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1a) Let 𝐻 be a subspace of 𝑅4 spanned by the vectors 𝑣1 = ( 1, −2, 5, −3). 
𝑣2 = ( 2, 3, 1, −4),   𝑣3 = ( 3, 8, −3, −5)     Then find a basis and 
dimension of 𝐻, and extend the basis of 𝐻 to a basis of R4. 
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1b) Let 𝑇: 𝑅3 → 𝑅3 be a linear operator and 𝐵 = (𝑣1, 𝑣2, 𝜈3) be a basis of 𝑅3 
over R. Suppose that 𝑇𝑣1 = (1,1,0) , 𝑇𝑣2 = (1,0, −1), 𝑇𝑣3 = (2,1, −1). 
Find a basis for the range space and null space of 𝑇. 
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1c) Discuss the continuity of the function 

𝑓(𝑥) = {
1

1 − 𝑒−1/𝑥
, 𝑥 ≠ 0

0, 𝑥 = 0
 

for all values of 𝑥. 
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1d) Expand   ln (𝑥) in powers of (𝑥 − 1) by Taylor's theorem and hence find 
the value of In(1.1) correct up to four decimal places. 
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1e) Find the equation of the right circular cylinder which passes through 
the circle 𝑥2 + 𝑦2 + 𝑧2 = 9, 𝑥 − 𝑦 + 𝑧 = 3. 
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2a) Consider a linear operator 𝑇 on 𝐑3 over 𝑅 defined by  T(x,y,z) = 
(2𝑥, 4𝑥 − 𝑦 , 2𝑥 + 3𝑦 − z) is 𝑇 invertible ? If yes, justify your answer and 
find 𝑻−1. 
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2b) If  𝑢 = (𝑥 + 𝑦)/(1 − 𝑥𝑦) and 𝑣 = tan−1𝑥 + tan−1 𝑦,  then find 
𝜕(𝑢, 𝑣)/𝜕(𝑥, 𝑦). Are 𝑢 and 𝑣 functionally related? If yes, find the 
relationship. 

  

Succ
ess

Clap

Sam

Sam

Sam

Sam

Sam

Sam

Sam

Sam

Sam

Sam

Sam

Sam



2c) Find the image of the line  𝑥 = 3 − 6𝑡,   𝑦 = 2𝑡,    𝑧 = 3 + 2𝑡   in the plane 
3𝑥 + 4𝑦 − 5𝑧 + 26 = 0. 
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3a) Let 𝑉 = 𝑀2×2(𝑅) denote a vector space over the field of real numbers. 
Find the matrix of the linear mapping 𝜙: 𝑉 → 𝑉 given by 𝜙(𝑣) =

(
1 2
3 −1

) 𝑣   with respect to standard basis of 𝑀2×2(ℝ), and hence find 

the rank of 𝜑. Is 𝜙 invertible? Justify your answer. 
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3b) Find the volume of the greatest cylinder which can be inscribed in a 
cone of height ℎ and semi-vertical angle 𝛼. 
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3c) Find the vertex of the cone 4𝑥2 − 𝑦2 + 2𝑧2 + 2𝑥𝑦 − 3𝑦𝑧 + 12𝑥 − 11𝑦 +
6𝑧 + 4 = 0.  
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4a) Let 𝐴 = (
3 2 4
2 0 2
4 2 3

) be a 3 × 3 matrix. Find the eigenvalues and the 

corresponding eigenvectors of 𝐴. Hence find the eigenvalues and the 
corresponding eigenvectors of 𝐴−15, where 𝐴−15 = (𝐴−1)15. 
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4b) Using double integration, find the area lying inside the cardioid 𝑟 =
𝑎(1 + cos 𝜃) and outside the circle 𝑟 = 𝑎. 
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4c) Find the equation of the sphere which touches the plane 3𝑥 + 2𝑦 − 𝑧 +
2 = 0 at the point (1, −2,1) and cuts orthogonally the sphere 𝑥2 + 𝑦2 +
𝑧2 − 4𝑥 + 6𝑦 + 4 = 0. 
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5a) Find the orthogonal trajectories of the family of curves 𝑟 = 𝑐(sec 𝜃 +
tan 𝜃), where 𝑐 is a parameter. 
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5b) Solve the integral equation 𝑦(𝑡) = cos 𝑡 + ∫
0

𝑡
 𝑦(𝑥)cos (𝑡 − 𝑥)𝑑𝑥 using 

Laplace transform. 
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5c) At any time t (in seconds), the coterminous edges of a variable 
parallelepiped are represented by the vectors 

𝛼‾ =  𝑡𝑖 +  (𝑡 + 1)𝑗 +  (2𝑡 + 1)�̂�

𝛽‾ =  2𝑡𝑖 +  (3𝑡 − 1)𝑗 + 𝑡�̂�

𝛾‾ =  �̂� +  3𝑡𝑗 +  �̂�

 

What is the rate of change of the vectorial area of the parallelogram, 
whose coterminous edges are 𝛼‾ and 𝛾‾ ? Also find the rate of change of 
the volume of the parallelepiped at 𝑡 = 1 second. 
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5d) A solid hemisphere rests in equilibrium on a solid sphere of equal 
radius. Determine the stability of the equilibrium in the two situations
 (i) when the curved surface and (ii) when the flat surface of the 
hemisphere rests on the sphere.  
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5e) (i)  Let 𝐶 be a plane curve 𝑟‾(𝑡) = 𝑓(𝑡)𝑖 + 𝑔(𝑡)𝑗, where 𝑓 and 𝑔 have 
second-order derivatives. Show that the curvature at a point is given by 

𝐾 =
|𝑓′(𝑡)𝑔′′(𝑡) − 𝑔′(𝑡)𝑓′′(𝑡)|

([𝑓′(𝑡)]2 + [𝑔′(𝑡)]2)3/2
 

What is the value of torsion 𝜏 at any point of this curve? 
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(ii) Show that the principal normals at two consecutive points of a 
curve do not intersect unless torsion 𝜏 is zero. 
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6a) A regular tetrahedron, formed of six light rods, each of length 𝑙, rests 
on a smooth horizontal plane. A ring of weight 𝑊 and radius 𝑟 is 
supported by the slant sides. Using the principle of virtual work, find 
the stress in any of the horizontal sides. 
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6b) A particle executes simple harmonic motion such that in two of its 
positions, velocities are 𝑢 and 𝑣, and the two corresponding 
accelerations are 𝑓1 and 𝑓2. For what value(s) of 𝑘, the distance 
between the two positions is 𝑘(𝑣2 − 𝑢2) ? Show also that the 

amplitude of the motion is     
1

𝑓2
2−𝑓1

2 [(𝑢2 − 𝑣2)(𝑢2𝑓2
2 − 𝑣2𝑓1

2)]1/2 
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6c) (a) Find the second solution of the differential equation 𝑥𝑦′′ + (𝑥 −
1)𝑦′ − 𝑦 = 0  using 𝑢(𝑥) = −𝑒−𝑥 as one of the solutions. 
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(b) Find the general solution of the differential equation 𝑥2𝑦′′ −
2𝑥𝑦′ + 2𝑦 = 𝑥3sin 𝑥  by the method of variation of parameters. 
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7a) State uniqueness theorem for the existence of unique solution of the 

initial value problem 
𝑑𝑦

𝑑𝑥
= 𝑓(𝑥, 𝑦), 𝑦(𝑥0) = 𝑦0 in the rectangular region 

𝑅: |𝑥 − 𝑥0| ≤ 𝑎, |𝑦 − 𝑦0| ≤ 𝑏. Test the existence and uniqueness of the 

solution of the initial value problem   
𝑑𝑦

𝑑𝑥
= 2√𝑦,    𝑦(1) = 0, in a 

suitable rectangle 𝑅. If more than one solution exists, then find all the 
solutions. 
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7b) A heavy particle hanging vertically from a fixed point by a light 
inextensible string of length 𝑙 starts to move with initial velocity 𝑢 in a 
circle so as to make a complete revolution in a vertical plane. Show 
that the sum of tensions at the lends of any diameter is constant. 
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7c) State Stokes' theorem and verify it for the vector field �⃗� = 𝑥𝑦𝑖 + 𝑦𝑧𝑗 +

𝑧𝑥�̂� over the surface 𝑆, which is the upwardly oriented part of the 
cylinder 𝑧 = 1 − 𝑥2, for 0 ≤ 𝑥 ≤ 1, −2 ≤ 𝑦 ≤ 2. 
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8a) Using Laplace transform, solve the initial value problem 

𝑦′′ + 2𝑦′ + 5𝑦 = 8(𝑡 − 2),  𝑦(0) = 0,  𝑦′(0) = 0 

where 𝛿(𝑡 − 2) denotes the Dirac delta function. 

  

Succ
ess

Clap

Sam

Sam

Sam

Sam

Sam

Sam

Sam

Sam

Sam

Sam

Sam

Sam

Sam

Sam

Sam



8b) Using Gauss divergence theorem, evaluate the integral 

∬ 
𝑆

(𝑦2𝑖 + 𝑥𝑧3𝑗 + (𝑧 − 1)2�̂�) ⋅ �̂�𝑑𝑆 

over the region bounded by the cylinder 𝑥2 + 𝑦2 = 16 and the planes 
𝑧 = 1 and 𝑧 = 5. 
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8c) A particle moves with a central acceleration 𝜇 (
3

𝑟3 +
𝑑2

𝑟5) being projected 

from a distance 𝑑 at an angle 45∘ with a velocity equal to that in a 
circle at the same distance. Prove that the time it takes to reach the 

centre of force is 
𝑑2

√2𝜇
(2 −

𝜋

2
) 
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