subtracting, we get

22 ( ) ( )w wu w u
t y z y z y z
           

                         

v v
v

or
2u w uu w u

t y y y y z z z z
         

                       

v
v

or
2w u u u w

t y z y z y z y z
           

                        

v
+v

or
2u u uu w

t x y z x y z
      

        
      

v

or   
2D u u u

Dt x y z
   
         

   ...(5)

Similarly,   
2D

Dt x y z
   
         

  
v v v

...(6)
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14.10 FLUID DYNAMICS

    
2D w w w

Dt x y z
   
         

   ...(7)

The first three terms on the R.H.S. in equations (5), (6) and (7) represent the rates at which
, ,   vary for a given particle, when the vortex lines move with the fluid and their strengths

remain constant. When the motion is very slow, these terms can be neglected and the remaining
terms give the variations of vorticity. Since the resulting equations are the same in form as
standard equation of conduction of heat, hence as in conduction of heat, we can say that vortex-
motion cannot originate in the interior of a viscous liquid but must be diffused inwards from the
boundary.

Let   be the circulation round a closed circuit moving with the fluid. Then, we have

   ( )
C

udx dy wdz    v

 ( )
C C

D Du D Dwdx dy dz u du d wdw
Dt Dt Dt Dt
        

  
v

v v ...(8)

Since circulation is taken round a closed circuit, the second integral on R.H.S. in (8) is zero

   ence,                     
C

D Du D Dwdx dy dz
Dt Dt Dt Dt
     

 
v

...(9)

Now, from equation (1),            2/ /D Dt p V      q q ...(10)

From (9) and (10), we get

2 2 2( )
C

D p p pV dx V dy V dz u dx dy w dz
Dt x y z

                                       v

or          
2 ( )

C C

D pd V udx dy wdz
Dt

 
           v

    2/ .D Dt           [  the first integral is zero for a closed circuit]

14.6A. Dissipation of energy. definition.
Dissipation of energy is that energy which is dissipated in a viscous liquid in motion on

account of the internal friction.
Determination of the rate of dissipation of energy of a fluid due to viscosity.

[Agra 2007; Meerut 2005]
Suppose we follow a particle of viscous incompressible fluid of fixed mass V  and moving

with velocity q at any time t. Then its kinetic energy is 2(1/ 2) ( ) .V  q  Hence the rate of gain
of kinetic energy at time t as we follow the particle is given by

21 .
2

D DV V
Dt Dt

      
 

qq q

Let the total volume be V and S be the total surface enclosing the volume V.
Hence the total rate of gain of kinetic energy dT/dt. (say), of the total volume V, is given by

     .      V V

dT D DdV dV
dt Dt Dt

q qq q ...(1)

The Navier-Stokes equation for viscous incompressible fluid is given by [refer equation
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THE NAVIER-STOKES EQUATIONS AND THE ENERGY EQUATION 14.11

(17) in Art. 14.1)                   
21 ,

    
 

D p
Dt

q B q

where B is the body force. Using this relation, (1) reduces to

     
21 

         V
dT p dV
dt

q B q

or      
2( ) ( )

       
  V S V

dT dV p dS dV
dt

q B q n q q ...(2)

[On using Gauss divergence theorem in the second term]
The first term in R.H.S. of (2) represents the rate at which the external force B is doing

work throughout the mass of the liquid while the second term on R.H.S. of (2) represents the rate
at which the pressure is doing work on the boundary. It follows that for an ideal fluid ( 0),  the
rate of increase of kinetic energy equals the rate at which work is done by the body forces and
pressures at the boundary. Hence, if D is the rate of dissipation of energy due to viscosity, then by

virtue of (2), we have     2( ) .
V

D dV   q q       ...(3)

Let   denote the vorticity vector. Then  q ...(4)

Now, consider the vector identity 2( ) ( ) .     q q q ...(5)

Since the fluid is incompressible, we have         0 q ...(6)
Using (4) and (6), (5) reduces to

2   q so that 2  q  ...(7)

From (7),                                    2 ( )    q q q  ...(8)

Now,               ( ) ( ) ( ) ( ),            q q q q         by (4)

 2( ) ( )     q q      or              2( ) ( ) .      q q      ...(9)

From (8) and (9), we have 2 2( ) .    q q q   ...(10)
Using (10), (3) reduces to

2[ ( ) ]
V

D dV      q   or 2 ( )
V V

D dV dV      Ω q 

       2 ( ) ,
V S

D dV dS      n q   by Gauss divergence theorem ...(11)

In case the boundary is at rest and there is no slip between fluid and boundary so that
q = 0 on S, then (11) reduces to

2

V
D dV    or             2 2 24 ( ) ,

V
D dxdydz      

where , ,    are components of vorticity vector , i.e.,

1 ,
2

w
y z

  
     

v 1 ,
2

u w
z x

       

1 .
2

u
x y

  
     

v
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14.12 FLUID DYNAMICS

14.6 B. Dissipation of energy (cartesian form).
[Agra 1999; 2006; Allahabad 2002; Garhwal 2000; Kanpur 1997; 1998; Kolkata 2000]
The kinetic energy T at time t of a portion of fluid bounded by S is given by

       2 2 21 ( )
2

T u w dx dy dz    v ...(1)

Hence, differentiating following the motion of the same portion, we have

    
DT Du D Dwu w dx dy dz
Dt Dt Dt Dt

     
 

v
v ...(2)

Navier-Stokes equations of motion (refer Art. 14.1) are given by

xyxx xz
x

yx yy yz
y

zyzx zz
z

Du B
Dt x y z
D B
Dt x y z
Dw B
Dt x y z

  
         

         
   

       
   

v ...(3)

Using (3), (2) reduces to

( )v    x y z
DT uB B wB dxdydz
Dt

xy yx yy yz zyxx xz zx zzu w dxdydz
x y z x y z x y z

              
                                  
 v ...(4)

The first term on R.H.S. of (4) represents the rate at which the external forces are doing
work throughout the mass of the fluid. The second term on R.H.S. of (4) may be re-written as

( ) ( ) ( )
       

                     xx xy xz xx xy xz
u u uu u u dxdydz

x y z x y z

[ ( ) ( ) ( )]xx xy xz yx yy yz zx zy zzu l m n l m n w l m n dS                   v

xx yy zz
u w
x y z

  
       

v
,x y yz zx

u w u w dxdydz
y x z y z x

                                 

v v
 ...(5)

where l, m, n are the direction cosines of the inward drawn normal to dS.
Now, we know that (refer Art. 13.5)

nx xx xy xz

ny yx yy yz

nz zx zy zz

l m n
l m n
l m n

      
       
       

...(6)

Using (6), the first integral in (5) may be re-written as

( ) ,nx ny nzu w dS      v ...(7)

where the suffix n indicates a normal to dS, and this integral represents the rate at which the
kinetic energy is being increased by the action of the stresses on the boundary of the fluid.

Using the constitutive equations for an incompressible viscous fluid ( 0) q , we have
(refer Art. 13.12 and Art 13.14).
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THE NAVIER-STOKES EQUATIONS AND THE ENERGY EQUATION 14.13

     

2 2 ( / )
2 2 ( / )
2 2 ( / )

2 / /

2 / /

2 / /

xx xx

yy yy

zz zz

xy xy

yz yz

zx zx

p p u x
p p y
p p w z

u y x

z w y

w x u z

           
           
           
         
        


         

v

v

v

...(8)

Again, the equation of continuity 0 q  may be written as

         / / / 0.u x y w z        v ...(9)
Using (8), the second term on R.H.S. of (5)

22 2

2 2 2u w u wp
x y z x y z

                                  


v v

                        

2 22w u w u dxdydz
y z z x x y

                              

v v

2 2 22 2 2

2 2 2 ,u w w u w u dxdydz
x y z y z z x x y

                                                             


v v v
by (9)

,dxdydz  Φ ...(10)

where
2 2 22 2 2

2 2 2 ,u w w u w u
x y z y z z x x y

                                                            
Φ v v v ...(11)

Φ  is called the dissipation function.

   The rate of dissipation of energy dxdydz Φ

2 2 22 2 2

2 2 2 ,u w w u w u dxdydz
x y z y z z x x y

                                                            
 v v v by (11)

2 2 22 2 2

2 2 2u w u w w u
x y z z x y z x y

                                                          
 v v v

2

2 ,u w dxdydz
x y z

            

v
 using (9),

2 22w u w u
y z z x x y

                             
 v v

  4 4 4w w u w u w u u dxdydz
y z z y z x x z x y y x

                                       

v v v v  ...(12)
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14.14 FLUID DYNAMICS

Now, w w dxdydz
y z z y

    
     

v v

2 2
w w w w dxdydz

y z y z z y y z
                          

 v v v v mw nw dS
z y

  
     

v v

If w = 0 on the boundary, then 0w w dxdydz
y z z y

    
      

v v
...(13)

Similarly,            0u w u w dxdydz
z x x z

           ...(14)

and             0u u dxdydz
x y y x

    
       v v ...(15)

If , , , ,    are the components of the vorticity vector, then we know that

1 ,
2

w
y z

  
     

v
     

1 ,
2

u w
z x

       
       

1
2

u
x y

  
     

v
...(16)

Using (13), (14), (15) and (16), (12) reduces to

The rate of dissipation of energy 2 2 24 ( ) .dxdydz      ...(17)

This is the rate of dissipation of energy for a liquid filling a closed vessel.
Remark As an application of the Art. 14.6. B, consider the following example.
Illustrative solved example. Prove that for a liquid filing up a vessel in the form of a surface

of revolution which is rotating about its axis (z-axis) with the angular velocity   the rate of
dissipation of energy has an additional term

2 ( ) ,v  l Du m D dS where D y x
x y

  
    

and l, m, n are the direction cosines of the inward drawn normal at the element dS of the surface
of the vessel.    [Meerut 2004]

Sol. First do the whole Art. 14.6.B. Next, we have, here
,u y  ,x v w = 0. ...(18)

Hence as in the above article 12.7 B, the integral on L.H.S. of (15) will not vanish. So we
have an additional term which will be calculated as follows.

The additional term

4 4u u u udxdydz dxdydz
x y x y x y y x

                                      v v
v v

4 4u u ul m dS l m dS
y x y y

      
                  v

v v v

[ For two-dimensional case, equation of continuity is / / 0u x y     v ]

4 ,ux l m dS
y y

  
      

v
 using (18) ...(19)

Similarly, the same expression
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THE NAVIER-STOKES EQUATIONS AND THE ENERGY EQUATION 14.15

4 4u u dxdydz mu lu dS
y x x y x y

                                  v v v v

4 uu m l dS
x x

        
v

[ / / 0u x y     v  as before ]

4 uy m l dS
x x

       
v , using (18) ...(20)

Taking the mean of the above two expressions (19) and (20), the additional term

2 u uy m l x l m dS
x x y y

                      v v

2 l y x u m y x dS
x y x y

                         v

2 ( ) ,l Du m D dS   v  since D = y x
x y
 


   (given)

14.7 Illustrative solved examples.
The reader is advised to study carefully and remember all results of articles 14.10, 14.11

and 14.12. These results can be used directly while solving problems.
Ex. 1. Show that for an incompressible steady flow with constant viscosity, the velocity

components
2

( ) 1
2

U h dp y yu y y
h dx h h

             
, v = w = 0 satisfy the equation of motion, when

the body force is neglected. h, U, dp/dx are constants and p = p(x).    (Meerut 2007, 11)

Sol. Given                 2( ) ( / ) ( /2 )( / )( / )(1 / )u y yU h h dp dx y h y h         …(1)

  v  = 0                   and                 w = 0     …(2)
The equation of motion for viscous incompressible fluid is given by

2/ ( ) (1/ )          t pq q q B q ...(3)

Here  q/  t = 0, the motion being steady.. ...(4)
and                    B = 0, as the body force is neglected. ...(5)
Since v = w = 0,             we have                          q = iu

 2 2u  q i ...(6)

Given that p = p(x) so that
   

        

dpp p
x y z dx

i j k i ...(7)

Also           ( )u u
x y z x

    
          

q i i j k

                     ( ) ( ) 0uu u u
x x
        

q q i i , as u = u(y), given ...(8)

Substituting (4), (5), (6), (7) and (8) into (3), we have

210 dp u
p dx

          or         
2

2
1 dp d u
p dx dy



 or        

2

2
1 .d u dp

dxdy



    ...(9)

2 2 2 2 2 2 2/ and / / / )x y z               


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14.16 FLUID DYNAMICS

Now from (1),                21
2

du U h dp y
dy h dx h

      
, as dp/dx is given to be constant

      
2

2
2 10 ,

2
d u h dp dp

dx h dxdy
       

which is the same as (9). This proves that the equation of motion is satisfied.
Ex. 2. Consider an inviscid, incompressible, steady flow with negligible body force whose

velocity components are 3 3(1 / )cos ,rq U R r   3 3(1 / 2 )sin ,q U R r     0q  in spherical
coordinates where R is a constant. Is the equation of motion satisfied.

Sol. Here 3 3(1 / )cos  rq U R r                …(1)

3 3(1 2 / )sin    q U R r     …(2)

and            0q      …(3)
Equations of motion for non-viscous fluid in absence of body forces are given by [Refer

equations (11a) to (11c) and equation (2) of Art. 14.12 of this chapter]

          
2 2 1r q qDq p

Dt r r
  

  
 

...(4)

    
2 cot 1r qDq q q p

Dt r r r
   

   
 

...(5)

cot 1
sin

rDq q q q q p
Dt r r r

     
   

   ...(6)

Here       sin
   

   
    r

qqD q
Dt t r r r ...(7)

For steady flow, / 0,t    Also, here 0.q   Hence (4), (5) and (6) may be rewritten as
2 1r r

r
q qq q pq

r r r r
   

   
   

...(8)

1r
r

q q q q q pq
r r r r
     
   

    ...(9)

         
10
sin

p
r


 

   ...(10)

Equation (10) shows that p is function of r and   alone. From (1) and (2), we have

3

4
3 cosrq UR

r r


 


and
3

31 sinrq RU
r

 
       

...(11)

3

4
3 cos
2

q UR
r r

 


and

3

31 cos
2

q RU
r

  
       

...(12)

Using (1), (2) and (11), (8), reduces to

  
22 3 3 2 3 3 2 3

2 2 2
4 3 3 3 3

3 11 cos 1 1 sin 1 sin
2 2

pU R R U R R U R
r r rr r r r r

        
                               
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THE NAVIER-STOKES EQUATIONS AND THE ENERGY EQUATION 14.17

or   

22 3 3 2 3 3 3
2 2

4 3 3 3 3
3 11 cos sin 1 1 1

2 2

                                           

U R R U R R R p
r rr r r r r

or    
2 3 3 2 3 3

2 2
4 3 4 3

3 3 11 cos 1 sin
2 2

pU R R U R R
rr r r r

    
                

...(13)

Using (1), (2) and (12) in (9) and proceeding as above, the reader can verify that
2 3 3 3 3 3

3 3 3 3
3 3 11 sin cos 1 sin cos

2 2 2
U R R U R R p

rr r r r
    

                  
...(14)

Differentiating (13) partially with respect to  , we get

         
2 3 3 2 3 3 2

4 3 4 3
6 3 11 sin cos 1 sin cos

2

    
                    

U R R U R R p
rr r r r

or                       
2 3 3 2

4 3
9 11 sin cos

2
U R R p

rr r
  

          
... (15)

Finally, differentiating (14) partially with respect to r, we get
3 3 2

2 3 2 3
4 7 4 7

3 3 6 3 3 6 1sin cos sin cos
2 2 2

    
                     

R R pU R U R
rr r r r

or         
2 3 3 2 3 3 2

4 3 4 3
9 2 9 11 sin cos 1 sin cos
2 2

    
                    

U R R U R R p
rr r r r

or                  
2 3 3 2

4 3
9 11 sin cos

2
U R R p

rr r
  

          
...(16)

Since (15) and (16) are identical, it follows that the equations of motion are satisfied.
Ex. 3 (a) Define circulation. Show that the time rate of change of circulation in a closed

circuit, drawn in a viscous incompressible fluid under the action of conservative forces, moving
with the fluid depends only on the kinematic viscosity and the space rate of change of vorticity
components at the the contour. Hence state and prove Kelvin’s circulation theorem.

[Himanchal 1998; 2003]
(b) Derive the time rate of change of circulation of a closed curve drawn in a viscous

incmpressible fluid, moving with the fluid.  [Himanchal 2002, 05, 07]
Sol. (a) Let C be a closed circuit moving with the fluid so that C always consists of the

same fluid particles. Let q be the fluid velocity at any point P of circuit and let r be its position
vector. Then the circulation along the closed C is given by

C
d   q r so that

C

D D d
Dt Dt

  q r ...(1)

Since the above integration is performed at constant time, reversing the order of integration
and differentiation is justified. Then (1) may be re-written as

                              ( )
C

D D d
Dt Dt

  q r ...(2)

But       ( )D D D Dd d d d d
Dt Dt Dt Dt

        
q qq q q qr r r r ...(3)
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14.18 FLUID DYNAMICS

Equation of motion for viscous incompressible fluid with constant viscosity in vector form
(refer equation (17) of Art. 14.1) is given by

   2/ (1/ )     D Dt pq B q ...(4)
Let the external forces be conservative and derivable from a single valued potential V. Then

V B  and hence (4) reduces to
2/ (1/ )      D Dt V pq q ...(5)

        2( / ) (1/ )           D Dt d V d p d dq r r r q r ...(6)

If   is the vorticity vector, then with help of a vector identity, we obtain

       curl 2( ) ( )      q q q

or        curl 2 ,  q       as 0 q  for incompresible fluid
Hence (6) can be re-written as

      ( / ) V (1/ ) (curl )       D Dt d d dp dq rr  ...(7)

Also, we  have                 2(1/ 2) ( ) (1/ 2)d d d     q q q q q ... (8)
Using (7) and (8), (3) reduces to

21 1( ) (curl )
2

D d dV dp d d
Dt

      


q r r q ... (9)

Using (9) and assuming that   is a single valued function of p only, (2) reduces to

21 1 (curl )
2C

D d dV dp d
Dt

  
          q r 

or           
21 1 (curl ) ,

2
 

          C Cc

D V dp d
Dt

q r ...(10)

where the symbol [ ]C denotes change in the quantity enclosed within brackets on moving once
round C. Since q, V and p are single-valued functions of r, it follows that the first term on the
R.H.S. of (10) vanishes.

Then, (10) reduces to              (curl ) ,
C

D d
Dt

     r ...(11)

showing that the rate of change of circulation in a closed circuit, drawn in a viscous incompressible
fluid, moving with the fluid depends only on the kinematic vicosity   and on the space rate of
change of the vorticity components at the contour.

As a particular case, let 0,  i.e., let the fluid be inviscid. Then (11), reduces to
/ 0,D Dt   which is well known Kelvin’s circulation theorem, namely,, the circulation round

any closed circuit moving with the fluid does not change with the time, provided the fluid is
inviscid, the field of force is conservative and density is a single valued function of pressure only.

(b) Refer part (a). Omit the particular case given at the end.
Ex. 4. Write Navier-Stokes equations in cartesian co-ordinates. Simplify the equations when
(a) Fluid is incompressible and dynamic vicosity is constant
(b) The fluid is incompressible and viscous effects are neligible.

[Andhra 2002, 03, 06; Kanpur 2003, Meerut 1996]
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THE NAVIER-STOKES EQUATIONS AND THE ENERGY EQUATION 14.19

Sol. (a) For incompressible fluid, 0 q   i.e.,                 / / / 0.u x y w z        v
Also, given that  = dynamic viscosity = constant.
Re-writing equation (14a) of Art 14.1, we have

2 2 2 2 2

2 2 22x
Du p u u w uB
Dt x x y x zx y z

     
         

      
v

or
2 2 2

2 2 2x
Du p u u u u wB
Dt x x x y zx y z

          
                       

v

Since   / / ( / ) ( / ) ( / ),D Dt t u x y w z           v   and  / / / 0,u x y w z       v
the above equation reduces to

2 2 2

2 2 2x
u u u u p u u uu w B
t x y z x x y z

         
                        

v

Similarly, equations (14b) and (14c) of Art. 14.1 yield
2 2 2

2 2 2y
pu w B

t x y z y x y z
         

                        

v v v v v v v
v

and
2 2 2

2 2 2z
w w w w p w w wu w B
t x y z z x y z

         
                       

v

(b) For incompressible fluid, 0. q  Also, if viscous effects are negligible, then setting
0   in equations of part (a), the required equations are

  ,x
u u u u pu w B
t x y z x

     
            

v

  y
pu w B

t x y z y
     

            

v v v v
v

and   z
w w w w pu w B
t x y z z

     
            

v

Ex. 5. Consider the case of simple Couette (see Art. 16.3A of chapter 16) flow with the
velocity and temperature distributions as follows :

/ ,u Uy h 0,v p = constant ...(1)

  
2

1 ,
2 ( )

T T y U y y
T T h k T T h h



   

               
...(2)

where T  and T are temperatures (constant in value) of stationary and moving plates, respectively,,
and  , h and k are constants. Verify that (1) and (2) are the solutions of the energy equation for
steady viscous incompressible fluid.             [Garhwal 1996, 98, Meerut 1998]

Sol. The energy equation for a two-dimensional viscous incompressible fluid is [Refer
equation (20) in Art. 14.3]

  2 2 2 2( / / ) ( / ) ( / )        k T x T y C DT Dt Dp DtΦ ...(3)

where          2[2{( / ) ( / } ( / / ]2 2v y) v x)             u x u yΦ ...(4)
Given that u and T are functions of y alone, v = 0 and p = constant. Also for steady motion,

/ 0.t    Hence
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14.20 FLUID DYNAMICS

0DT T T Tu
Dt t x y

  
   

  
v and         

2

.u
y

     
Φ

Hence (3) reduces       2 2 2 2( / ) ( / ) 0k d T dy d u dy  ...(5)

From (1),                 / /u dy U h  ...(6)

From (2),         
21 2( ) 1

2
dT U yT T
dy h kh h

      
 

and hence                            
2 2 2

2 2
20 .

2
d T U U

kh hdy kh
       

 
...(7)

Using (6) and (7) in (5), we have

2 2

2 2 0U Uk
kh h

 
     

 
               i.e.                     0 = 0,

showing that (1) and (2) satisfy the energy equation (3) for steady flow.
Ex. 6. Consider a two-dimensional viscous incompressible steady flow with velocity

components 0,rq q  2(1/ 4 ) ( / ) logzq dp dz r A r B         ...(1)

and p = p(z), ...(2)
where A, B, and   are constants and 00 .r r   Is the equation of motion with negligible body
force satisfied ?   [Kolkota 2001]

Sol. The equations of motion for viscous incompressible flow in absence of body forces are
[refer equations (2), (10), (11a), (11b) and (11c) of Art. 14.11 of this chapter]

          
2

2
2 2

2r r
r

q qDq qp q
Dt r r r r

                     
...(3)

       2
2

1 2r rDq q q qqp q
Dt r r r rr

  


                  
...(4)

        2z
z

Dq p q
Dt z


   


...(5)

with r z
qD q q

Dt t r r r
   

   
   

...(6)

and
2 2 2

2
2 2 2 2

1 1 .
r rr r z

   
    

  
...(7)

For a two dimensional flow, / 0,   / 0z  

and for steady motion / 0.t    With 0rq q  and p = p(z), (3) and (4) are identically equal to
zero. Furthermore, (5) reduces to

2

2
10 z zd q dqdp

dz r rdr
 

       
...(8)
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THE NAVIER-STOKES EQUATIONS AND THE ENERGY EQUATION 14.21

From (1),           1
2

zdq dp Ar
dr dz r

     
...(9)

and          
2

2 2
1

2
zd q dp A

dzdr r
     

...(10)

Using (9) and (10) in (8), we get

2
1 10 ,
2 2

dp dp A r dp A
dz dz r dz rr

  
          

                 i.e.              0 = 0.

Thus we find that the equations of motion are satisfied.
14.8. Vorticity equation or vorticity transport equation.

Theorem. Show that the vorticity vector   of an incompressible viscous fluid moving
under no external forces satisfies the differential equation

2/ ( )D Dt q       where   is the kinematic coefficient of viscosity..
 [Agra 2000, 05, 06; Kolkata 2006; Himanchal 2000, 02, 03, 09; Meerut 2011]

Proof. Navier-Stokes equation for incompressible viscous fluid with constant viscosity (refer
equation (17) in Art. 14.1) is

2/ ( ) (1/ ) .t p           q q q B q    ...(1)
Let the forces be conservative. Then there exists a force potential V such that .V B

Again, by vector calculus                             2 ( ) 2[( ) curl .]       q q q q q q q

or 2( ) ( / 2) curl     qq q q q

or           2( ) ( / 2) 2    qq q q   Taking (1/ 2) curl  q

Then (1) reduces to 2 2/ ( / 2) 2 (1/ )          dt q V pq q q

or      2 2/ 2 ( / / 2)t V p q          q q q
Taking curl of both sides and using the results curl grad 0  and curl ( / )t q = (curl ) / t q

2( / )t   and curl 2 2 2curl 2 ,    q q   we obtain
2/ – curl ( )t     q  

or        2/ –[ ( ) ( ) ]t div div         q q q q     

or 2/ ( ) ( )t       q q   
[   Equation of continuity is div q = 0 Also div  = div curl q = 0]

or     2/ ( ) ,D Dt    q   ...(2)
which is known as vorticity equation or vorticity transport equation.

Remark. Let ,    i j k q = u i + v j + w k. Then the above vector equation (2) in
Cartesian form reduces to

2

2

2

D u
Dt x y z

D
Dt x y z

D w
Dt x y z

    
              

                  
                   

v ...(3)
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14.22 FLUID DYNAMICS

where
1 ,
2

w
y z

  
     

v 1 ,
2

u w
z x

       

1 .
2

u
x y

  
     

v

14.9. Diffusion of a vortex filament.
Let there be a vortex filament of strength k along the axis of z in an infinite liquid. The

motion will be in circles about the z-axis, the vorticity at distance r from the axis being a function
of r only. We have, therefore          w = 0,                 0,        ...(1)
and u, v  are independent of z.

We know that (refer remark of Art. 14.8)

   

2

2

2

D u
Dt x y z

D
Dt x y z

D w
Dt x y z

    
              

                  
                   

v ...(2)

Using (1), (2) reduces to 2/D Dt     ...(3)

Let u, v  be of the form ( / ) ( ),  u y r f r                  ( / ) ( ),v  x r f r ...(4)
where             r2 = x2 + y2 ...(5)

                         
D u
Dt t x y
   
  
  

v ( ) ( ) ,y f r x x f r y
t r r r r r y

              
 by (4)

Thus, / /D Dt t    ...(6)

Also,        
2 2 2

2
2 2 2

1
r rx y r

      
                  

...(7)

Using (6) and (7), (3) reduces to       
2

2
1

t r rr
    

      
...(8)

To solve (8), we assume that       (1/ ) ( ),   t f ...(9)

where            / 2r t   ...(10)

Then,          
2 2
1 ( )

2
r dff

t dt t t


   
 

and 1
2

df
r dt




 
Using the above relations, (8) reduces to

2
2

2 (1 2 ) 4 0d f df f
dd

      


or 2(2 ) 0.d df d f
d d d

 
       

Integrating,                  2( / ) 2 ,df f C      where C is constant of integration.

       Hence,       / 2 / .df d f C     ...(11)
When 0  i.e., r = 0, f and f   are both infinite, therefore, we have C = 0 and (11)1)

reduces to
            / 2 0df d f              or                            (1/ ) 2 0   f df d

Created with Print2PDF. To remove this line, buy a license at: http://www.software602.com/

SuccessClap: Best Coaching for UPSC Mathematics : For Info- 9346856874
Checkout ->22 Weeks Study Plan, Videos, Question Bank Solutions, Test Series

Succ
ess

Clap



THE NAVIER-STOKES EQUATIONS AND THE ENERGY EQUATION 14.23

Integrating, 2log log ,  f A  where A is constant of integration ...(12)

From (12),                    2f Ae ...(13)

From (9), (10) and (13), we have 2 2( / 4 )(1/ ) (1/ )       r tt Ae t Ae ...(14)

By Stokes’s theorem, circulation   round a circle of radius r is given by

0
2

r
dS    over the circle 

0
2 2

r
r dr   

2( / 4 )

0

4 ,
r r tA re dr

t
 

     by (14)


2 / 48 (1 ).r tA e      ...(15)

Let  1   as 0.t   So (15) gives

1 8 A    so that 1 / 8  A

 From (15),        
2 / 4

1(1 )r te     ...(16)

and from (14),        2 / 4
1( /8 )       r tt e ...(17)

Also, if v be the velocity, then         2 r   v

 from (16),
2 / 4

1(1 ) 2r te r     v or          2 / 4
1( /2 ) (1 ).v       r tr e ...(18)

For small values of r, (18) reduces to

22 2
1 11 1

2 4 2! 4
r r

r t t

                               

v
2

1
22 4 2 (4 )

      
     

r r
t t ...(19)

From (19), we see that as 0, then 0.v r

Again on the axis r = 0, so from (17), 0 1 /(8 ).t      ...(20)

Hence for very small values of r, from (19) 1 1 .
2 4 8

rr
t t

 
  

  
v ...(21)

From (20) and (21), 0 .r v

From (18), it follows that as t increases from 0 to , v  decreases from 1 / 2 r   to 0.

14.10. Summary of basic equations governing the flow of viscous fluid in certesian
co-ordinates (x, y, z) :

Case I For flow of viscous compressible fluid
Equation of continuity :      [Refer equation (8) of Art. 2.9]

    / ( ) / ( ) / ( ) / 0t u x y w z              v ...(1)
The Navier-Stokes equation:                   [Refer equations (14a), (14b), (14c), Art 14.1]

 / ( / ) ( / ) ( / ) /xu t u u x u y w u z B p x                v

   22
3

u u w u w
x x x y z y y x z x z
                                                                     

v v v ...(2a)
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14.24 FLUID DYNAMICS

 / ( / ) ( / ) ( / ) /yt u x y w z B p y               v v v v v

   22
3

u w w u
y y x y z z z y x y x
                                                                          

v v v v ...(2b)

 / ( / ) ( / ) ( / ) /zw t u w x w y w w z B p z               v

  
22
3

w u w w u w
z z x y z x x z y z y
                                                                  

v v
...(2c)

Energy equation : [Refer equation (17), Art 14.2]

( ) ( ) ( ) ( )p p p pC T C T C T C T p p p pu w u w
t x y z t x y z

        
                

v v

22 2

2T T T u wk k k
x x y y z z x y z

                                                             

v

      
2 2 2 22

3
u w u w w u
x y z y x z y x z

                                              

v v v ...(3)

Equation of state: p RT  ...(4)
Thus, we have six equations. But for a the flow of compressible fluids, the coefficient of

viscosity   and the coefficient of thermal conductivity k are not constants but depend on
temperature. Therefore, we have eight unknowns (u, v, w, p, , T,   and k) instead of six and we
require two additional equations to solve a problem of flow of viscous compressible fluid. Let
these two additional equations, in general froms, be given by

( )T   and k = k (T) ...(5)
For air, the variation of viscosity   with absolute temperature T is given by the following

Sutherland’s formula,           
3/ 2

1

1
,T ST

T T S


 

  
    

 approximately     ...(6)

where  denotes the viscosity at a reference temperature T and S1 is a constant. For air,,
S1 = 110° K.

The above formula (6) is quite complicated. From either the simple kinetic theory of gases,
of empirical data, the coefficient of viscosity   may, be expressed quite accurately as a power of

the absolute temperature, / ( / ) ,mT T    0.5 1m               ...(7)
For air at ordinary temperature, we take m = 0.76. As the temperature increases, m decreases,

towards 0.5
It has been shown that at high temperatures the relation (6) can be well approximated by

(7), when 0.5 0.75m   and at low temperature the appropriate value of m is 1.
Now, non dimensional number Pr (See Art. 15.7) is defined as

       Pr = Prandial number = ( ) /pC k ...(8)
It has been shown that Pr is constant for air even at large temperature differences. Since Cp

is also nearly constant for a wide range of temperatures around ordinary temperatures, it follows
from (8) that the coefficient of heat conductivity k is directly proportional to .  Therefore, the
dependence of the coefficient of heat conductivity k on temperature is of similar nature as that of
viscosity.
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THE NAVIER-STOKES EQUATIONS AND THE ENERGY EQUATION 14.25

The components of stress at any point (x, y, z).

2 ( / ) (2 / 3) ,         xx u x pq 2 ( / ) (2 / 3) ,yy y p        qv

2 ( / ) (2 / 3) ,zz w z p         q ( / / ),xy yx u y x         v

        ( / / ),yz zy z w y         v ( / / )zx xz w x u z         
The components of the heat-flux vector

( / ),xQ k T x    ( / ),yQ k T y    ( / )zQ k T z   
Case II For flow of viscous incompressible fluid
While dealing with incompressible fluid flow, we suppose that fluid properties such as

density ,  coefficient of viscosity   and coefficient of heat conductivity k are nearly constant.
Accordingly, the number of unknown quantities reduce to five (u, v, w, p and T), which are
obtained with the help of the following fundamental equations

Equation of continuity:                  / / / 0u x y w z        v ...(1)'
The Narier-Stokes equations:

 / ( / ) ( / ) ( / )u t u u x u y w u z           v

2 2 2 2 2 2/ ( / / / )xB p x u x y w z            v  ...(2a)'

 / ( / ) ( / ) ( / )t u x y w z           v v v v v

2 2 2 2 2 2/ ( / / / )yB p y u x y w z             v  ...(2b)'

 / ( / ) ( / ) ( / )w t u w x w y w w z           v

2 2 2 2 2 2/ ( / / / )zB p z u x y w z             v  ...(2c)'
The energy equation

2 2 2

2 2 2p
T T T T p p p p T T TC T u w u w k
t x y z t x y z x y z

            
                          

v v

22 2

2 u w
x y z

                         

v 2 2 2u w w u
y x z y x z

                               

v v ...(3)'

The components of stress at any point (x, y, z)

2 ( / ) ,xx u x p      2 ( / ) ,yy y p     v 2 ( / )zz w z p     

( / / ),xy yx u y x         v ( / / ),yz zy z w y         v   ( / / )zx xz w x u z         
The components of the heat flux vector

( / ),xQ k T x    ( / ),yQ k T y    ( / )zQ k T z   
Main difference between the compressible fluid flow and incompressible fluid flow
Observing carefully the above fundamental equations of compressible fluid flow and

incompressible fluid flow, we see that, in compressible fluid flow, the equations of motion and
energy are coupled whereas in an incompressible fluid flow, with constant fluid properties , ,
k, the equations of motion and energy are uncoupled. Accordingly, while dealing with flow of
incompressible fluid flow, the equation of continuity and equations of motion are first solved for
u, v, w and finally the equation of energy is solved for the temperature.

Remark The above fundamental equations are solved subject to given initial and boundary
conditions. The boundary condition are those required by geometrical considerations, together
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14.26 FLUID DYNAMICS

with the no-slip condition which states that on a wall the tangential component of relative velocity
must be zero. To solve energy equation some conditions must be imposed on the temperature on
the boundary and will be provided by the given problem.
14.11. Summary of basic equations governing the flow of viscous fluid in cylindri-
cal co-ordinates ( , θ, ).r z

Equation of continuity  (Refer Art. 2.10)

1 1( ) ( ) ( ) 0
   

      
   r zr q q q
t r r r z ...(1)

(a) Cylinrical coordinate system. The Navier – stokes equations of motion of viscous
compressible fluids in cylindrical coordinates ( , , )r z  are given by

    
2 1 rrrr rr zr

r
qDq B

Dt r r r z r
      

             
...(1a)

    
21r r z rDq q q B

Dt r r r z r
    


               

...(1b)

   
1   

      
  

zz zr zz zr
z

Dq B
Dt r r z r ...(1c)

where .r z
qD q q

Dt t r r z
   

   
   

...(2)

Constitutive equations are given by

       

2 (2 / 3)
2 (2 / 3)
2 (2 / 3)

rr rr

zz zz

p
p
p

 

       
       
       

q
q
q

...(3)

,r r    ,z z    zr zr   ...(4)
Again the components of the rates of strain are given by

,r
rr

q
r


 


1 ,rq q
r r





  


                          z

zz
q
z


 


 ...(5)

  

1

1

r
r

z
z

r z
zr

q q q
r r r

qq
r z
q q
z r

 





        
    

  
  

     

...(6)

Using (3), (4), (5) and (6), the equations of motion (1a) to (1c) may be re-written as follows:

   
2 22

3
r r

r
qDq qpB

Dt r r r r
                          

q

      1 1 2 1r r z r rq q qq q q q q
r r r r z z r r r r r

                                            
 ...(7a)

   
21 1 2 2

3
rDq q q q qpB

Dt r r r r r
   


                          

q
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THE NAVIER-STOKES EQUATIONS AND THE ENERGY EQUATION 14.27

     
1 1 2 1 ,r z rq q q q qq q q

r r r r z r z r r r r
                                                   

 ...(7b)

22
3

z z
z

Dq qpB
Dt z z z

                   
q

1 1 z r z r zqq q q q q
r r z r z r r z r

                                           
 ...(7c)

where 1 .r z rqq q q
r r z r

 
     

  
q ...(8)

For some particular flows, equations (7a) to (7c) take the following forms:
(i) Viscous compressible fluid with constant viscosity.
Let   be constant. Then (7a) to (7c) reduce as follows.

  
2

2
2 2

2 1 ( ) ,
3

r r
r r

q qDq qpB q
Dt r r rr r

                         
q ...(9a)

2
2 2

1 2 1 ( )
3

r rDq q q qqpB q
Dt r r rr r

  
 

                       
q ...(9b)

and     
2 1 ( ) ,

3
z

z z
Dq pB q
Dt z z

             
q ...(9c)

where
2 2

2
2 2 2 2

1 1 .
r rr r z

   
    

  
...(10)

(ii) Viscous incompressible flow. Let   and   be both constant. Also 0 q for
incompressible fuids. Then (9a) to (9c) become

2
2

2 2
2 ,r r

r r
q qDq qpB q

Dt r r r r
                     

...(11a)

2
2

1 2r rDq q q qqpB q
Dt r r rr

  
 

                   
...(11b)

2z
z z

Dq pB q
Dt z


     


...(11c)

(iii) Non viscous fluid. With 0,   equations (9a) to (9c) reduce to
2

r
r

qDq pB
Dt r r

  
        

...(12a)

1rDq q q pB
Dt r r

 


        
...(12b)

      z
z

Dq pB
Dt z


   


...(12c)

(iv) Axi-symmetric flow of incompressible fluids ( / 0) :  

2
r r r

r z r
qq q q pq q B

t r z r r
                 

2

2
1 ( ) r

r
qrq

r r r z

      
     

...(13a)
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14.28 FLUID DYNAMICS

1r
r z

q q q q q pq q B
t r z r r
   


           
    

2

2
1 ( )

q
rq

r r r z



           

...(13b)

z z z
r z z

q q q pq q B
t r z z

              

2

2
1 z zq q

r
r r r z

            
...(13c)

Energy eqution:
(i) For viscous compressible fluid: Equation of energy of a viscous compressible fluid in

cylinderical polar coordinates ( , , )r z  is given by

2
1 1( ) ,p

D Dp T T TC T kr k k
Dt Dt r r r z zr

                              
Φ     ...(14)

where ,   
   
   r z

qD q q
Dt t r r z

2 22 21 1 12
2

r r z rq q qq q q q
r r r z r r r

  
                                 

Φ

               
2 2

21 1 1 1 ( )
2 2 3

z r zqq q q
r z z r


                   

q  ...(15)

and        1 .r z rqq q q
r r z r

 
     

  
q ...(16)

(ii) For viscous incompressible fluid: Equation of energy of a viscous incompressible fluid
for which k,  and  are constants in cylindrical polar coordinates ( , , )r z  is given by

2 ,DTC k T
Dt     where     r z

qD q q
Dt t r r z

   
   
   

  ...(17)

and

222 21 1 12
2

r r z rq q qq q q q
r r r z r r r

  
                                  

2 21 1 1
2 2


                 

z r zqq q q
r z z r . ...(18)

Equation of state :                       p RT  ...(19)
The components of stress at any point (r, , z)
(i) For compressible viscous fluid

        2 ( / ) (2 / 3)rr rq r p         q ...(20a)

        
1 22

3
rq q p

r r



          

q ...(20b)

        2 ( / ) (2 / 3)zz zq z p         q ...(20c)

     
1 1r r

r r
q q qq qdr
r r r dr r r
  

 
                         

...(20d)
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THE NAVIER-STOKES EQUATIONS AND THE ENERGY EQUATION 14.29

1 ,z
z z

qq
r z


 

         
     r z

z r rz
q q
z r

          
  ...(20e)

(ii) For incompressible visocus fluid

2 ,r
rr

q
r

     

12 ,rq q
r r




      
2 z

zz
q
z


  


...(21a)

    
1 1r r

r r
q q qq qdr
r r r dr r r
  

 
                         

...(21b)

1 ,z
z z

qq
r r


 

         
r z

zr rz
q q
z r

          
...(21c)

The components of heat-flux vector are

( / ),rQ k T r    ( / ) ( / ),Q k r T      ( / )zQ k T z     ...(22)

14.12. Summary of basic equations geverning the flow of viscous fluid in spherical
coordinates ( , , ).r  

Equation of continutiy (Refer Art. 2.11)

   
2

2
1 1 1( ) ( sin ) ( ) 0

sin sinrr q q q
t r r rr  

   
       

      ...(1)

(b) Spherical coordinate system. The Navier–Stokes equations of motion of viscous
compressible fluids in spherical coordinates ( , , )r   are given by

2 2 2 ( sin )( )1 sin
sin

rrr rr
r

q qDq rB
Dt r r r r r

   
                           

...(1a)

2 2cot ( ) ( sin )1 sin
sin

r rqDq q q rB
Dt r r r r r

    


                         

    
cotr

r r
  

       ...(1b)

2cot ( ) ( sin )1 sin
sin

r r
z

Dq q q q q r
B

Dt r r r r r
               

                 

               cotr

r r
   

  ...(1c)

where    .
sinr
qqD q

Dt t r r r
   

   
     ...(2)

The constitutive equations are given by

2 (2 / 3)
2 (2 /3)
2 (2 / 3)

 

 

       
        
         

rr rrp
p
p

q
q
q

...(3)

,r r     ,     r r     ...(4)
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14.30 FLUID DYNAMICS

Again, the components of the rates of strain are given by

cot1 1, ,
sin

1 sin 1 1, ,
sin sin sin

r r r
rr

r r
r r

qq qq q q
r r r r r r

qq q qq q
r r

r r r r r r r r

 
 

  
  

  
             


                                    

 ...(5)

Using (3), (4) and (5), the equations of motion (1a) to (1b) and (1c) may be re-written as:
22 2 1 12

3
r r r

r
qq qDq q qpB r

Dt r r r r r r r r
 

                                               
q

  
1 1

sin sin
r qq

r
r r r r

                   

2 cot42 2 cot4 cot
sin

r r rqq q qq q qr
r r r r r r r r r

                        
   ...(6a)

2 cot 21 1 2 2
3

r rqDq q q q qpB
Dt r r r r r r

  


                            
q

1 sin 1 1
sin sin sin

rq q q q
r

r r r r r r r
  

                                              

               cot1 1 12 cot 3
sin

rqq q q q
r

r r r r r r r
                              

...(6b)

cot 1
sin

rDq q q q q pB
Dt r r r

   


  
         

    
2 cot21 2 2

sin sin 3
rq qq

r r r r
    

             
q

1 1 sin 1
sin sin sin

r q q qq
r

r r r r r r r
  

                                                      

         1 sin 13 2cot
sin sin sin

r qq qq
r

r r r r r r
 

                                   
   ...(6c)

where 2 ( sin )1 1 1( ) .
sin sinr

qqr q
r r r r

  
    

    
q ...(7)

For some particular flows, equations (6a), (6b) and (6c) take the following forms:
(i) Viscous compressible fluid with constant viscosity i.e. with  = constant.

22
2

2 2 2 2
2 cot2 2 2–

sin
r r

r r
q qq q qDq qpB q

Dt r r r r r r
   

                   
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22

2
1 2 1
3

r r r qq q q
r r r r rr

             

2

2
1 cot 1 1cot

sin
q qq qq

r r r r rr
  



                        
...(8a)

2
2

2 2 2 2 2 2

cot 1 2 2cos
sin sin

r rq qDq q q qqpB q
Dt r rr r r r

   
 

                     

2 2

2 2
1 1 1 2
3

r rq q q
r r rr


         

2

2
cot 1 cot

sin
 



                 

q qq
q

r r ...(8b)

2
2 2 2

cot 1 2
sin sin sin

r rDq q q q q q qpB q
Dt r r r r r

    
 

   
                 

  
2 22

2 2 2
2cos 1 1 2 1 cos

3 sin sin sinsin
r rqq q qq q

r r r r r rr
  

            
           

 ...(8c)

(ii) Viscous incompressible fluid. For such fluids,  = constant,  = constant and 0. q
Hence (8a) to (8c) become

22
2

2 2 2 2
2 cot21 2 2

sin
      

              
r r

r r
q qq q qDq qpB q

Dt r r r r r r ...(9a)

2
2

2 2 2 2 2 2

cot 1 2 2cos
sin sin

r rq qDq q q qqpB q
Dt r rr r r r

   
 

   
               

  ...(9b)

cot 1
sin

rDq q q q q pB
Dt r r r

   


 
   

  

2
2 2 2 2 2

2 2cos
sin sin sin

rq qqq
r r r

 


  
         

...(9c)

where
2

2 2
2 2 2 2 2
1 1 1sin

sin sin
r

r rr r r
                      

...(10)

(iii) Non-viscous fluid (with = 0). Then (8a) to (8c) become

22
r

r
qqDq pB

Dt r r
       

   
...(11a)

2 cot 1r qDq q q pB
Dt r r r

 


        
   

...(11b)

      
cot 1

sin
rDq q q q q pB

Dt r r r
   


  

         
...(11c)

Energy Equation
(i) For viscous compressible fluid: Equation of energy of viscous compressible fluid in

spherical polar coordinates ( , , )r    is
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14.32 FLUID DYNAMICS

   2
2 2 2 2

1 1 1( ) sin ,
sin sinp

D Dp T T TC T kr k k
Dt Dt r rr r r

                              
Φ   ...(12)

where ,
sinr
qqD q

Dt t r r r
   

   
     ...(13)

2 222 cot1 1 12
sin

r r r rqq q qq q q q
r

r r r r r r r r r
  

                                           
Φ

2
sin 1

sin sin
q q

r r
               

2
21 2 ( )

sin 3


                  

r qq
r

r r r
q ...(14)

and 2
2
1 1 1( ) ( sin ) .

sin sinr
q

r q q
r r rr




 
    

    
q                  …(15)

(ii) For viscous incompressible fluid: Equation of energy of a viscous incompressible fluid
in spherical polar coordinates ( , , )r z  is given by

2 ,DTC k T
Dt

    v ...(16)

where        ,
sinr
qqD q

Dt t r r r
   

   
    

...(17)

  
2

2 2
2 2 2 2 2 2
1 1 1sin

sin sin
r

r rr r r
                      

...(18)

and    
222 cot1 12

sin
r r rqq qq q q
r r r r r r

 
                               

2 22
1 sin 1 1 .

sin sin sin
r rq qq qq qr r

r r r r r r r r
  

                                                       
    ...(19)

Equation of state :                      p RT  ...(20)

The components of stress at any point ( , , )r  

(i) For compressible viscous fluid

22 ,
3

        
r

rr
q
r

q ...(21a)

1 22
3

rq q
r r






 
        

q ...(21b)

cot1 22
sin 3

rq qq
r r r

 


 
          

q ...(21c)

                   
1 1r r

r r
q q qq qr

r r r r r r
  

 
                           

  ... (21d)
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THE NAVIER-STOKES EQUATIONS AND THE ENERGY EQUATION 14.33

...(21d)

sin 1 ,
sin sin

 
 

                  

q q
r r ...(21e)

1
sin

r
r r

qq
r

r r r


 
                

...(21f)

(ii) For incompressible viscous fluid

2 ,r
rr

q
r


  


                

12 ,rq q
r r




      
...(22a)

cot12
sin

rq qq
r r r

 


 
       

...(22b)

1 r
r r

q qr
r r r


 

             
...(22c)

sin 1
sin sin
q q

r r
 

 
                  

...(22d)

1
sin

r
r r

qq
r

r r r


 
                

. ..(22e)

The components of heat-flux vector are

,r
TQ k
r


 


,k TQ

r


 
 sin

k TQ
r


 

   ...(23)

EXERCISES
1. Find an expression for the rate of dissipation of energy of a liquid due to viscosity.

Discuss the motion of a viscous liquid for which there is no dissipation of a viscosity.
Prove that for a liquid filling a closed vessel which is at rest, the rate of dissipation of

energy due to viscosity is                                2(curl ) ,dxdydz q

where   is the coefficient of viscosity and q the velocity vector..

2. Show that the velocity field 2 2( ) ( /8 ) ( / ) {1 4( / ) }, 0,u y h dp dx y h w     v

satisfies the equation of motion for the two-dimensional steady flow a viscous incompressible
fluid with constant viscosity and constant pressure gradient.

3. The velocity components 2 2( , ) (1 / )cos ,rq r U a r       2 2( , ) (1 / ) sinq r U a r    

satisfy the equation of motion for a two-dimensional inviscid incompressible flow. Find the pressure
associated with this velocity field. U and a are constants.

4. Derive Navier Stokes equations of motion for viscous compressible fluid and also deduce
the equation for viscous compressible fluid with constant viscosity.

[Himanchal 2001; 03, 10; Meerut 2000, 01, 02]
5. Derive the hydrodymical equations of motion of viscous and incompressible fluid in

cartesian form as obtained by Navier and Stokes.    [Garhwal 2005]
6. Starting from the Navier-Stokes equation for the motion of an incompressible fluid moving

under conservative forces, prove that the vorticity   satisfies the differential equation
2/ ( ) ,D dt    q     being coefficient of kinetic viscosity.      [Himanchal 2000, 02]
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14.34 FLUID DYNAMICS

7. Define the principle of energy conservation. Derive energy equation for a compressible
fluid and deduce it for incompressible fluids.    [Himanchal 1999, 99, 2000, 01]

8. Derive vorticity transport equation and show that vorticity cannot originate within the
interior of a viscous fluid but must be diffused from the boundary into the fluid.

Hint : Refer Art. 14.4 and its remark. [Himanchal 1998, 2001]
9. Derive the equation of energy for an incompressible fluid motion with constant fluid

properties. [Himanchal 2003, 09]
10. Sate the constitutive equations for an isotropic Newtonian fluid and use it to derive the

Navier-Stokes equations of motion for a viscous compressible fluid. [Himanchal 1999]
11. Find an expression for the rate of dissipation of energy of a liquid due to viscosity.

[Kanpur 2005]
12. Derive Navier – Stokes equations of motion of a viscous fluid

(Himanchal 2009; Meerut 2008)
13. Derive Navier – Stokes equations of motion of an incompressible fluid.

(Himanchal 2007)
14. Write a short note on viscosity in a viscous incompressible fluid motion”

(Himanchal 2007)
15. Derive the equation of energy with constant viscosity and heat conductivity of fluid.

(Himanchal 2007)
16. Define the law of conservation of energy. Derive equation of energy and deduce it for

flow of a viscous incompressible fluid. (Himanchal 2006)
17. Find the Navier – Stokes equations of motion for the flow of incompressible viscous

fluid in cartesian coordinates. State the Green’ theorem. (Agra 2005, 06)
18. For a non-viscous incompressible fluid the Navier – Stokes equations of motion are

(a) 
21( ) p

t


      
 
q q q B q (b) 

21( ) p
t


     

 
q q q B – q

(c) 2 21( ) p
t


      

 
q q q B + q (d) None of these  [Agra 2003, 05]

Hint: Ans. (d). See equation (17), Art. 14.1.
19. Rate of dissipation of energy when there is no slip of the boundary is:

(a) 2 2 2( )     dV (b) 2 2 22 ( )     dV

(c) 2 2 23 ( )     dV (d) 2 2 24 ( )     dV     (Agra 2006)

Hint: Ans. (d). Refer equation (17), Art. 14.6B.
20. Obtain Navier–Stokes equations of motion for viscous fluid in cartesian coordinates.

[Agra 2009; 10]
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16.4A. Flow through a circular pipe-The Hagen-Poiseuille flow.
[Himanchal 2000, 01, 02, 03, 07; 09, 10; Meerut 2003, 10, 12; Garhwal 1999; Kanpur 2002;

Kurukshetra 1999]
Consider the laminar steady flow, without body forces of an incompressible fluid through an

infinite circular pipe of radius a with axial
symmetry as shown in the following figure.

For the present problem, we consider
all basic equations in cylindrical coordinates
(r,  , z). Let z be the direction of flow along
the axis of the pipe. Clearly, the radial and
tangential velocity components are zero,
i.e. 0.rq q   Due to axial symmetry of flow,,
qz will be independent of  . Further, the
equation of continuity for steady flow, namely,
[Refer Art. 2.10, chapter 2]

1 1( ) ( ) ( ) 0r zrq q q
r r r z
  

     
  

reduces to           0zq
z





,

showing that qz is independent of z also. Hence zq  is function of r alone, i.e.        ( )z zq q r
Thus, for the given problem, 0, 0rq q         and         qz = qz (r) ...(1)
For the present steady axi-symmetric flow of incompressible fluid with velocity components

(1), the equations of motion [refer 11 (a) to 11 (c) in Art. 14.11 of chapter 14] in cylindrical coordinates
reduce to

0 – ( / )p r   ...(2)
0 – (1/ ) × ( / )r p   ...(3)

10 – zqp r
z r r r

             
...(4)

X

Y

P
z

r
O

a
Z

q rz ( )
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16.10 FLUID DYNAMICS

(2) and (3) show that p is independent of r and . Thus p is function of z alone. Further qz is
function of r alone by (1). Hence (4) may be re-written as

1 zdqd dpr
r dr dr dz
     

  
…(5)

Differentiating both sides of (5) w.r.t. `z', we find
2

20 
d p
dz

or 0d dp
dz dz
   
 

so that dp/dz = const. = P (say). ...(6)
We may take  P = (p2 – p1)/l, ...(7)

where p1, p2 denote the values of p, at the ends of a length l of the circular pipe. In what follows,
we now write qz = u. Then, using (6), (5) reduces to

             
Prd dur

dz dr
     

...(8)

Integrating (8),    
2

2
du Prr A
dr

 


or 2
du Pr A
dr r

 
 ...(9)

Integrating (9),              2( /4 ) logu Pr A r B    , ...(10)

where the constants A and B are to be found by using the boundary conditions. Now u must be
finite on the axis of the tube (where r = 0). So we must take A = 0 in (10) because otherwise u
would become infinite when r = 0. Thus (10) reduces to

         2( /4 ) .u Pr B   ...(11)

Since the circular boundary of the tube is at rest, the no-slip condition at the wall gives rise
to the following boundary condition

         u = 0 at r = a.                        ...(12)

Using (12), (11) gives B 2( /4 ).  Pa  Hence (11) becomes

2 2– ( / 4 ) {1 ( / ) },u Pa r a    ...(13)
which has the form of a paraboloid of revolution as shown in the figure on page 16.9.

(i) To determine the maximum and average velocities.
From (13), it follows that the maximum velocity umax can be obtained by putting r = 0 in it.

Thus maximum velocity occurs on the axis of the pipe and is given by
2

max – ( /4 )u Pa  ...(14)
where P < 0. The average velocity distribution for the present flow is given by

y

x 

y 

x
O a



r 


r

P r, ( )

r
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LAMINAR FLOW OF VISCOUS INCOMPRESSIBLE FLUIDS 16.11

2

2 0 0

1 
 
  

a
au urdrd

a

2 2 2

0 0
– (1 / ) , by (13)

4

aP r r a drd


  
  

2 42

20
0

– –
4 2 4

a
P r r d

a

  
  

  


2 22

0
– – 2

4 4 16
P a Pad


     

 
Thus,            2

max– ( /8 ) (1/ 2) ,au Pa u      by (14) ...(15)
The volumetric flow per unit time over any section is given by

2 4– ( ) / 8 .     aQ a u a P ...(16)
(ii) To determine shearing stress, skin friction and the coefficient of friction.
Using (13), the shearing stress distribution for the present flow is given by

–rz
du
dr

    
 

or
2

2
2– – .

4 2rz
Pa r rP

a
 

      
 ...(17)

Then the skin friction (i.e. shearing stress at the wall r = a) is given by

[ ] – 4 ,
2    a

rz r a
uaP
a  using (14) and (15) ...(18)

 Drag per unit length of the tube 22 [ ] 2 ( / 2) – .         rz r aa a aP a P

The (local) coefficient of friction Cf is given by

2 2

[ ] (4 ) /
16 .

2(1/2) (1/2)
rz r a a

f
aa a

u a
C

a uu u
  

   
  ...(19)

If Re = ( 2 ) /aa u  = Reynold's number, then (19) reduces to

16/ Re,fC  ...(20)
showing that skin friction can be obtained from the knowledge of Re. The above formula is used to
determine energy losses in pipe flows.
16.4B. Laminar steady flow between two coaxial circular cylinders

[Agra 2008; I.A.S. 2001; Meerut 2003, 04, 09; Garhwal 1993; G.N.D.U. Amritsar 2003]
For the present problem, we consider all basic equations in cylindrical coordinates

(r,  , z). Let z be the direction of flow along the axis of the pipe. Clearly, the radial and tangential

velocity components are zero i.e. 0.rq q   Due to axial symmetry of flow, qz will be independent
of  . Further the equation of continuity for steady flow, namely,,

       
1 1( ) ( ) ( ) 0r zrq q q
r r r z
  

     
  

reduces to                   0,zq
z





showing that qz is independent of z also. Hence qz is function of r alone, i.e.           qz = qz (r).

Thus, qr = 0,         q  = 0        and        qz = qz (r). ...(1)
For the present steady axi-symmetrical flow of incompressible fluid with velocity components

(1), the equations of motion in cylinderical coordinates reduce to
0 – /p r   ...(2)
0 – (1/ ) ( / )   r p ...(3)

10 – zqp r
z r r r

             
...(4)
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16.12 FLUID DYNAMICS

(2) and (3) show that p is independent of r and  . Thus p is function of z alone. Further qz
is function of r alone by (1). Hence (4) may be re-written as

1 .zdqd dpr
r dr dr dz
     

  
...(5)

Differentiating both sides of (5) w.r.t. `z', we find
2

20 d p
dz

 or 0d dp
dz dz
   
 

so that       dp/dz = const. = P, say. ...(6)
We may take           P = (p2 – p1)/l, ...(7)

where p1, p2 denote the values of p at the ends of a length l of the tube. In what follows, we now
write qz = u. Then using (6), (5) reduces to

   Prd dur
dr dr

     
...(8)

Integrating (8),
2Pr

2
dur A
dr

 


or      2
du Pr A
dr r

 
 ...(9)

Integrating (9),               2(Pr /4 ) log ,u A r B    ...(10)

where A and B are arbitrary constants of integration.
Suppose there are two coaxial circular cylinders of

radii a and b (b > a) through which laminar steady flow
without body forces of an incompressible fluid takes place
along the axial direction as shown in the adjoining figure.
Since the circular boundaries of both the tubes are at
rest, the no-slip conditions at their walls give rise to the
following boundary conditions.

u = 0        at         r = a ;     and     u = 0        at         r = b. ...(11)
Using (11), (10) gives

2 20 ( /4 ) log and 0 ( /4 ) log       Pa A a B Pb A b B

Solving these,      
2 2–– ,

4 log ( / )
P b aA

b a
 


     and     

2 2 2–– log .
4 4 log ( / )

Pa P b aB a
b a

  
 

Substituting these values in (1),              2 2 2 2 log ( / )– – ( – )
4 log ( / )
P r au a r b a

b a
 

    
  ...(12)

(i) To determine volumetric rate of flow Q and
average velocity. [Himanchal 2003]

The flux of the fluid (i.e. volumetric flow per unit
time over any section of the annulus) Q is given by

b

Z
a

X

Y

O

Fig ( )i

y

x
O

r

a 


b

r

P (r, )r

Fig. 2
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LAMINAR FLOW OF VISCOUS INCOMPRESSIBLE FLUIDS 16.13

      

2

0

b

a

Q u r dr d


  
2

2 2 2 2

0

log ( / )– – ( – )
4 log ( / )

b

a

P r ar a r b a dr d
b a


 

      

          2 2 2 2 2
0

log ( / )– – ( – )
4 log ( / )

b

a

P r ar a r b a dr
b a

  
      

         
2 2

2 2 –– ( – ) log
2 log ( / )

 
   

  

b

a

P b a rr a r r dr
b a a

         
2 2 4 2 2 2–– – log

2 2 4 log( / ) 2

b b

a a

P a r r b a r r
b a a

                  

2 1 1–
2 ( / )

b

a

r dr
r a a

  




         
2 2 2 2

2 2 4 41 –– ( – ) – ( – ) log
2 2 2 log ( / ) 2
P a b a b bb a b a

b a a
      

21–
4

b

a
r     

         
2 2 2 2

2 2 4 4 2 21 – 1– ( – ) – ( – ) log – ( – )
2 2 4 log ( / ) 2 4
P a b a b bb a b a b a

b a a
            

         
2 2 2 2 2

2 2 4 4 2 21 ( – )– ( – ) – ( – ) ( – ) –
2 2 4 2 4 log ( / )

P a b b ab a b a b a
µ b a
 

  
 

         
2 2 2

2 2 2 2 4 41 1 ( )( )( ) ( )
2 2 4 4log( / )

  
       

  

P b ab a b a b a
b a

          =
4 2 2

4 4 4 41 1 ( – )– ( – ) – ( – ) –
2 2 4 4log ( / )
P b ab a b a

b a
 
 

  
= – 

2 2 2
4 4 ( – )( – ) –

8 log ( / )
P b ab a

b a
 
 

  
…(13)

The average velocity ua in the annuals is given by
2 2

2 2
2 2

–– – ,
8 log ( / )( – )a

Q P b au b a
b ab a

 
   

  
 using (13)    . (13)

(ii) To determine the stress and the skin frictions (i.e., the shearing stress at the walls of
the inner and outer cylinders). [Meerut 2009]

Using (3), the shearing stress distribution is given by

                  
2 2– 1– –2

4 log ( / )rz
du P b ar
dr b a r

 
      

 

2 2–– – 2
4 log ( / )
P b a r

r b a
 

  
 

...(14)

Hence the skin frictions at the inner and outer cylinder are respectively given by

  
2 2–( ) – – 2

4 log ( / )rz r a
P b a a

a b a
 

   
 

...(15)

and   
2 2–( ) – – 2 .

4 log ( / )rz r b
P b a b

b b a
 

   
 

...(16)

From (15) and (16), it follows that skin frictions at both walls are positive ; however, the
velocity gradient at the wall of the outer cylinder is negative as shown in the figure (i).

(13)
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16.14 FLUID DYNAMICS

16.5. Laminar steady flow of incompressible viscous fluid in tubes of cross-
 section other than circular.
In usual practice the pipes of different shapes are employed in order to transport a given

fluid. Accordingly, we now study steady flows of viscous incompressible fluids through infinite
pipes of various cross-sections.

In such cases we take the only component of velocity, different from zero, to be the velocity
parallel to the axis of the tube.

Taking z-axis along the axis of the tube, we take 0u  v  and hence the equation of continuity

gives                          / 0w z          so that
                          w = w (x, y),                  ... (i)

i.e. w is a function of x and y only. The equations of motion are

0 – / ,p x   ...(ii)

0 – / ,p y   ...(iii)
2 2 2 20 / ( / / )p z w x w y         ...(iv)

From (ii) and (iii), we see that p is independent of x and y. Hence (iv) reduces to
2 2 2( / / )w x w y       = /dp dz ... (iv)

Differentiating both sides of (iv) w.r.t. `z', we get

0 ,d dp
dz dz

   
 

giving dp
dz

 constant = – P, say

  (iv) reduces to 2 2 2 2/ / / ,w x w y P        ....(v)
with the boundary condition w = 0 on the surface of the tube.

Thus the problem reduces to solving Poission's equation (v) with the boundary condition
w = 0 on the surface of the tube. Direct solution of (v) is not easy. So to simplify the solution we
convert (v) into a Laplace equation by the transformation :

2 2
1 – ( /4 ) ( ),w w P x y    ...(vi)

then w1 satisfies the equation           2 2 2 2
1 1/ / 0w x w y      ...(vii)

with the boundary condition 2 2
1 ( /4 ) ( )w P x y     on the surface of the tube.

Thus in order to solve the problem for a particular boundary, we take
2 2

1 – ( /4 ) ( ),w w B P x y     ...(viii)
where B is a constant, w1 is a suitable solution of the two-dimensional Laplace’s equation and
apply the condition that w = 0 on the surface of the tube, then B is found out.

To illustrate the whole procedure, we shall take the cross-section of the tubes as ellipse,
equilateral triangle and rectangle.

Case I. Tube having elliptic cross-section.
[Meerut 2012, Kurukshetra 2000 Himanchal 1998, 2000]

Let the cross section of the tube to be an ellipse 2 2 2 2/ / 1.x a y b                ...(1)

Let      2 2 2 2( – ) – ( /4 ) ( ).w A x y B P x y     ...(2)
On the boundary of the pipe w = 0. Hence the boundary is given by
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LAMINAR FLOW OF VISCOUS INCOMPRESSIBLE FLUIDS 16.15

     2 2 2 20 ( – ) – ( /4 ) ( )A x y B P x y    

or 2 21 1– 1
4 4
P PA x A y

B B
   

         
...(3)

(3) must now be identical to (1) and hence, we have

2
1 1–

4
P A

B a
 

  
and 2

1 1 .
4
P A

B b
 

   
...(4)

Solving (4),
2 2

2 2
–

4
 

 

P a bA
a b

       and          
2 2

2 24
P a bB

a b
 

 
...(5)

Putting these values of A and B, (2) gives
2 2 2 2

2 2 2 2
2 2 2 2

– ( – ) – ( )
4 4 4
P a b P a b Pw x y x y

a b a b
  

   

2 2 2 2

2 2 2 21– – .
2
P a b x y

a b a b
 

      
...(6)

Now the flux Q (i.e. the volume discharged through the tube per unit time) can be obtained
by double integration over the elliptic section (1) and is given by

     Q w dxdy  =
2 2

2 2 2 2
2 2 (1– / – / )

2
P a b x a y b dxdy

a b  

        =
2 2

2 2
2 2 2 2

1 1– –
2
P a b dxdy x dxdy y dxdy

a b a b
 
      

        =
2 2 2 2

2 2 2 2
1 1– – ,

2 4 4
P a b a bab ab ab

a b a b
 
        

 the second and third

          integrals being moments of inertia,and Ist integral = area of elliptic cross-section = ab ]

Thus,                                     3 3 2 2( ) / 4 ( )Q Pa b a b   
Case II Tube having equilateral triangular cross-section.

[Kurukshetra 1999, Meerut 2000, Himachal 1998; Kanphur 1998, 2000]

Let              3 2 2 2( – 3 ) – ( /4 ) ( ).w A x xy B P x y     ..(1)
On the boundary of the pipe w = 0. Hence the boundary is given by

                            A (x3 – 3xy2) + B 2 2– ( /4 ) ( ) 0P x y    ...(2)

If x = a be a part of the boundary, then

             A (a3 – 3ay2) + B 2 2– ( /4 ) ( ) 0P a y   

or               3 2– ( /4 )Aa B P a   2– (3 /4 ) 0y aA P  

so that      3 2– /4 0Aa B Pa    and – (3 /4 ) 0aA P  

Solving these,  – ,
12

PA
a




   
2

.
3

PaB 


...(3)

Putting these values of A and B in (2), the boundary is given by
2

3 2 2 2– ( – 3 ) – ( ) 0
12 3 4

P Pa Px xy x y
a

  
  

y

C

A

B 30°
30° O

x
a

3

3

a

a

M

60°

60°

2a
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16.16 FLUID DYNAMICS

or x3 – 3 xy2 + 3ax2 + 3ay2 – 4a3 = 0  or ( – ) ( 2 – 3) ( 2 3) 0x a x a y x a y   

i.e. the boundary consists of       , ( 2 ) / 3, – ( 2 ) / 3x a y x a y x a    

which represent sides AC, BA and BC of an equilateral triangle ABC as shown in the figure. Here
BM = 3a. Origin of the coordinate system is taken at centre of the triangle, x-axis along BM and
y-axis is parallel to AC. Side AC = 2 AM = 2 ×  BM tan 30o = 2 × 3a × (1/ 3) 2 3a  Putting
values of A and B in (1), we get

3 2 2 2 3– ( /12 ) ( – 3 3 3 – 4 ).    w P a x xy ax ay a ...(4)
If Q be the flux of the fluid over an area of equilateral triangular cross-section, we have

Q w dxdy  = – 
( 2 )/ 3 3 2 2 2 3

–2 – ( 2 ) / 3
( – 3 3 3 – 4 )

12

a y x a

x a y x a

P x xy ax ay a dxdy
a

 

  
 

  

= –    ( 2 ) / 33 2 3
– ( 2 ) / 3– 2

3 – 4
12

a y x a
y x aa

P x ax a y
a

 
 

 
( 2 ) / 3

3

– ( 2 ) / 3

1– 3 ( – )
3

y x a

y x a
x a y dx

 

 

 
   

= – 
4

4 3 2 2 3

– 2

2 10 8 104 – –
3 3 3 36 3

a

a

P ax ax a x a x dx
a

 
     

 =
427

20 3
Pa




Average flow =
Flux
Area


4 227 1 3 .

2020 3 (1/ 2) (3 ) (2 3)
   

  
Pa Pa

a a
Case III Tube having rectangular cross-section.
Consider the flow through a rectangular pipe whose corss-section is bounded by the lines

x a  and .y b 

Take                             2 2
1 – ( /4 ) ( ),   w w P x y ...(1)

where w1 is a plane harmonic.

Now w = 0, on the boundary        , .x a y b    ...(2)

Boundary conditions (2) and (1) show that on the boundary , .x a y b     we must have
        w1 = (P/4µ) × (x2 + y2)

Take again,        2 2
1 2 ( /4 ) ( – ) ,w w P x y K     ...(3)

where since (x2 – y2) and w1 are plane harmonic functions, w2 is also plane harmonic such that on
the boundary

2 2 2 2
2( ) ( – ) ,

4 4
   

 
P Px y w x y K    i.e.,               

2 2 2
2 – ( – ),

2 2
P Pw y K y b 
      ...(4)

where           2/2 .K Pb  ...(5)
  From (1) and (3), we have

2 2 2 2
2 ( – ) – ( )

4 4
P Pw w x y K x y   
  =

2
2 2 2 2

2 ( – ) – ( )
4 2 4
P Pb Pw x y x y  
  

by (5)

            2 2
2 ( / 2 ) ( – ),w w P b y    ...(6)

where w2 is a plane harmonic such that on the boundary w = 0 so that
2 2

2 ( /2 ) ( – ),w P y b            when        , .x a y b    ...(7)
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LAMINAR FLOW OF VISCOUS INCOMPRESSIBLE FLUIDS 16.17

Since w2 is a plane harmonic, it must satisfy the Laplace’s equation

  2 2 2 2
2 2/ / 0.w x w y      ...(8)

Let 2 ( ) ( ).w X x Y y ...(9)

 From (8),   
2 2

2 2
1 1 0d X d Y
X Ydx dy

           or        
2 2

2 2
1 1–d X d Y
X Ydx dy

 ...(10)

L.H.S. of (10) is function of x alone whereas R.H.S. of (10) is function of y alone. So (10) is
valid only if each side is a constant, say 2 . So (10) gives

2
2

2
1 ,d X
X dx

     
2

2
2

1– d Y
Y dy

  
2

2
2 0d X X

dx
        and       

2
2

2 0.d Y Y
dy

     …(11)

Solving (11), we get              
cosh sinh
cos sin .

X A x B x
Y C y D y

    
    

...(12)

  A solution of (8) is given by

2 ( cosh sinh ) ( cos sin )w A x B x C y D y        ...(13)

Since 2 2
2 ( /2 ) ( – )w P y b    when x a   and also when ,y b   the terms containing

sinh x  and sin y  must be taken zero in (13), so we have

2 cosh cos ,w E x y     where ( )E AC  are new arbitrary constants ...(14)

When  2, 0y b w    from (7). Hence, from (14)                       cos 0,b 

giving {(2 1) }/2b m    , m being an integer so that                {(2 1) }/2m b   

 From (14), 2 2 1
0

cosh (2 1) cos (2 1) .
2 2m

m

x yw E m m
b b






         
    ...(15)

Using boundary condition (7), namely, when 2 2
2, ( / 2 ) ( – ),x a w P y b     (15) gives

2 2
2 1

0

( – ) cosh (2 1) cos (2 1)
2 2 2m

m

P a yy b E m m
b b






         
     ...(16)

Multiplying both sides of (16) by cos (2 1)
2

ym
b
  

 
 and integrating between the limits – b

and b and noting that                 
–

0,
cos (2 1) cos (2 1)

,2 2

b

b

n my ym n dy
b n mb b

               

and            
2 2

–

( – )cos (2 1)
2

b

b

yy b m dy
b
  

 

2 2

–

2( – ) sin (2 1)
(2 1) 2

b

b

b yy b m
m b

           –

2– 2 sin (2 1)
(2 1) 2

b

b

b yy m dy
m b

   
   
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16.18 FLUID DYNAMICS

          
–

4– sin (2 1)
(2 1) 2

b

b

b yy m dy
m b

   
   

–

4 –2 2– cos (2 1) cos (2 1
(2 1) (2 1) 2 (2 1) 2

b b

b b

b b y b yy m m dy
m m b m b



                           


=
2

2 2
8 cos (2 1)

2(2 1)

b

b

b ym dy
bm



   
    = – 

2

2 2
–

8 2 sin (2 1)
(2 1) 2(2 1)

b

b

b b ym
m bm

           

= – 
3 3

3 3 3 3
16 32 (–1)2sin (2 1) ,

2(2 1) (2 1)

mb bm
m m

     
    

we obtain                   
3

2 13 3
–32 (–1) cosh (2 1)

2 2(2 1)

m

m
P b ab E m

bm 
    

    

giving                   
2

2 1 3 3
16 (–1)–

cosh{(2 1) / 2 }(2 1)   
   

m

m
P bE

m a bm

  From (15),      
2

2 3 30

16 (–1) cosh{(2 1) / 2 }– cos 2 1)
cosh{(2 1) / 2 } 2(2 1)





        
     

m

m

P b m x b yw m
m a b bm

Putting this value of 2  in (6), we have

2
2 2

3
16( – ) –

2
P P bw b y 
   30

(–1) cosh{(2 1) / 2 } cos (2 1)
cosh{(2 1) / 2 } 2(2 1)

m

m

m x b ym
m a b bm





     
       ...(17)

Flux Q of the fluid over an area of rectangular cross-section, is given by

–

b a

y b x a

Q w dxdy
  

  
2

2 2
3

– –

16( – ) –
2

b a

b a

P P bb y dxdy 
   

    30
– –

(–1) cosh (2 1) cos (2 1)
2 2(2 1) cosh{(2 1) / 2 }

b am

m
b a

x ym m dxdy
b bm m a b





           
       

=

2
2 2

3
– –

16( – ) –
2

b a

b a

P P bb y dy dx 
   

30
–

(–1) cos (2 1)
2(2 1) cosh{(2 1) / 2 }

bm

m
b

ym dy
bm m a b





     
    

–

cosh (2 1)
2

a

a

xm dx
b
   

 

=
3 2

3
3

2 162 – 2
2 3
P b p bb a
 

       
30

(–1)
(2 1) cosh{(2 1) / 2 }






  

m

m m m a b

                      
–

2 sin (2 1)
(2 1) 2

          

b

b

b ym
m b –

2 sinh (2 1)
(2 1) 2

a

a

b xm
m b

          
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LAMINAR FLOW OF VISCOUS INCOMPRESSIBLE FLUIDS 16.19

=
3 4

5
4 64–

3
Pab Pb
  50

(–1) 2 (–1) 2sinh (2 1)
2(2 1) cosh{(2 1) / 2 }

m
m

m

am
bm m a b





     
    

=
3 4

5 50

4 256 1– tanh (2 1)
3 2(2 1)





   
    m

Pab Pb am
bm

16.6. Laminar flow between two concentric rotating cylinders- couette flow.
[Meerut 2011, 12; Himachal 2001, 06, 07, 10]

Consider two infinitely long, concentric circular cylinders of radii
r1and r2 rotating with constant angular velocities 1 and 2 . Let
there be viscous incompressible fluid in the annular space. Then the
cylinders induce a steady, axi-symmetric, tangential motion in the fluid.
Let z-axis be taken along the axis of the cylinders. Since the motion is
only tangential, we have qr = 0, qz = 0. Then the continuity equation
in cylindrical coordinates reduces to / 0,q    so that q  depends
on r and z only.

Again, the cylinder being very long, the flow will not depend on z. Hence ( ).q q r   Hence
the equations of motion (refer 13 (a) to 13 (c), Art. 14.11 of chapter 14) in cylindrical coordinates for
the present problem reduce to

2( / ) /q r p r    ...(1)

2

2 2
1 10 – –

q q qp
r r rr r

    
    

   
             or          

2

2
10

d q qp d
r dr rdr

               
  ... (2)

0 – ( / )p z   ...(3)
Equation (3) shows that p is independent of z. Since q is function of r only and the flow is

axially symmetric, it follows that p must be either a function of r or a constant. Hence we take
/ 0p    in (2) and so it may be re-written as

2

2 0.
d q qd

dr rdr
    

 
...(4)

Integrating (4), / / 2 ,dq dr q r A   A being an arbitrary constant.

or 1 ( ) 2d rq A
r dr   or ( ) 2 .d rq Ar

dr  

Integrating it, 2rq Ar B   or / ,q Ar B r   ...(5)
where A and B are constants of integration to be determined. These constants are obtained from
the boundary conditions :

     
1 1 1

2 2 2





   
   

q r at r r
q r at r r ...(6)

Using (6), (5) yields 1 1 1 1/r Ar B r   and    2 2 2 2/r Ar B r   ...(7)

On solving (7),
2 2

2 2 1 1
2 2
2 1

– ,
–

 


r rA
r r and

2 2
1 2

2 12 2
2 1

– ( – ).
–

r rB
r r

  

r2

O
r

q


r1

2

1

P

x
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16.20 FLUID DYNAMICS

Substituting these values into (5), we obtain
2 2

2 2 1 2
2 2 1 1 2 12 2

2 1

1 ( – ) – ( – )
–

r r
q r r r

rr r
 

     
  

...(8)

As explained earlier, equation (1) may be written as

2dp q
dr r 


 or

22 2
2 2 1 2

2 2 1 1 2 12 2 2
2 1

( – ) – ( – )
( – )

r rdp r r r
dr rr r r

 
     

  

or    
2 2

2 2 2 2 21 2
2 2 1 1 2 2 1 1 2 12 2 2

2 1

2
( – ) – ( – ) ( – )

( – )


      



r rdp r r r r r
dr rr r

4 4
21 2

2 13 ( – )
r r
r


   


   ...(9)

Integration of (9) gives
2

2 2 2 2 2 2 2
2 2 1 1 1 2 2 1 1 2 12 2 2

2 1
( – ) – 2 ( – ) ( – ) log

2( – )


      



rp r r r r r r r
r r

4 4
21 2

2 12– . ( – ) ,
2
r r C

r


  


...(10)

where C is constant of integration to be determined. Suppose that p = p1 at r = r1 Then (10) gives
2

2 2 2 2 2 2 21
2 2 1 1 1 2 2 2 1 1 2 1 12 2 2

2 1
( – ) – 2 ( – ) ( – ) log

2( – )
rp r r r r r r r

r r


      



4 4
21 2

2 12
1

– . ( – )
2
r r C

r


   


...(11)1)

Subtracting (11) from (10) and re-writing the resulting equation, we have

2

2 2
2 2 2 2 2 2 2 21

1 2 2 1 1 1 2 2 2 1 1 2 12 2 2
11

–( – ) – 2 ( )( ) log
2( – )

  
            

r r rp p r r r r r r
rr r

                       4 4 2 2 2
1 2 2 1 1–( / 2) ( – ) (1/ 1/ )r r r r      ...(12)

The shearing stress for the present problem is given by*
( / / )r dq dr q r      ...(13)

Substituting the value of q  given by (8) into (13), we have

2 2
1 2

2 12 2 2
2 1

2 ( – )
–r

r r
r r r


    ...(14)

Hence the shearing stress at the walls of the outer and inner cylinders are given by

2

2
1

2 12 2
2 1

2( ) ( – )
–r r r
r

r r 


    ...(15)

and
1

2
2

2 12 2
2 1

2
( ) ( – ).

–r r r
r

r r 


    ...(16)

Deduction. Let the inner cylinder be at rest, i.e., 1 0.   Then, writing ,q r    (8) gives

2 2 2 2 2
2 2 1 2 2 1

2 2 2 2 2 2
2 1 2 1

( – )
1–

( – ) –
r r r r r

r r r r r r
  

     
 

...(17)

where  is the angular velocity of the fluid at any point  ( , )P r  .

* Refer results (4) and (6) of Art. 14.11 in chapter 14
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LAMINAR FLOW OF VISCOUS INCOMPRESSIBLE FLUIDS 16.21

For the present problem there would be only tangential stress r  given by

– –r
dq q d dr r
dr r dr dr
 


                 

       Moment of r  about the common axis of the cylinders

( 2 )r r r    
2 2

3 1 2
2 2 2

2 1
2 4 ,

–
r rdr

dr r r


      using (7)

16.7 Illustrative solved examples
Ex. 1. Incompressible liquid is flowing steadily through a circular pipe. Prove that the

mean pressure is constant over the cross section and that the rate of flow is 4
1 2( – )/8 ,a p p l 

where  p1 and p2 are the pressures over sections at distance l apart.   [Himanchal 1999;
    Agra 2000, 06; 09; 11, Meerut 2004; Nagpur 2003, 06; Mumbai 2005; Patna 2003]

Sol. Refer Art. 16.4 A, We have 2 1 1 2( ) / ( ) /    P p p l p p l ...(1)

and so Q = – 
44

1 2( – ) ,
8 8

a p pa P
l




 
 using (1)

Ex. 2. The space between two co-axial cylinders of radii a and b is filled with viscous
fluid, and the cylinders are made to rotate with angular velocities 1 2, .   Prove that in steady
motion the angular velocity of the fluid is given by

2 2 2 2 2 2 2 2 2
1 2{ ( – ) ( – ) }/ ( )a b r b r a r b a     

[Agra 1998; Meerut 2001; Himanchal 1999]
Sol. Setting r1 = a and r2 = b in equation (8) of Art. 16.6, we have

2 2
2 2

2 1 2 12 2
1 ( – ) – ( – )
–

a bq b a r
rb a

 
     

 

or 2 2 2 2 2 2 2
2 1 2 1[( – ) – ( – )]/ ( )r b a r a b r b a      

or 2 2 2 2 2 2 2 2 2
1 2{ ( – ) ( – ) }/ ( )a b r b r a r b a     

Ex. 3. A viscous liquid flows steadily parallel to the axis in the annular space between two
co-axial cylinders of radii a, na ( n > 1). Show that the rate of discharge is

4 2 2
4 ( –1)–1– ,

8 log
 
 

  

Pa nn
n  where P is the pressure gradient. (Meerut 2007)

Sol. From equation (13) of Art. 16.4B, we have

  
2 2 2

4 4 ( – )– – –
8 log( / )

P b aQ b a
b a

 
  

  
...(i)

Here b = an. Also replacing P by – P in (i) for the present problem, we have

  
4 2 2

4 4 ( –1)( –1) –
8 log

P a nQ a n
n

 
  

  

4 2 2
4 ( –1)–1– .

8 log
Pa nn

n
 

  
  

Ex. 4. (a) Determine the maximum value of the velocity profile in the annular space between
two coaxial cylinders.

(b) If a = 50 mm, b = 75 mm, and the volumetric flow of water, Q = 0.006 m3/s, calculate
(i) the pressure drop (ii) the maximum value of u and (iii) the shearing stress at the wall of both
cylinders. Assume that = 1.01 g/ms.         [Garwhal 1995, 97]
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16.22 FLUID DYNAMICS

Sol. Part (a). Refer Art. 16.4B. We have

2 2 2 2 log ( / )– – ( – ) .
4 log ( / )
P r au a r b a

b a
 

    
...(1)

      From (1),
2 2– 1– –2 .

4 log ( / )
du P b ar
dr b a r

 
  

  
...(2)

For the maximum value of u, we must have du/dr = 0, and so

2 2– 1–2 0
log ( / )
b ar

b a r
  so that

1/22 2– ,
2 log ( / )

b ar
b a

 
   

 
 ...(3)

which gives the values of r for which u will be maximum. Putting this value of r in (1), the required
maximum velocity is given by

1/22 2 2 2 2 2
2

max
– – 1 –– – log

4 2 log ( / ) log ( / ) 2log ( / )
P b a b a b au a

b a b a a b a

            

      
2 2 2–1 –1– 1– 1– log ,

4 2log 2log
           

Pa n n
n n ...(4)

where n = b/ a = 75/50 = 1.5.
Part (b). (i). From Art 16.4 B, we have

2 2 2
4 4 ( – )– ( – ) –

8 log ( / )
P b aQ b a

b a
 

  
  

or
4 2 2

4 ( –1)– –1– .
8 log
Pa nQ n

n
 

  
  

4 2 2
4

–3
3.14 (0.05) {(1.5) –1}0.006 – (1.5) –1–

log1.58 (1.01 10 )
P  

  
   

or 0.006 = – 0.000486P so that P = dp/dz = – 12.3 N/m3

(ii) The mamimum velocity is given by (4) as follows
2 2 2

max –3
12.3 (0.05) (1.5) –1 (1.5) –11– 1– log 0.96 / .

2log1.5 2 log1.54 (1.01 10 )
u m s

       
      

(iii) The shearing stress at the walls of the two cylinders are given by [Refer equations (15)
and (16) in Art. 16.4B]

  
2 2 2– –1( ) – – 2 – – 2

4 log ( / ) 4 logrz r a
P b a Pa na

a b a n
   

     
   

2
212.3 0.05 (1.5) –1 – 2 0.184 / .

4 log1.5
N m

 
  

 
2 2 2– 1– (1/ )( ) – – 2 – – 2

4 log( / ) 4 logrz r b
P b a Pb nb

b b a n
   

     
   

2
212.3 0.05 1– (1/1.5) – 2 0.145 /

4 log1.5
N m

 
  

 
Ex. 5. A liquid occupying the space between two co-axial circular cylinders is acted upon

by a force c/r per unit mass, where r is the distance from the axis, the lines of force being circles
around the axis. Prove that in the steady motion the velocity at any point is given by the formula

2 2 2

2 2
– log – log ,

2 –

   
      

c b r a b rr
r a ab a

where a, b are the two radii and v is the coefficient of kinematic viscosity.
[Agra, 2000, 02, 06; Kanpur 2002, Kolkata 2006, Rajasthan 2001]
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LAMINAR FLOW OF VISCOUS INCOMPRESSIBLE FLUIDS 16.23

Sol. Consider two infinitely, long, concentric circular cylinders
of radii a and b (b > a). Let there be viscous incompressible fluid
in the annular space. Since the lines of force are circles around the
axis of the cylinders, this will produce steady, axi-symmetric,
tangential motion in the fluid. Let z-axis be taken along the axis of
the cylinders. Since the motion is only tangential, we have

0rq and qz = 0 ...(1)
Hence the continuity equation in cylindrical coordinates

reduces to
                                  / 0,q  

showing that q  depends on r and z only. Furthermore, the cylinders being very long, the flow
will not depend on z. Hence, we suppose that

      ( ) ,q q r r    …(2)

where  is the angular velocity of the liquid at any point P(r, θ , z).

Here, body force ( , , ) (0, / , 0).r z c r B B B B B B            Hence /c r B ...(3)

The Navier-Stokes's equation in  -direction for axi-symmetric flow of incompressible fluid
is given by (Refer equation 13 (b) in Art. 14.11, chapter 14)

r
r z

q q q q qq q
t r z r
             

  =
2

2
1 1 ( )

qpB rq
r r r r z


 

                
...(4)

For the present steady ( / 0)t    and axi-symmetric ( / 0   ) flow, using (1), (2) and (3),
(4) reduces to

210 ( )c d d r
r dr r dr
      

 
 or

21 ( ) – – , asd d c cr v
dr r dr r r

          

or    
21 2 –d d cr r

dr r dr r
         

or                          2 –d d cr
dr dr r

     

or                              2 22( / ) { / ( / )} ( / )       d dr d dr r d dr c r

or
2

2 3 –d d cr
dr rdr

 
 


or

2
3 2

2 3 –d d crr r
drdr

 
 



or
3 – .d d crr

dr dr
     

Integrating,    
2

3 –
2

d crr A
dr

 


or 3–

2
d c A
dr r r

 



or 3– .
2

c Ad dr
r r

     

Integrating,             2– log – ,
2 2
c Ar B

r
  


...(5)

where A and B are constants of integration to be determined. To determine A and B, we use the
boundary conditions :

0 at r = 0 ...(6A)

0 at r = b ...(6B)

q P
(r, , z)

b
a

r
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16.24 FLUID DYNAMICS

Using (6A), (5) gives 20 – log –
2 2
c Aa B

a
 


...(7A)

Using (6B), (5) gives 20 – log –
2 2
c Ab B

b
 


...(7B)

Subtracting (7A) from (5), 2 2
1 1– – – log

2 2
A c r

ar a
           

...(8)

Subtracting (7B) from (7A), we have

2 2
1 10 – – log

2 2
A c b

aa b
          

                  so that              
2 2

2 2 log
( – )
ca b bA

ab a
     

Substituting this value of A in (8), we have
2 2

2 2 2 2
log ( / ) 1 1– – – log

2( – )
ca b b a c r

ab a r a
            2 or   

2 2 2

2 2 2
– log – log ,

2 2–
q c r a b b c r
r v a ab a r
 


using (2)



2 2 2

2 2
– log – log .

2 –
c b r a b rq r

r a ab a
          

Ex. 6. Oil is filled between two concentric rotating cylinders with radii 5 in. and (11/2) in.
Assume that 0.005  lbf-sec/ft3. The inner cylinder rotates at a speed of 5 rpm, while the outer
cylinder is at rest. Calculate the stress at the wall of the inner cylinder.

Sol. Refer Art 16.6 Here, 2 1
11 1 11 1 5, 5 ,
2 12 24 12 12

r ft r ft     

  2
1 25/60 (1/12) , 0 and 0.005 sec /rps lbf ft       

Shear stress at the wall of the inner cylinder 1

2
2

2 12 2
2 1

2
( ) ( – )

–r r r
r

r r 


    

  

2

5/12 2 2

2 0.005 (11/ 24) 1( ) 0 –
1211/ 24 – (5 /12)

r r 
      

  = – 0.0048 lbf/ft2

Ex. 7. In the case of steady flow of compressible liquid flowing steadily through a circular
pipe of radius a, show that the mass which crosses any section per unit time is

4
1 2 1 2( – ) ( )/16 ,a p p l   

where 1  and 2  are the densities at two sections at distance l apart. It is assumed that the
temperature is constant, and the velocity gradient in the direction of the axis may be neglected
in comparison with its gradient in the direction of a radius.        [Agra 2008, Meerut 2006]

Sol. Using cylindrical coordinates with z-axis along the axis of the pipe, we have 0 .rq q 

The continuity equation reduces to                            ( ) 0.zq
z


 


...(1)

Since temperature is constant, equation of state is given by      .p k  ...(2)

Using (2), (1) may be written as              ( ) 0.zpq
z





...(3)

For present steady motion in absence of body forces, the Navier-Stokes equations reduce to
           0 – ( / ),p r   ...(4)
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