

Weekly Test Series for UPSC CSE 2025

Total 45 TESTS for Practice

Why you need?

- To Follow Year Long Strict Schedule: Time Bound Preparation for UPSC CSE 2025
- Weekly Testing your learning
- One Week Reasonable time frame for topics to be learnt and test it
- Total 45 Tests: Practicing at least 800 Questions

How it Works?

- Download Question paper from the portal and take test.
- Evaluation in 3 days
- Weekly Test Time duration is 2hrs which has 15 questions to be solved
- Full Length Test is 3hrs and as per UPSC model
- If you miss schedule, you can take Test on any other day

Test No	Date	Topic Covered	References
		LINEAR ALGEBRA	
1	Sep 1 2024	Matrix:Find Rank of MatricesGiven Matrix, Find Inverse and Express High order MatrixPolynomial in terms of AFind Inverse using ONLY ELEMENTART ROWOPERATIONGiven Matrices, find Eigen Values and eigen VectorsState and Prove Cayley Hamilton theoremGiven Matrix A, Find A(power of 300) using CayleyHamiltonGiven Homogeneous Equation, Find Dimension andBasisLinear Eqn , Find Condition forNo Solution , UniqueSolution ,Infinite SolutionsTheorems and Problems from Krishna Series BookEigen Values, VectorsOrthogonalitySimilarity	Matrices-Krishna Series

Schedule

		Diagonalizable	
		Quadratic Form	
2	Sep 8 2024	Vector Spaces, Subspaces Basis, Dimensions, Nullity Linear Transformation: Given Linear Transformation, Find a) Rank, b) Nullity c) Range Space d) Null Space Given Matrix Form of Linear Transformation, Find a) Rank, b) Nullity c) Range Space d) Null Space Given Linear Transformation with Two Different Bases Sets, Find Matrix Given Linear Transformation with Standard Basis. Find Matrix relative to New Basis Set	Any Graduation Text Book covers this Syllabus Schaum Series Linear Algebra : Selected Problem Solving SuccessClap Free Study material on Linear Algebra
		CALCULUS	
3	Sep 15 2024	Limits: Continuity, Types of Discontinuity, Heine Continuity method, Bolzano Intermediate Value Theorem, Uniform Continuity Differentiability, Indeterminants Max/ Min Single Variable Find Max/Min of function. Problems to find Max/Min Area, Surface, Height Max Min TWO Variables Find Max/Min of function Max/Min Multiple Variables Lagrange Multiplier Length of Arc Areas: Cartesian, Polar, Loop/Asymptotes Volumes: Cartesian, Polar , Spherical System Surface Areas Asymptote: General Method, Inspection method, Intersection of Curve and Asymptote Curve Tracing	Krishna Series : 1)Differential Calculus, 2)Integral Calculus
4	Sep 22 2024	Mean Value theorem: MVT, Taylor Maclurin Expansion, Generalized MVT Rolle Theorem Lagrange Theorem (Also proof) Cauchy MVT Function Increasing/Decreasing Jacobians Partial Differentiation Formation, Eulers Total Differentiation	Krishna Series : 1)Differential Calculus, 2)Integral Calculus
5	Sep 29 2024	Beta Gamma Properties Relation between Beta and Gamma Legendre Duplication Formula and Properties	Krishna Series : 1)Differential Calculus,

		Beta Gamma Several Variables	2)Integral Calculus
		Evaluation of Integrals	
		Definite Integral as Sum	
		Differentiation under Integral Sign	
		Multiple Integrals Change of Order of Integration Evaluation of Integrals	
		REAL ANALYSIS	
6	Oct 6 2024	Riemann IntegralsSummation of SeriesTheorems :Continuous is integrableBounded and Finite Set of Discontinuity is integrableBounded and Discontinuity point has fixed limit point isintegrableMonotonic is integrableIntegral Inequality EqnFirst Mean Value TheoremGeneralised Mean Value TheoremSecond Mean Value TheoremImproper IntegralsLimit TestCauchy Test	Real Analysis by Raisinghania S.Chand
7	Oct 13 2024	Absolute Convergence and conditional convergence Abel Test Dirichlet Test Sequence Bolzano-Weistress Theorem	Real Analysis by Raisinghania
		Cauchy First Theorem on Limit Cauchy second Theorem on Limit Caseros Theorem Cauchy sequence Monotone Convergence Theorem	S.Chand
		Series Necessary Condition Comparison Test Comparison Test of Second Kind D Alembert Ratio Test Cauchy nTH Root Test Raabe Test Logarithmic Test DE Morgan and Bertrand Test Second Logarithmic Ratio Test Kummer Test Gauss Test	

		Cauchy Integral Test	
		Cauchy Condensation Test	
8	Oct 20 2024	Uniform Convergence Cauchy Principle Mn Test Weir strass Test Abel Test Dirichlet Test Properties on a) Sum b) Differentiability c) Integrability Functions of Several Variables Limit Continuity Differentiability	Real Analysis by Raisinghania S.Chand
		Maxima and Minima	
		VECTOR ANALYSIS	
9	Oct 27 2024	Directional Derivative : Max/Min ,Angle made, Vector Identities: Proof -Curl (A XB), Div (A X ,Grad (A.B) ,Curl(curl A) Invariance under Transformation Green Theorem Stoke Theorem Divergence Theorem Work done. Differential Geometry : Derive Serret Frennet formula, Show curve lie in Plane, Find Curvature Vector, Problems on finding Radius of Curvature, Torsion	Krishna Series Vector Analysis Differential Geometry by Paramanda Gupta
		ODE	
10	Nov 3 2024	Formation of DE Eqn of 1 st Order, 1 st Degree Integrating Factors Linear Differential Eqns Eqn reducible to Linear form Bernauli Eqn List of Important Results like Subnornal,subtangent, length of normal and tangent, Eqn of Tangent and Normal Tangent and Normal X and Y intercept Polar subtangent, subnormal, length of tangent, normal Orthogonal Trajectory/Oblique Trajectory Eqn Eqn of First Order but not of first degree Solvable for p, x, y Lagrange form Eqn in Claurait Form Eqn reducible to Claurait form Singular Solution	Ordinary and Partial Differential Equations by Raisinghania
11	Nov 10 2024	Linear Differential Equations with Constant Coefficients Method of variation of parameter Linear Equation of Second Order	Ordinary and Partial Differential

	Euler Cauchy	Equations by
	Reduction with One known integral	Raisinghania
ov 17 2024	Laplace, Inverse Laplace Application to initial value problem for 2 nd order linear equations with constant coefficients	Ordinary and Partial Differential Equations by Raisinghania
01/24		Ordinary and
2024	Lagrange Equations: Various Methods Surface Orthogonal to a given Surface Charpit method Clairaut equations Jacobi method	Ordinary and Partial Differential Equations by Raisinghania Advance PDE by Raisinghania
0ec 1 2024	Homogeneous Linear PDE with Constant Coefficient Linear PDE of Second Order with Constant Coefficient Cauchy Method of Characteristic Strip (Total 10 Qns) Canonical Form	Ordinary and Partial Differential Equations by Raisinghania Advance PDE by Raisinghania
Dec 8 2024	 Wave Eqn Initial Velocity is zero, Initial Displacement is Given Initial Velocity is Given, Initial Displacement is Zero Heat Eqn a) Initial Temperature f(x) .Both Ends suddenly changed to Zero Temperature b) Initial Tempearature (T1, T2), suddenly change to (T3, T4) c)Initial Temperature f(x). Both Ends Insulated suddenly d)At t=0 distribution is f(x). Both Ends Insulated suddenly d)At t=0 distribution is f(x). Suddenly One end is kept at T1 and other end Insulated Laplace Eqns a) Three sides Temperature is 0, Other side f(x) b) Two sides Temperature is 0, One side f(x), Other side at Infinite Long c)One side Insulated (X-Axis) d)One Side Insulated, X-axis side f(x), Other side 0 f) Two sides Insulated, X-axis side f(x), Other side f(x) g) Three sides Insulated Laplace in Polar Coordinate Sysytem a) Semicircular Plate b) Circular Arc c) Circular Annulus 	Advance PDE by Raisinghania
	2024 2024 2024 2024 2024 2024	Reduction with One known integral Reduction to Normal Changing independent variable Dov 17 Laplace, Inverse Laplace Application to initial value problem for 2 nd order linear equations with constant coefficients Dov 24 Formation of PDE of a given function Lagrange Equations: Various Methods Surface Orthogonal to a given Surface Charpit method Clairaut equations Jacobi method Initial Temperature f(X). Both Ends suddenly changed to Zero Temperature

		COMPLEX ANALYSIS	
16	Dec 15 2024	 Analytic Function: Cauchy Riemann Equation Given Function and Given Point a) Show it satisfy Cauchy Riemann eqn b) Show Analytic or Non-Analytic c) Show Existence of Derivative or Not Given U or V as Harmonic Function, find its Conjugate and also Function Complex Integration: Cauchy Integrals, Zeroes, Singularity, Poles, Rouche theorem 	Krishna Series Complex Analysis
17	Dec 22 2024	Series Expansion Expand in Taylor Series Expand in Laurent Series Power Series representation Use Cauchy Residue Theorem, to Evaluate the Integral Contour Integrations	Krishna Series Complex Analysis
		ANALYTIC GEOMETRY	
18	Dec 29 2024	Straight Lines Find coordinate the foot of perpendicular from given point to a plane. And also find distance Plane and St line: Parallel/ Perpendicular / Coincide Projection of Line on Plane Condition for Coplanar Lines Determine Eqn of St Line intersecting two given Lines Find Perpendicular distance of a point from line and its foot coordinate. Intersection of 3 Planes Shortest Distance Find SD between two lines and obtain eqn of SD (Very Imp) Projection Method Two Lines in Symmetric Form One-line General, Other Symmetric Form Two lines in General Form Skew Lines Find locus of line, which intersects set of lines or function. Planes Eqn of plan through 3 points Angle between planes Variable Plane Problems Bisecting Planes Combined Eqn of Planes Projection of planes	Krishna Series 3D Geometry
19	Jan 5 2025	Spheres Sphere touching plane. Sphere through Circle	Krishna Series 3D Geometry

		Eqn of tangent plane to sphere and its condition	
		Polar plane eqn and find pole.	
		Intersection of Spheres and orthogonality condition	
		Cylinder Eqn parallel to line and guiding curve Right Circular Cylinder Tangent Plane Enveloping Cylinder	
		Cone Find eqn of cone with Vertex origin cone Find cone, with non origin vertex Condition for second degree to represent cone and find coordinates Tangent Line and Tangent Plane of Cone Condition for Tangency Reciprocal cone Angle between lines in which plane cuts Cone Condition for 3 mutually perpendicular generators Condition for 3 mutually perpendicular tangent planes Right Circular Cone Enveloping Cone	
20	Jan 12 2025	Central Conicoids Find Eqn of Tangent plane Condition for Tangency Director Sphere Polar Planes, Pole Locus of Chord Bisected at a given point Normal to Conicoid Prove 6 normal to ellipsoid Find cubic curve through feet of normal Diametral Plane Problems on Semi conjugate diameter properties Paraboloid Generating Lines	Krishna Series Analytic Geometry (Slim Book)
21	Jan 19 2025	Formulation of LPP Graphical Method of Solution Simplex Method Big M Method	Operation Research by Taha ANY BOOK
		Construct Dual and Solve	
22	Jan 26 2025	Transportation Problem Assignment Problem	Operation Research by Taha
		NUMERICAL ANALYSIS	
23	Feb 2 2025	Obtain derivation (a)Quadrature Formula, (b)Trapezoid Rule, (c)Simpson 1/3, (d) Simpson3/8. Rule	Krishna Series Numerical Analysis

	(e)derive their Error Formula for ALL RULES.	Numerical Analysis by
	Newton Raphson Method	lyenger (Few
	a)Derivation,	Questions)
	 b) Find Condition for its convergence c) Show rate of convergence is quadratic 	Numerical
	d) Explain its merits and demerits	Analysis by Sastry
		, , ,
	Bisection Method	Flow Charts: Free
	Regula Falsi Method Secant Method	Study Material by SuccessClap
	Iteration Method and its Convergence	
	Derive Newton Gregory Forward interpolation formula, and its Error.	
	Derive Newton Gregory's Backward Interpolation formula and its Error	
	Lagrange Interpolation	
	Derivation of formula and derive its Error formula	
	Prove that Lagrange's formula can be put in the form of $\int_{1}^{n} d(x) f(x)$	
	$P_n(x) = \sum_{r=1}^n \frac{\emptyset(x)f(x_r)}{(x-x_r)\emptyset'(x_r)}$	
	where $\phi(x) = \prod_{r=0}^{n} (x - x_r)$.	
	Show that the sum of Lagrangian coefficient is unity.	
	Use Lagrange's interpolation formula to express the $x^{2}+x^{-3}$	
	function $\frac{x^2 + x - 3}{x^3 - 2x^2 - x + 2}$	
	as sums of partial fractions. Find the parabola passing through points (0,1) (1,3) and	
	(3,55) using Lagrange's formula	
	Gauss Quadrature Formula.	
	Derive formula for n=3,4,5	
	Solve ODE Problems	
	a) Euler	
	b) Euler Modified c)Runge Kutta Order 1, 4	
	Solve Linear Eqns	
	a) Gauss Elimination b) Gauss Jordan	
	c) Gauss Seidel	
	d) Gauss Jacobi	
	Use Gauss Jordan to Find Inverse	
	Conversion	
	Decimal to Octogonal and Vice versa Decimal to Hexadeceimal and vice versa	
	Solve Boolean Expression	
	Algorithms and Flow Chart	<u> </u>

		MECHANICS	
24	Feb 92025	Solving Problems on Lagrange Eqns Solving Problems on Hamilton Eqns	Classical Mechanics by JC Upadhyay, Krishna: Rigid
25	Feb 15 2025	D Alembert Principle Problems Moment of Inertia	Dynamics Vol1Krishna : RigidDynamics Vol 1
		Fixed Axis Motions(Important questions Only) Motion in 2Dimension (Important questions Only)	and Vol 2
		FLUID DYNAMICS	
26	Feb 23 2025	Learn Basics: Del,div,curl in catesian, spherical, cylindrigal, general coordinate system Kinematics Continuity Equation of motion Boundary Problems	Fluid Dynamics: Raisinghania Chapter 1,2,3,4,5
		Path Line Vector Potential Vortex Line, vector Euler Eqns Energy Conservation Bernoulli Eqns and Application Stream Fns Source Sink problem	
27	Mar 2 2025	Irrotational Motion Circular Cylinder Motion Irrotational 3D Vortex Navier Stoke Laminar Flow	Fluid Dynamics: Raisinghania Chapter 6, 7,10,11,14,16
		DYNAMICS	
28	Mar 9 2025	Rectilinear Motion SHM Projectile Motion Constrained Motion Motion in a Plane, Circle Work, Energy, Impulse	Krishna Series Dynamics
29	Mar 16 2025	Kepler Laws, Problems on Central Forces Planetary Motion Motion in resisting medium	Krishna Series Dynamics
		STATICS	

30	Mar 23 2025	Force Eqns, Moments Equilibrium of Rigid Body Frictions Catenary	Krishna Series Statics
31	Mar 30 2025	Virtual Work Stable and Unstable Equilibrium	Krishna Series Statics
		ABSTRACT ALGEBRA	
32	Apr 6 2025	Group Theory Groups SubGroups Cosets, Lagrange Theorem Cyclic Group Normal Subgroups Quotient Groups Homomorphism Fundamental Theorem of Homomorphism 1,2,3 Permutation Groups Cayley's theorem	Any State B.Sc Text Book Group Theory by R Kumar SuccessClap Free Study material on Algebra Don't waste time on Galian, Khanna Bhambri or any book
33	Apr 13 2025	Ring Theory Rings SubRings Ring Homomorphism Embedness Max Ideal Prime Ideal PID Divisibility in Rings, prime, Irreducible element Euclidean Domain, UFD, Einstein criteria	Any State B.Sc Text Book Ring Theory by R Kumar SuccessClap Free Study material on Algebra
		FULL LENGTH TESTS	
34	Apr 20 2025	Full Length Test Paper 1	Paper 1
35	Apr 20 2025	Full Length Test Paper 2	Paper 2
36	Apr 27 2025	Full Length Test Paper 3	Paper 1
37	Apr 27 2025	Full Length Test Paper 4	Paper 2
		PRELIMS BREAK	
	All Full	-Length Test Question Paper 5,6,7,8,9,10,11,12 will June 1, 2025	be uploaded on
38	June 1 2025	Full Length Test Paper 5	Paper 1

39	June 1 2025	Full Length Test Paper 6	Paper 2
40	June 1 2025	Full Length Test Paper 7	Paper 1
41	June 1 2025	Full Length Test Paper 8	Paper 2
42	June 1 2025	Full Length Test Paper 9	Paper 1
43	June 1 2025	Full Length Test Paper 10	Paper 2
44	June 1 2025	Full Length Test Paper 11	Paper 1
45	June 1 2025	Full Length Test Paper 12	Paper 2

NOTE:

- The validity of Test Series is till UPSC Mains 2025 Exam.
- All Papers will be Evaluated before the validity.
- After UPSC Mains 2025 Exam, papers will not be evaluated.

TIPS:

- Always Study from Standard Text Books ONLY
- Always Prefer Krishna Series, Rai Singhania books because UPSC asks questions directly from standard books
- Download SuccessClap Free Study material which will be useful for reference. <u>https://www.successclap.com/upsc-mathematics-study-material</u>

Join Our Telegram Channel for regular updates: <u>https://t.me/SuccessClap</u>

Checkout Our website: <u>www.SuccessClap.com</u>

Checkout Previous Year Solutions of UPSC CSE Mathematics from 2001 : <u>https://learn.successclap.com/courses/previous-year-solutions-for-upsc-mathematics-civil-service-examination</u>

For Query, WhatsApp 9346856874.